Momentum Distribution in A = 3 Asymmetric Nuclei

Jefferson Lab Hall-A Experiment E12-14-011

Florian Hauenstein, Old Dominion University

SRC/EMC Workshop, MIT, 03.12.16

Kinetic Energy Sharing

VMC Prediction for <T>

	N-Z		< T >	
	\overline{A}	<1 _p >	< 1 _n >	$< 1_{p} > - < 1_{n} >$
⁸ He	0.50	30.13	18.60	11.53
$^{6}\mathrm{He}$	0.33	27.66	19.06	8.60
9 Li	0.33	31.39	24.91	6.48
³ He	0.33	14.71	19.35	-4.64
$^{3}\mathrm{H}$	0.33	19.61	14.96	4.65
8 Li	0.25	28.95	23.98	4.97
$^{10}\mathrm{Be}$	0.2	30.20	25.95	4.25
$^{7}\mathrm{Li}$	0.14	26.88	24.54	2.34
$^{9}\mathrm{Be}$	0.11	29.82	27.09	2.73
$^{11}\mathrm{B}$	0.09	33.40	31.75	1.65

R. Wiringa et al. (Phys. Rev. C 89, 024305 (2014))

<T>(Majority) < <T> (Minority)

SRC and Nucleon Counting

The A = 3 System

- ³He and ³H are mirror nuclei
 - Neutron in ${}^{3}\text{He} = Proton in {}^{3}\text{H}$
- Two-ways to study the proton-to-neutron momentum distribution ratio in ³He:
 - Measure the ³He(e,e'p) / ³He(e,e'n) ratio (Low accuracy due to the neutron measurement)
 - Measure the ³He(e,e'p) / ³H(e,e'p) ratio. (Tritium Target necessary, available at JLab Hall-A (MARATHON))

Extraction of Momentum Distribution from A(e,e')p

$$\sigma_{\text{PWIA}} = k \cdot \sigma_{ep} \cdot S_p(E_{\text{miss}}, p_{\text{miss}})$$
Spectral Function

$$E_{\text{miss}} = \omega - T_p - T_{A-1}$$
$$\overrightarrow{p_{\text{miss}}} = \overrightarrow{q} - \overrightarrow{p'} = -\overrightarrow{p_{\text{init}}}$$

Complications:

- Rescattering of the outgoing proton.
- Off-shell proton cross-section.
- Meson Exchange Currents (MEC).
- Delta production (i.e. IC).

Previous Hall-A³He (e,e'p)X measurements

³He(*e*,*e*′*p*)*np*

³He(*e*,*e*′*p*)*d*

- Dominated by FSI at large momentum
- Well described by theory

 $p_{\rm m}$ [MeV/c]

Data: Rvachev *et al.*, PRL94 192302 (2005); Benmokhtar *et al.*, PRL94 082305 (2005) Theory: Ciofi degli Atti and Kaptari, PRL95 052502 (2005) ; Alvioli *et al.*, PRC81 021001 (2010)

Minimizing FSI Effects in d(e,e')p

- FSI effects decrease for smaller values of θ_{nq}
- Assume similar suppression for A = 3 nuclei

Boeglin et al. (Hall-A Collaboration), PRL 107 (2011) 262501

Access Momentum Distribution w/o FSI

Rescattering effects cancel in the ³He/³H ratio

- Rescattering minimized at small angles (verified for deuterium).
- Small angles => x_B>1 => suppress MEC and IC effects.

JLab-Hall A Measurement E12-14-011

<p<sub>m> (MeV/c)</p<sub>	X	E _e (GeV)	θ _e	p p	θ _p	Time ³ H+ ³ He (days)
100	1.15	3.47	20.9°	1.61	48.7°	1
300	1.41	3.64	20.4°	1.35	58.6°	10

Kinematics:

- E_b = 4.4 GeV
- *I*_{beam} = 20 μA
- $Q^2 = 2 \text{ GeV}^2$
- $x = Q^2/2m\omega > 1$ (quasi-elastic)
- $\theta_{nq} < 40^{\circ}$

Setup:

- MARATHON Target
- HRS spectrometer in Hall-A at Jefferson
 Lab
- Low luminosity $\mathcal{L}(^{3}H) = 8 \times 10^{36}$ nucleons cm⁻² s⁻¹

³He and ³H reduced crosssections; Compared to calculations.

Proton/neutron momentum

Summary and Outlook

- Measurement of momentum distribution in A = 3 mirror nuclei
- Approved experiment scheduled for december 2017 at JLab Hall-A
- Improved kinematic setting to reduce FSI, MEC and IC effects
- Since E_b = 4.2 GeV next year kinematic setting will change slightly
- Other theoretical calculation i.e χ PT?

Backup Slides

Simulation ³H Results (2)

Simulation ³H Results: P_{miss} & E_{miss}

Cut Q^2 > 2 GeV² and θ_{nq} < 40° , no cross section scaling

³He Spectral Function

from Rey

Previous ³H(e,e'p) measurements

FIG. 2. The energy spectrum of protons at 51.5° in coincidence with 441-MeV electrons at 51.7° from H³ (e,e'p).

FIG. 4. The coincidence cross section of reaction (C) as a function of proton angle. The curve is explained in Sec. VI of the text.

A. Johansson, PR136, 1030B (1964)

Experimental Setup – Hall A

- Open cell design allows a wide range of scattering angles
- Wall thickness 0.018" Al (120 mg/cm²)
- Entrance and exit windows: 0.010" AI (65 mg/cm²)
- The proton HRS will not see the cell windows

Adopted From David Meekins

P_{miss} distributions (slow kinematics configuration, scaled to 4 days)

from Rey