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SRG makes scale dependence obvious

p<A p>A

@ Unitary transformations widely used to
soften nuclear Hamiltonians leading to
accelerated convergence

@ SRG scale A sets the scale for decoupling
high- and low-momentum and separating
structure and reaction
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@ What about the final state interactions? 0% 34 s
K [fm ']
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Test ground: H (e, e

p)n

@ Use deuteron electrodisintegration to investigate scale/scheme
dependence of factorization between nuclear structure and nuclear

reaction
do

° 0 X (vefe +vefr + ver frr cos 2¢, + vir fir cos ¢p)

@ vi, vr,...- electron kinematic factors. f;, fr,...- deuteron structure
functions
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Test ground: H (e, e
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@ Use deuteron electrodisintegration to investigate scale/scheme
dependence of factorization between nuclear structure and nuclear
reaction

d
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@ vi, vr,...- electron kinematic factors. f;, fr,...- deuteron structure
functions
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Components depend on the scale A. Cross section does not!
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Evolutionary effects

@ ZH(e, ¢’ p)n calculations done using
AV18 potential with A = oo and

A=15fm™!
© fi~ > [(Wyldolui)|’
mg ,my

@ Effects due to evolution of one or more
components of ()r|Jo|t:) as a function
of kinematics — scale dependence of
factorization

@ Proof of principle calculations using
simplified Jo. Comparison to
experiment not warranted
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Evolutionary effects

@ ZH(e, ¢’ p)n calculations done using
AV 18 potential with A = oo and
A=15fm™"

© fi~ > [(Wrldolepi)

mg ,mj
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@ Effects due to evolution of one or more
components of ()r|Jo|t:) as a function
of kinematics — scale dependence of
factorization

@ Proof of principle calculations using
simplified Jo. Comparison to
experiment not warranted

@ Quasi-free ridge (QFR): wphoton = 0

@ Weak scale dependence at QFR which
gets progressively stronger away from it
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Results at QFR

@ At the quasi-free ridge

E'(in MeV)

~ 10q*(in fm™?)
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@ Long-range part of the wave function probed at
QFR — invariant under SRG evolution
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Results below QFR

E'=30MeV q?=25fm2
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Results below QFR

E'=30MeV q?=25fm2
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Results below QFR
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Results below QFR
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Results above QFR
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Results above QFR
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SRG evolution and FSI contribution
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SRG evolution and FSI contribution
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@ For certain kinematics and for certain SRG scale, IA works very well!

@ Intuitive explanation possible
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Final state story

po=3.35fm™'
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Current evolution story

Integrand of (p’;> §;|J3 (q)|11;3)‘5l )
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@ Varying ) shuffles the physics between short- and long-distance parts

@ )\ decreases — blob size increases. One-body current operator develops two
and higher body components
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Current evolution story
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Current evolution story
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Current evolution story
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@ Varying )\ shuffles the physics between short- and long-distance parts
@ )\ decreases — blob size increases. One-body current operator develops two
and higher body components
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Current evolution story
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Current evolution story
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@ )\ decreases — blob size increases. One-body current operator develops two
and higher body components
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Current evolution story
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@ Varying )\ shuffles the physics between short- and long-distance parts
@ )\ decreases — blob size increases. One-body current operator develops two

and higher body components
@ At low-momentum, the SRG-induced two-body currents are of the form of

regulated contact terms
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Summary and Moving Forward

@ Scale dependence abounds... in a systematic way which can be
accounted for.

@ The evolved picture helpful in understanding the role of FSI.

@ Changes to the current operator due to evolution for certain kinematics
factorize into components that depend on high and low momentum
— ripe for OPE analysis

To do:
@ Investigate high-momentum processes

@ Consistently extract process-independent quantities from experiments
— What is the best scale to use?
— What are the controlled approximations that we can make?
— Model dependence of SRC, spectroscopic factors, . . .
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SRG evolution and FSI contribution: physi

@ momentum transfer ¢ large, momentum of
outgoing nucleons p’ small

@ Evolved picture: the one-body current
couples with the proton to kick it into high
momentum state

@ FSI necessary to share the high momentum
with neutron, such that p’ small

@ Evolved picture: Two-body current
couples with both proton and neutron such
that final momentum is small
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Changes as a function of \

@ Varying A shuffles the physics between short- and
long-distance parts

@ )\ decreases — blob size increases. One-body current
operator develops two and higher body components

at high resolution
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Changes as a function of \

@ Varying A shuffles the physics between short- and
long-distance parts

@ )\ decreases — blob size increases. One-body current
operator develops two and higher body components
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A at high resolution

Anderson et al., PRC 82, 054001 (2010)
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Current evolution story

(CS1|ALES1) A =4.0fm™! g%, =100 fm >
2 4 6 8
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@ With SRG evolution, the initial one-body current develops exclusively
two-body components

@ For low-momentum, the SRG-induced two-body currents are of the
form of regulated contact terms
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Current evolution story
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@ With SRG evolution, the initial one-body current develops exclusively
two-body components
@ For low-momentum, the SRG-induced two-body currents are of the

form of regulated contact terms
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Current evolution story
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@ With SRG evolution, the initial one-body current develops exclusively
two-body components

@ For low-momentum, the SRG-induced two-body currents are of the
form of regulated contact terms
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Current evolution story

CS|ALES)) A =15fm™! ¢, =100 fm >
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With SRG evolution, the initial one-body current develops exclusively
two-body components

@ For low-momentum, the SRG-induced two-body currents are of the
form of regulated contact terms
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Current evolution story

Ay ok, K; q)
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ki~0 1
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/\( b 7q) 4 )\4

@ Both factorization and i, % dependence can be motivated from perturbation

theory starting from the SRG flow equation: % o [1x, Val
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Final state story
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Back up: Basic Problem

Nucleon knockout reaction

@ Goal: Extract nuclear properties from

experiments and predict them with e
theory e
do 2 q
dQ <whnal ‘ 0( ) | ¢initia]> N
reaction
A A-1

o <d"ﬁnzll | O(‘/) | d"il}itial>
~—~— ~——

structure structure
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Back up: Basic Problem

Nucleon knockout reaction
@ Goal: Extract nuclear properties from

experiments and predict them with e
theory e
do 2 q
o dQ <whnal ‘ 0( ) |¢initia]> N
reaction
o/ - o/ A A-1
o < Wfinal | 0(‘/) | Q"’initial>
~—~~ N~
structure structure
@ Use factorization to isolate individual
components and extract hard scale
process-independent nuclear properties factorization

structure reaction
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Factorization: Examples

High-E QCD Low-E Nuclear
hard scale Observable: Structure model: Reaction model:
actorlzatlon cross section spectroscopic factor single-particle

\ crosi/section
2 1 . .
FQ(x Q ) Z f(l I /l/ ®F( (2//1/ g'zf — E S;fgsp

|Ji—=Jp|<j<Ji+Jy
long-distance short-distance
parton density Wilson coefficient

@ Separation between long- and
short-distance physics is not unique,
but defined by the scale py

@ Form factor F, is independent of ji,
but pieces are not

@ f,(x, Q%) runs with Q? but is process
independent
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Factorization: Examples

High-E QCD

hard scale
actorlzatlon

Z faI/l/ ®]” (2//1/

Fg(x Q2

long-distance short-distance
parton density Wilson coefficient

@ Separation between long- and
short-distance physics is not unique,
but defined by the scale py

@ Form factor F, is independent of ji,
but pieces are not

@ f,(x, Q%) runs with Q? but is process
independent

Low-E Nuclear

Reaction model:
single-particle
cross section

i f
S; Osp

Structure model:
spectroscopic factor

Observable:
cross section

s

|Ji—=Jp|<j<Ji+Jy

Open questions

@ When does factorization hold?

@ Which process-independent nuclear
properties can we extract?

@ What is the scale/scheme dependence
of the extracted properties?
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Back up: Numerical implementation

(Bl G I3 167) = (|t G U I T |9 + -

@ U =1+ U .Smooth U amenable to interpolation.

@ Insert complete set of partial wave basis of the form

2 >
1== d JmyLST) (pJmy LST) .
WE > /pp lpJmy ) (pJmy |

L,S T=0,1
J,my

Large number of nested sums and integrals. Caching techniques used to avoid
recalculation of -matrix.

@ Parallelization implemented using TBB library. Run on a node with 48 cores.
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Back up: Numerical implementation — representative term

t ot 2 dk, K S
(olth Gy UJo Ut ) == [ /(p’+k2)(p’szfle > (Gh+(-D"1 Gy)

T1=0,1
Limax L+1
X D (U (=DM EDM) X Yy, (097) > (Limy, —my S = Lmy | Jymy,)
Li=0 Ji=|L—1]
Lmax Lmax
X Zl)\ kz,p Lz,Ll,Jl,Sfl Tl)z Z JlmjdL:;mjt[ Y7LS|S:11’7lS>
Ly,=0 L3=0 mg=—
Lmax —
X Z<L4mjd 7}’7LSS= 1}’7ls|]= 1mjd>/dk4k£ U(/Q,k4,L2,L3,]1,S= l,T])
Ly=0

X /dcos 0 P'Ln;'i ™ (cos ) P'Ln:d _mf( cos o’ (ky, 0))

X/dk()kg Z ﬁ(k67\/k42 —k4qCOSG+q2/4,Ld,L4,J: 17S: 17T:O) wi\d(kﬁ)

Ly=0,2
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g-factorization of f;

6,q)

° fL=1(p',0;9)
p’ and 0: outgoing nucleon
¢: momentum transfer

8,9 /1, (),

,
i

@ Forp’ < g, f; scales with ¢
f(p',0;9) = g(p'. 0)B(q)

£ (p

e ratio of f; atp’ top}

@ Note that f; is a strong function of ¢ 1 T P T P
o 1 2 3 4 5 6 7 8 9 10
—1
120 " ! = q[fm ]
2] A=15fm -1
45 & 10 T T T
|000§§3 é’ 4 —_ pO:O.‘}
s S o ] ~ 107F p_ n_ 3
e 3 o Gp =1,G, =0
= g o )
~eof & _
b & &0 E
a0t 3 &00 3 -
o [ Io .
200 /2 quasi-free ridger ‘o 0E E
o I &
0 s 10 15 20 25 . o
o [fm Y plateau region = o3
2 3 5 6 7 8 9 10




Exploring the evolution of the current

Integrand of (p';’ S5 (q) |43, )

(%)
T

0.00

VME [fm™1]
= w

—0.01

=
(&2
.

—0.02

—0.03

—0.04

l‘{‘wdwn‘() [fn‘rl} |

—0.05
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Exploring the evolution of the current

Integrand of (p';* 81173 (q) |w§\sl )

¢ =36fm2 X\ =00 0.05
1 2 3 4 5 6
@ ; 0.04
1 0.03

0.00

N

VME [fm™1]
/C;J\ B
=1

—0.01

=
(&2
.

—0.02

—0.03

—0.04

l‘{‘wdwn‘() [ﬁffl} |

—0.05

@ The unevolved current is one-body peaked at ¢/2.
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Exploring the evolution of the current

(%)

VME [fm™1]
= w

p'=
ot

Integrand of (p';’ S5 (q) |43, )

¢ =36fm2 X\ =00 0.05
1 2 3 4 5 6

@ ; 0.04

L 0.03

| 0.02

0.01

0.00
ST ) —0.01
L i —0.02
| ~0.03
—0.04

l‘{‘wdwn‘() [ﬁﬁ*l} |

—0.05

¢® =36fm2 X\ =4.0fm™!
1 2 3 4 5 6

VME [fm™1]
= w

p'=
(2]

K BT

@ The unevolved current is one-body peaked at ¢/2.

@ Changes due to evolution are exclusively two-body currents. In integrand

dominant contribution from k < .
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Exploring the evolution of the current

(%)

VME [fm™1]
= w

p'=
ot

Integrand of (p';’ S5 (q) |43, )

¢ =36fm2 X\ =00 0.05
1 2 3 4 5 6

@ ; 0.04

L 0.03

| 0.02

0.01

0.00
ST ) —0.01
L i —0.02
| ~0.03
—0.04

l‘{‘wdwn‘() [ﬁﬁ*l} |

—0.05

¢® =36fm=2 X\ =25fm!
1 2 3 4 5 6

T

VME [fm™1]
= w

p'=
(2]

g BT

@ The unevolved current is one-body peaked at ¢/2.

@ Changes due to evolution are exclusively two-body currents. In integrand

dominant contribution from k < .
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Exploring the evolution of the current

(%)

VME [fm™1]
= w

p'=
ot

Integrand of (p';’ S5 (q) |43, )

¢ =36fm2 X\ =00 0.05
1 2 3 4 5 6

@ ; 0.04

L 0.03

| 0.02

0.01

0.00
ST ) —0.01
L i —0.02
| ~0.03
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¢®=36fm=2 X\ =2.0fm™!
1 2 3 4 5 6

T

VME [fm™1]
= w

p'=
(2]

g BT

@ The unevolved current is one-body peaked at ¢/2.

@ Changes due to evolution are exclusively two-body currents. In integrand

dominant contribution from k < .
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Exploring the evolution of the current

(%)

VME [fm™1]
= w

p'=
ot

Integrand of (p';’ S5 (q) |43, )

¢ =36fm2 X\ =00 0.05
1 2 3 4 5 6

@ ; 0.04

L 0.03

| 0.02

0.01

0.00
ST ) —0.01
L i —0.02
| ~0.03
—0.04

l‘{‘wdwn‘() [ﬁﬁ*l} |

—0.05

¢ =36fm2 A=1.5fm!
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T

VME [fm™1]
= w

p'=
(2]

g BT

@ The unevolved current is one-body peaked at ¢/2.

@ Changes due to evolution are exclusively two-body currents. In integrand

dominant contribution from k < .
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Exploring the evolution of the current

Integrand of (p';’ S5 (q) |43, )

(%)
T

=
(&2
.

VME [fm™1]

¢ =36fm2 X\ =00 0.05
1 2 3 4 5 6
@ ; 0.04
0.03
0.02
0.01
0.00
—0.01
—0.02
~0.03
—0.04

l‘{‘wdwn‘() [ﬁffl} |

—0.05

¢ =36fm2 \A=1.2fm!
1 2 3 4 5 6

1 ]

VME [fm™1]
= o

p'=
(2]

k‘@zluu‘() [fn‘rl} |

@ The unevolved current is one-body peaked at ¢/2.

@ Changes due to evolution are exclusively two-body currents. In integrand

dominant contribution from k < .
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Isolating the evolution of current: L = L' =0

T q? =36 m 2

L1 =0 J; =1 my, =1 Ty =0 Ly =0 036
1 2 3 4 5 6
T - T T T 032
1 0.28
0.24
oL
_— 0.20
Y
= 0.16
&=,
N 0.12
5 0.08
04
6l 0.0
. i 0.00
k [fm™]
—0.04

@ The current peaked at (k, k') = {(0,¢/2), (¢/2,0)}. Changes due to
the evolution of current are low-momentum.
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Isolating the evolution of current:

JPA=4.0fm™" ¢* =36fm~* AJyA =4.0fm™! ¢* =36 fm?
Ly =0 Jy =1 my, =1 Ty =0 Ly =0 0.36 Ly =0 Jy =1my,=1T,=0 L, =0 0.036
1 2 3 4 5 6 N 1 2 3 4 5 6
: : e : . : 0.32 : : . . . T 0.030
1r 1 0-28 1r 1 0.024
0.24
ot g ol 1 | Ho0s
— 0.20 —
\(_‘ 31 g 'TH 3k | 40.012
= 0.16 =
= ne i = 4 10.006
] 0.12 4 1
0.000
5L , 0.08 5L _
4-0.006
0.04
6 g 6F i
. . . . . . 0.00 ! " " . . . ~0.012
1 .
k [fm™1] k [fm ™~}

—0.04 —0.018

@ The current peaked at (k, k") = {(0,¢/2), (¢/2,0)}. Changes due to
the evolution of current are low-momentum.
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Isolating the evolution of current:

JPA=25fm™" ¢* =36fm~* AJyA =2.5fm™! ¢* =36 fm?
Ly =0 Jy =1 my, =1 Ty =0 Ly =0 0.36 Ly =0 Jy =1my,=1T,=0 L, =0 0.036
1 2 3 4 5 6 N 2 3 4 5 6
: : - : . : 0.32 — . . T 0.030
1r 1 0-28 1 0.024
0.24
21 g 2t 1 | Ho0s8
— 0.20 —
\(_‘ 31 g 'T 3k | 40.012
0.16 =1
£, £ ,
Jl | = 1| {0006
4 0.12 4
0.000
5L 7 0.08 5L _
4-0.006
0.04
6 g 6F ]
. . . . . . 0.00 ! ! . . . . —0.012
1 .
k [fm™1] k [fm ™~}

—0.04 —0.018

@ The current peaked at (k, k") = {(0,¢/2), (¢/2,0)}. Changes due to
the evolution of current are low-momentum.
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Isolating the evolution of current:

JPA=2.0fm™" ¢* =36fm~* AJyA =2.0fm™! ¢* =36 fm?
Ly =0 Jy=1my,=1T, =0 L, =0 0.36 Ly =0 Jy,=1my,=1T, =0 L, =0 0.036
1 2 3 4 5 6 N 1 2 3 4 5 6
- - - - - - 0.32 0.030
9
1r 1 0-28 0.024
0.24
20 1 | Jo.018
_— 0.20
| :;h i H0.012
= 0.16
& ,
=l | 40.006
4 0.12
H0.000
51 1 0.08
1 -0.006
0.04
6l J
. . . . . . 0.00 s s o : : . —0.012
1 -
k [fm™1] I [fm =]

—0.04 —0.018

@ The current peaked at (k, k") = {(0,¢/2), (¢/2,0)}. Changes due to
the evolution of current are low-momentum.
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Isolating the evolution of current: L = L' =0

JPA=156m"" ¢* =36fm~* AJyA =1.5fm™! ¢* =36 fm~?
Ly =0 Jy=1my, =11, =0 L, =0 0.36 Ly =0 J,=1my, =11, =0 L, =0 0.036
1 2 3 4 5 6 o 1 2 3 4 5 6
i T - T T T 032 0.030
1r 1 028 0.024
0.24 |
of g 0.018
— 0.20
N 3“ i 0.012
= 0.16
=) .
=, | 0.006
4 0.12
0.000
5L . 0.08
~0.006
0.04
6 i
. . . . . . 0.00 " . a : . . ~0.012
1 —
k [fm™1] I [fm =]

—0.04 —0.018

@ The current peaked at (k, k") = {(0,¢/2), (¢/2,0)}. Changes due to
the evolution of current are low-momentum.
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Isolating the evolution of current: L = L' =0

JPA=12fm"" ¢* =36fm~* AJyA =1.2fm™! ¢* =36 fm?
Ly =0 Jy=1my,=1T, =0 L, =0 0.36 Ly =0 Jy,=1my,=1T, =0 L, =0 0.036
1 2 3 4 5 6 o 1 2 3 4 5 6
- - = - - - 0.32 0.030
1r 1 028 0.024
0.24
ot 1 0.018
_— 0.20
| 3“ i 0.012
= 0.16
=) .
=l | 0.006
4 0.12
0.000
51 . 0.08
—0.006
0.04
6 i
. . . . . . 0.00 3 s a . . . —0.012
1 —
k{fm™] k [fm ™~}
—0.04 —0.018

@ The current peaked at (k, k") = {(0,¢/2), (¢/2,0)}. Changes due to
the evolution of current are low-momentum.
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T~ ¢ =362
Ly =0 Jy =1my, =1T,=0 L, =2

1 2 3 4 5 6
1+
2 F
=
3 Ml
&
e Ay
5L
6 F
k [fm™Y]

@ The current peaked at (k, k') = {(0,¢/2), (¢/2,0)}. Changes due to
the evolution of current are low-momentum.

0.00

—0.04
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Isolating the evolution of current:

JPA=4.0fm™" ¢* =36fm~* AJyA =4.0fm™! ¢* =36 fm?
Ly =0 Jy =1my, =171, =0 L, =2 0.36 Ly =0 Jy =1my, =111 =0 L, =2 0.0125
: 2 3 ! 5 6 0.32 1 2 3 4 5 6 0.0100
1l | 0.28 n | 0.0075
0.24 40.0050
2t 1 2t 1
— 0.20 — 40.0025
a fa
I3 1 I3t -
= - 0.16 = 0.0000
=, =,
] 0.12 a4 +4-0.0025
5l , 0.08 51 1| 4-0.0050
ol | 0.04 6l | ~0.0075
. . . . : . 0.00 . ! . . . .
1 — ~0.0100
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~0.04 ~0.0125

@ The current peaked at (k, k") = {(0,¢/2), (¢/2,0)}. Changes due to
the evolution of current are low-momentum.
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Isolating the evolution of current:

JPA=25fm™" ¢* =36fm~* AJyA =2.5fm™! ¢* =36 fm?
Ly =0 Jy =1my, =171, =0 L, =2 0.36 Ly =0 Jy =1my, =111 =0 L, =2 0.0125
: 2 3 ! 5 6 0.32 1 2 3 4 5 6 0.0100
1l | 0.28 n | 0.0075
0.24 40.0050
2t 1 2t 1
— 0.20 — 40.0025
a fa
I3 1 I 3t -
= 0.16 = 0.0000
=, =,
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ol | 0.04 6l | ~0.0075
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~0.04 ~0.0125

@ The current peaked at (k, k") = {(0,¢/2), (¢/2,0)}. Changes due to
the evolution of current are low-momentum.
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Isolating the evolution of current:

]uA A =2.0fm™! ¢* =36fm~? AJy A =2.0fm™" ¢* =36 fm~?
Ly =0 Jy =1my, =171, =0 L, =2 0.36 Ly =0 Jy =1my, =111 =0 L, =2 0.0125
: 2 3 ! 5 6 0.32 1 i 3 4 5 6 0.0100
1l | 0.28 n | 0.0075
0.24 40.0050
2t 1 2t 1
— 0.20 — 40.0025
= =
I3 1 I3t -
= 0.16 = 0.0000
=, =,
g A 1 0.12 e Ar 1 | {-0.0025
51 , 0.08 51 1| {-0.0050
ol | 0.04 6l i ~0.0075
. ! . ! ! : 0.00 . . ) . . .
) — ~0.0100
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—0.04 —0.0125

@ The current peaked at (k, k") = {(0,¢/2), (¢/2,0)}. Changes due to
the evolution of current are low-momentum.
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Isolating the evolution of current:

]uA A =15fm™" ¢> =36 fm~? AJy A =1.5fm™" ¢* =36 fm~?
Ly =0 Jy=1my, =1T, =0 Ly, =2 0.36 Ly =0 Jy=1my,=1T, =0 Ly =2 0.0125
: 23 1 5 6 0.32 ! 4 5 6 0.0100
1 i 0.28 1 0.0075
0.24 0.0050
2t 1 2t 1
— 0.20 — 0.0025
a fa
I, 3 el 1 I 3t -
= - 0.16 E 0.0000
=, =,
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5t 1 0.08 5t 1 ~0.0050
ol | 0.04 6l | ~0.0075
. . . . : : 0.00 . . . : . .
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@ The current peaked at (k, k") = {(0,¢/2), (¢/2,0)}. Changes due to
the evolution of current are low-momentum.
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Isolating the evolution of current:

JPA=12fm"" ¢* =36fm~* AJyA =1.2fm™! ¢* =36 fm?
Ly =0 Jy=1my, =1T, =0 Ly, =2 0.36 Ly =0 Jy=1my,=1T, =0 Ly =2 0.0125
E 2 I: 1 5 0 0.32 ! 2 3 4 5 6 0.0100
1 i 0.28 0.0075
0.24 0.0050
ol i
— 0.20 0.0025
I3 el 1
(e
0.16 0.0000
£
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5t 1 0.08 5t 1 ~0.0050
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@ The current peaked at (k, k") = {(0,¢/2), (¢/2,0)}. Changes due to
the evolution of current are low-momentum.
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