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SRG makes scale dependence obvious

Unitary transformations widely used to
soften nuclear Hamiltonians leading to
accelerated convergence

SRG scale λ sets the scale for decoupling
high- and low-momentum and separating
structure and reaction

Transformed wave function→
no high momentum components

σ ∼
∣∣〈ψf |Ô|ψi〉

∣∣2 ⇒ Ô must change to
keep observables invariant

UV physics absorbed in operator
(cf. Chiral EFTs)

What about the final state interactions?

p < λ p > λ
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Test ground: 2H (e, e′ p) n

Use deuteron electrodisintegration to investigate scale/scheme
dependence of factorization between nuclear structure and nuclear
reaction
dσ
dΩ
∝ (vL fL + vT fT + vTT fTT cos 2φp + vLT fLT cosφp)

vL, vT , . . .- electron kinematic factors. fL, fT , . . .- deuteron structure
functions

fL ∼
∑

ms ,mJ

∣∣〈ψf |J0|ψi〉
∣∣2

f λL ∼
∣∣〈ψf |U†

λ︸ ︷︷ ︸
ψλ

f

Uλ J0 U†
λ︸ ︷︷ ︸

Jλ0

Uλ |ψi︸ ︷︷ ︸
ψλ

i

〉
∣∣2; U†

λUλ = I; f λL = fL

Components depend on the scale λ. Cross section does not!
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Evolutionary effects

2H (e, e′ p) n calculations done using
AV18 potential with λ =∞ and
λ = 1.5 fm−1

fL ∼
∑

ms ,mJ

∣∣〈ψf |J0|ψi〉
∣∣2

Effects due to evolution of one or more
components of 〈ψf |J0|ψi〉 as a function
of kinematics→ scale dependence of
factorization

Proof of principle calculations using
simplified J0. Comparison to
experiment not warranted

Quasi-free ridge (QFR): ωphoton = 0

Weak scale dependence at QFR which
gets progressively stronger away from it

✪

✪

✪

✪

✪

SNM et al., PRC 92, 064002 (2015)
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Results at QFR

At the quasi-free ridge
E′(in MeV) ≈ 10 q2(in fm−2)

fL ∼
∑

ms ,mJ

∣∣〈ψf |J0|ψi〉
∣∣2

Long-range part of the wave function probed at
QFR→ invariant under SRG evolution

✪

✪

✪

✪

✪
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Results below QFR

〈ψf |J0|ψi〉 = 〈φ|J0|ψi〉︸ ︷︷ ︸
IA

+ 〈φ|t†G†0 J0|ψi〉︸ ︷︷ ︸
FSI

Below QFR two terms add constructively

Wave function in IA probed between 2.9 and
3.4 fm−1 ⇒ |〈ψf |J0|ψλi 〉| < |〈ψf |J0|ψi〉|

〈ψλf |J0|ψi〉 = 〈φ|J0|ψi〉+ 〈φ|t†λG†0 J0|ψi〉

|〈φ|t†λG†0 J0|ψi〉| < |〈φ|t†G†0 J0|ψi〉|

Effect of evolution of current opposite to the
evolution of initial and final states

✪

✪

✪

✪

✪
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Results above QFR

Scale dependence qualitatively
different above the quasi-free ridge.

Can be explained by looking at the
effect of evolution on the overlap
matrix elements
[SNM et al., PRC 92, 064002 (2015)]

Scale dependence depends on the
kinematics, but in a systematic way

✪

✪

✪

✪

✪
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SRG evolution and FSI contribution
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For certain kinematics and for certain SRG scale, IA works very well!

Intuitive explanation possible
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Final state story
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Subtracting off the plane wave part: ∆ψ(p) = 〈p|Gp0 tp0 |φp0〉
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Current evolution story

at high resolution

Integrand of 〈p′;3 S1|Jλ0 (q)|ψ
λ
3S1
〉
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Varying λ shuffles the physics between short- and long-distance parts

λ decreases→ blob size increases. One-body current operator develops two
and higher body components
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At low-momentum, the SRG-induced two-body currents are of the form of
regulated contact terms
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Current evolution story

at high resolution
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Summary and Moving Forward

Scale dependence abounds... in a systematic way which can be
accounted for.

The evolved picture helpful in understanding the role of FSI.

Changes to the current operator due to evolution for certain kinematics
factorize into components that depend on high and low momentum
→ ripe for OPE analysis

To do:

Investigate high-momentum processes

Consistently extract process-independent quantities from experiments
→What is the best scale to use?
→What are the controlled approximations that we can make?
→Model dependence of SRC, spectroscopic factors, . . .
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Back up

Sushant More Studying scale dependence of contributions to d(e,e′)p



SRG evolution and FSI contribution: physical picture

momentum transfer q large, momentum of
outgoing nucleons p′ small

Evolved picture: the one-body current
couples with the proton to kick it into high
momentum state

FSI necessary to share the high momentum
with neutron, such that p′ small

Evolved picture: Two-body current
couples with both proton and neutron such
that final momentum is small

at high resolution

−

+p'

−

,ω qq

p'

p'-q

cm

cm cm

cmcm

cm

cm
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Changes as a function of λ

Varying λ shuffles the physics between short- and
long-distance parts

λ decreases→ blob size increases. One-body current
operator develops two and higher body components

Integrand of 〈ψλdeut|(a
†
q aq)λ|ψλdeut〉

Anderson et al., PRC 82, 054001 (2010)

p < λ p > λ

at high resolution
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Current evolution story
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With SRG evolution, the initial one-body current develops exclusively
two-body components
For low-momentum, the SRG-induced two-body currents are of the
form of regulated contact terms
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Current evolution story

4 5 6 7 8 9 10 11 12

q [fm−1 ]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

∆
J
λ

=
2
(k
,
k
′ ;
q)

∆
J
λ

=
1
.5
(k
,
k
′ ;
q)

3S1

k=0.1, k′ =0.1

k=0.3, k′ =0.5

k=0.7, k′ =0.7

∆Jλ=2(0.1, 0.1) ∗10

1 2 3 4 5

λ [fm−1 ]

10-4

10-3

10-2

10-1

100

∆
J
λ
(0
.0

1,
0.

01
;
q)

3S1

q 2
cm =0.5 fm−2

∆Jλ(k, k′; q)
k,k′≈0−−−−→
q/2>λ

Λ(λ) Q(q) with Λ(λ) ∼ 1
λ

.

∆Jλ(k, k′; q)
k,k′≈0−−−−→
q�λ

1
λ4

Both factorization and 1
λ

, 1
λ4 dependence can be motivated from perturbation

theory starting from the SRG flow equation:
dVλ
dλ
∝ [ηλ, Vλ]
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Final state story

|ψp0
f 〉 = |φp0〉︸︷︷︸

plane wave

+

Green′s fn.︷︸︸︷
Gp0 tp0︸︷︷︸

t−matrix

|φp0〉

|ψp0
f λ
〉 = |φp0〉+ Gp0 tp0λ|φp0〉

Subtracting off the plane wave part:
∆ψ(p) = 〈p|Gp0 tp0 |φp0〉
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Back up: Basic Problem

Goal: Extract nuclear properties from
experiments and predict them with
theory
dσ
dΩ
∝
∣∣∣〈ψfinal | Ô(q) |ψinitial〉

∣∣∣2
〈 ψfinal︸︷︷︸

structure

|
reaction︷︸︸︷
Ô(q) | ψinitial︸ ︷︷ ︸

structure

〉

Use factorization to isolate individual
components and extract
process-independent nuclear properties

Nucleon knockout reaction

hard scale

factorization
structure reaction
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Factorization: Examples

High-E QCD

hard scale

factorization

long-distance
parton density

short-distance
Wilson coefficient

Separation between long- and
short-distance physics is not unique,
but defined by the scale µf

Form factor F2 is independent of µf ,
but pieces are not
fa(x,Q2) runs with Q2 but is process
independent

Low-E Nuclear
Observable:
cross section

Structure model:
spectroscopic factor

Reaction model:
 single-particle
 cross section

Open questions

When does factorization hold?
Which process-independent nuclear
properties can we extract?
What is the scale/scheme dependence
of the extracted properties?
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Back up: Numerical implementation

〈φ|t†λ G†0 Jλ0 |ψλi 〉 = 〈φ|t†λ G†0 Ũ J0 Ũ†|ψλi 〉+ · · ·

U = I + Ũ . Smooth Ũ amenable to interpolation.

Insert complete set of partial wave basis of the form

1 =
2
π

∑
L,S

J,mJ

∑
T=0,1

∫
dp p2 |p J mJ L S T〉 〈p J mJ L S T| .

Large number of nested sums and integrals. Caching techniques used to avoid
recalculation of t-matrix.

Parallelization implemented using TBB library. Run on a node with 48 cores.
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Back up: Numerical implementation – representative term

〈φ|t†λ G†0 Ũ J0 Ũ†|ψλi 〉 =
8
π2

√
2
π

M
~c

∫
dk2 k2

2

(p′ + k2)(p′ − k2 − iε)

∑
T1=0,1

(
Gp

E+(−1)T1 Gn
E
)

×
Lmax∑
L1=0

(
1 + (−1)T1 (−1)L1

)
× YL1,mJd−msf

(θ′, ϕ′)
L+1∑

J1=|L1−1|
〈L1 mJd −msf S = 1 msf |J1 mJd 〉

×
Lmax∑
L2=0

t∗λ(k2, p′, L2, L1, J1, S = 1, T1)

Lmax∑
L3=0

1∑
m̃s=−1

〈J1 mJd L3 mJd − m̃s|S = 1 m̃s〉

×
Lmax∑
L4=0

〈L4 mJd − m̃s S = 1 m̃s|J = 1 mJd 〉
∫

dk4 k2
4 Ũ(k2, k4, L2, L3, J1, S = 1, T1)

×
∫

dcos θ P
mJd−m̃s
L3

(cos θ)P
mJd−m̃s
L4

(
cosα′(k4, θ)

)
×
∫

dk6 k2
6

∑
Ld=0,2

Ũ
(

k6,

√
k4

2 − k4q cos θ + q2/4, Ld, L4, J = 1, S = 1, T = 0
)
ψλLd

(k6) .
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q-factorization of fL

fL ≡ fL(p′, θ; q)
p′ and θ: outgoing nucleon
q: momentum transfer

For p′ � q, fL scales with q
fL(p′, θ; q)→ g(p′, θ)B(q)

Note that fL is a strong function of q

✪

✪

✪

✪

✪

plateau region
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Exploring the evolution of the current
Integrand of 〈p′;3 S1|Jλ0 (q)|ψλ3S1

〉
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The unevolved current is one-body peaked at q/2.
Changes due to evolution are exclusively two-body currents. In integrand
dominant contribution from k < λ.
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Isolating the evolution of current: L = L′ = 0
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The current peaked at (k, k′) = {(0, q/2), (q/2, 0)}. Changes due to
the evolution of current are low-momentum.
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