Nuclear RG perspective

on SRC and EMC physics

Dick Furnstahl

Department of Physics

Ohio State University
U.S. DEPARTMENT OF

@ ENERGY MIT Workshop on

SRC and EMC Physics
C December, 2016 /\
LENPIC

Collaborators: S. Bogner (MSU), K. Hebeler (TU Darmstadt),
S. Kénig (TU Darmstadt), S. More (MSU)



Large ? scattering at different RG decoupling scales

PN © What is this vertex?
=k—-K
> e ’
P .} v=EFE;,— Ep
%/ O Ny
A — g
Knock 2
‘ P/Q N rp = Q
O ) 2mpyv
Aeem—mFFFr————— A-2
Subedi et al., Science 320, 1476 (2008) Higinbotham, arXiv:1010.4433
Fa g :f:
2 ¢~+~~+~$ { SRC interpretation:

Joteteee ¢

r(*He/*He)

NN interaction can scatter
states with p1,ps < kp
to intermediate states with
Py, ph > kr which are
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SRC explanation relies on high-momentum nucleons in structure
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What is this vertex?
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SRC interpretation:

NN interaction can scatter
states with p1,ps < kp

to intermediate states with
Py, ph > kr which are
knocked out by the photon

How to explain cross sections in terms of
low-momentum interactions?
Vertex depends on the resolution!

RG evolution changes physics interpretation but not cross section!



Ab initio calculations: The nuclear structure hockey stick
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@ Why has the reach of precision structure calculations increased?
e Application of effective field theory (EFT) and renormalization
group (RG) methods = low-resolution (“softened”) potentials

e Explosion of many-body methods: GFMC/AFDMC, (IT-)NCSM,
coupled cluster, lattice EFT, IM-SRG, SCGF, UMOA, MBPT, ...



Uses of the renormalization group (RG) [cf. S. Weinberg (1981)]
@ Improving perturbation theory; e.g., in QCD calculations
e Mismatch of energy scales can generate large logarithms
o Shift between couplings and loop integrals to reduce logs
@ Identifying universality in critical phenomena
o Filter out short-distance degrees of freedom
@ Simplifying calculations of nuclear structure/reactions
e Make nuclear physics look more like quantum chemistry!
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Uses of the renormalization group (RG) [cf. S. Weinberg (1981)]
@ Improving perturbation theory; e.g., in QCD calculations
e Mismatch of energy scales can generate large logarithms
o Shift between couplings and loop integrals to reduce logs
@ Identifying universality in critical phenomena
o Filter out short-distance degrees of freedom
@ Simplifying calculations of nuclear structure/reactions

e Make nuclear physics look more like quantum chemistry!

k' (fm™)
i 2 3

300

4 5

180 channel 00 1

w00f Coupling of low-k/high-k
05 modes: non-perturbative,

¢@my strong correlations, ...
0

Remedy: Use RG
05 to decouple modes
y — low resolution
-1

1 1

repulsive I 2n 1

100 core | pwo 1 —~2
| 1 D
1 1

Bonn
Reid93
-100 AV18

rifm]

L L L
0 05 1 1.5 25 5

AV18, Bonn, Reid93 (K| Vavis|k')



Uses of the renormalization group (RG) [cf. S. Weinberg (1981)]
@ Improving perturbation theory; e.g., in QCD calculations
e Mismatch of energy scales can generate large logarithms
o Shift between couplings and loop integrals to reduce logs
@ Identifying universality in critical phenomena
o Filter out short-distance degrees of freedom
@ Simplifying calculations of nuclear structure/reactions
e Make nuclear physics look more like quantum chemistry!

o @ Viowk: lower cutoff A; in k, kK’
E = via dT(k,k';k?)/dA =0
2 @ SRG: drive H toward diagonal
0 N . )
A. with flow equation
1\ N st/dS == [[Gs, Hs], Hs]
M Continuous unitary transforms

“Viowk” Similarity RG (cf. running couplings)



Uses of the renormalization group (RG) [cf. S. Weinberg (1981)]
@ Improving perturbation theory; e.g., in QCD calculations
e Mismatch of energy scales can generate large logarithms
o Shift between couplings and loop integrals to reduce logs
@ Identifying universality in critical phenomena
o Filter out short-distance degrees of freedom
@ Simplifying calculations of nuclear structure/reactions
e Make nuclear physics look more like quantum chemistry!

- ﬁ
& dHs/ds = [[Gs, He]. H]

h Continuous unitary transforms

Block diagonal SRG Similarity RG (cf. running couplings)

@ Viow«: lower cutoff A; in k, k'
via dT(k,k';k?)/d\N =0

@ SRG: drive H toward diagonal
with flow equation




Uses of the renormalization group (RG) [cf. S. Weinberg (1981)]
@ Improving perturbation theory; e.g., in QCD calculations
e Mismatch of energy scales can generate large logarithms
o Shift between couplings and loop integrals to reduce logs

@ Identifying universality in critical phenomena
o Filter out short-distance degrees of freedom

@ Simplifying calculations of nuclear structure/reactions
e Make nuclear physics look more like quantum chemistry!
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@ Decoupling naturally visualized in momentum space for Gs = T
e Phase-shift equivalent! Width of diagonal given by A\ = 1//s
e What does this look like in coordinate space?



Uses of the renormalization group (RG) [cf. S. Weinberg (1981)]
@ Improving perturbation theory; e.g., in QCD calculations
e Mismatch of energy scales can generate large logarithms
o Shift between couplings and loop integrals to reduce logs

@ Identifying universality in critical phenomena
o Filter out short-distance degrees of freedom

@ Simplifying calculations of nuclear structure/reactions
e Make nuclear physics look more like quantum chemistry!
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@ Decoupling naturally visualized in momentum space for Gs = T
e Phase-shift equivalent! Width of diagonal given by A\? = 1/,/s
@ What does this look like in coordinate space?



Visualizing the softening of NN interactions
@ Project non-local NN potential: Vy(r
e Roughly gives action of potential on Iong—wavelength nucleons
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@ Tensor part (S-D mixing) [graphs from K. Wendt et al., PRC (2012)]
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@ Central part (S-wave) [Note: The V,’s are all phase equivalent!]

= Flow to universal potentials!



Compare changing a cutoff in an EFT to RG decoupling
@ (Local) field theory version in perturbation theory (diagrams)
o Loops (sums over intermediate states) <:> LECs
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e Momentum-dependent vertices = Taylor expansion in k?
e This implements an operator product expansion!
@ Claim: Vi, x RG and SRG decoupling work analogously
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Approach to universality (fate of high-g physics!)

Run NN to lower X via SRG = ~Universal low-k Vjy
Off-Diagonal Vy(k,0)
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@ Similar pattern with phenomenological potentials (e.g., AV18)
Factorization: AVy(k, k') = fUA(k,q) Va(9,9)UL(G, K') for k, k' < X, g, 9 > X
PR KL Q(a)Va(a, 9)Q()IK(K') with K(K) ~ 1!
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@ Similar pattern with phenomenological potentials (e.g., AV18)
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PR KL Q(a)Va(a, 9)Q()IK(K') with K(K) ~ 1!



Approach to universality (fate of high-g physics!)

Run NN to lower X via SRG = ~Universal low-k Vjy
Off-Diagonal Vy(k,0)

\y<)\// 1_07”H‘mw_m‘_m‘mwm‘_u_
05 1 : \ .
<> AU S B
E I /7 ]
~ —05 e
S L ~ ]
6 L
/ \ >~ 10
k<A r —— 550/600 [E/G/M]
. . L --=600/700 [E/G/M]
g > X (or A) intermediate states REIA <=+ 500 [E/M] 1
— change is ~ contact terms: > == 600 [EM] ]
C053()(_)(/)'1"" _2'0:‘Hmu‘mu‘\HH\HH\HHMHF
1 2 0.0 05 1.0 1.5 20 25 3.0 3.5
[of. Lo =+ zCo(vT)2 + -] K]

@ Similar pattern with phenomenological potentials (e.g., AV18)
Factorization: AVy(k, k') = fUA(k,q) Va(9,9)UL(G, K') for k, k' < X, g, 9 > X
PR KL Q(a)Va(a, 9)Q()IK(K') with K(K) ~ 1!



Approach to universality (fate of high-g physics!)
Run NN to lower X via SRG = ~Universal low-k Vjy
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@ Similar pattern with phenomenological potentials (e.g., AV18)

Factorization: AVy(k, k') = fUA(k,q) Va(9,9)UL(G, K') for k, k' < X, g, 9 > X
KIS Q(q)Va(q, 9")Q(q")]K (k') with K(k) ~ 1!
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Approach to universality (fate of high-g physics!)

Run NN to lower X via SRG = ~Universal low-k Vjy
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Approach to universality (fate of high-g physics!)
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@ Similar pattern with phenomenological potentials (e.g., AV18)
Factorization: AVy(k, k') = fUA(k,q) Va(9,9)UL(G, K') for k, k' < X, g, 9 > X
PR KL Q(a)Va(a, 9)Q()IK(K') with K(K) ~ 1!



Nuclear structure natural with /ow momentum scale
But lowering resolution reduces short-range correlations (SRCs)!
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@ Continuously transformed potential = variable SRCs in wfs!
@ Therefore, it is would seem that SRCs are very resolution dependent

@ But what does this mean for knock-out experiments that are said to
measure (or be sensitive to) SRCs? Or momentum distributions?



Deuteron scale- (m)dependent observables
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@ Vi« RG transformations labeled by A (different Vj\’s)
= soften interactions by lowering resolution (scale)
= reduced short-range and tensor correlations

@ Energy and asymptotic D-S ratio are unchanged (cf. ANC’s)
@ But D-state probability changes (cf. spectroscopic factors)
@ What about other quantities and other nuclei?



Distribution of kinetic and potential energy in the deuteron
Look at expectation value of kinetic and potential energies cut off at ky.x

Ea(k < Knax) = Trei(k < Kinax) + Vs(k < Kiax)
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Contributions to the ground-state energy

@ Look at ground-state matrix elements of KE, NN, 3N, 4N
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@ Clear hierarchy, but also strong cancellations at NN level
@ What about the A dependence?
@ Kinetic energy is resolution dependent!



Parton vs. nuclear momentum distributions
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@ The quark distribution g(x, Q?) is
scale and scheme dependent

@ x q(x, Q) measures the share of
momentum carried by the quarks
in a particular x-interval

@ g(x, Q%) and q(x, Q?) are related
by RG evolution equations



Parton vs. nuclear momentum distributions

Q2 ..... A ..::::‘?‘
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@ The quark distribution g(x, Q?) is
scale and scheme dependent @ Deuteron momentum distribution

® x g(x, @2) measures the share of is scale and scheme dependent

momentum carried by the quarks @ Initial AV18 potential evolved with
in a particular x-interval SRG from A = oo to A = 1.5fm™"

@ g(x,Q@%) and g(x, Q3) are related @ High momentum tail shrinks as
by RG evolution equations A decreases (lower resolution)



Factorization: high-E QCD vs. low-E nuclear
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@ Separation between Iong- and
short-distance physics is not
unique = introduce uy

@ Choice of i defines border
between long/short distance

@ Form factor F is independent
of uy, but pieces are not

@ @ running of fy(x, Q%) comes
from choosing p+ to optimize
extraction from experiment



Factorization: high-E QCD vs. low-E nuclear

har'd scale Q
f T ti
by Jectortzation ", @ Also has factorization assumptions

Fa(x, Q2 ) ~ 3, (X 1) ® F2 X, Q/ ) (e.g., from D. Bazin ECT* talk, 5/2011)

Observable: Structure model: Reaction model:
cross section spectroscopic factor  single-particle

long-dist < short-distance \ \ cross section
pzcz;nlfj;;cify XH % Wilson coefficient oif — Z S;‘f”sp/
|Jf=Ti|<j<Tp+Ti
@ Separation between long- and
short-distance physics is not
unique = introduce uy

@ Is the factorization general/robust?
(Process dependence?)

@ What is the scale/scheme
dependence of extracted
properties?

@ Choice of i defines border
between long/short distance

@ Form factor F is independent

. @ What are the trade-offs? (Does
of uy, but pieces are not

simpler structure always mean

@ @ running of f,(x, Q?) comes much more complicated reaction?)
from choosing p+ to optimize
extraction from experiment



Scheming for parton distributions

Need schemes for both renormalization and factorization

From the “Handbook of perturbative QCD” by G. Sterman et al.

“Short-distance finite parts at higher orders may be
apportioned arbitrarily between the C’s and ¢’s. A prescription
that eliminates this ambiguity is what we mean by a
factorization scheme. ... The two most commonly used
schemes, called DIS and MS, reflect two different uses to
which the freedom in factorization may be put.”

“The choice of scheme is a matter of taste and convenience,
but it is absolutely crucial to use schemes consistently, and to
know in which scheme any given calculation, or comparison to
data, is carried out.”

Specifying a scheme in low-energy nuclear physics includes
specifying a potential and consistent currents, including regulators,
and how a reaction is analyzed.



Source of scale-dependence for low-E structure

@ Measured cross section as convolution: reaction ® structure
e but separate parts are not unique, only the combination

@ Short-range unitary transformation U leaves m.e.s invariant:
Omn = (Wn|O|W,) = (W,|UT) UOUT (UW,) = (W] OV,,) = O

Note: matrix elements of operator O itself between the
transformed states are in general modified:

Omn = <\TJm|O|\TJn> #Om = eg, (\Uﬁ_1 |aa|\|/é> changes



Source of scale-dependence for low-E structure

@ Measured cross section as convolution: reaction ® structure
e but separate parts are not unique, only the combination

@ Short-range unitary transformation U leaves m.e.s invariant:
Omn = (Wn|O|W,) = (W,|UT) UOUT (UW,) = (W] OV,,) = O

Note: matrix elements of operator O itself between the
transformed states are in general modified:

Omn = <\TJm|O|\Tjn> #Om = eg, (\Uﬁ_1 |aa|\|/é> changes

@ In a low-energy effective theory, transformations that modify
short-range unresolved physics —- equally valid states.
So Omn # Omp = scale/scheme dependent observables.

@ RG unitary transformations change the decoupling scale —-
change the factorization scale. Use to characterize and explore
scale and scheme and process dependence!



All pieces mix with unitary transformation
@ A one-body current becomes many-body (cf. EFT current):

~

Uplq)Ut = +a + -

@ New wf correlations have appeared (or disappeared):
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o Similarly with [Wy) = ah|wp™")
e Thus spectroscopic factors are scale dependent
@ Final state interactions (FSI) are also modified by U

@ Bottom line: the cross section is unchanged only if all pieces are
included, with the same U: H()\), current operator, FSI, ...



Nuclear scaling from RG factorization (schematic!)
@ RG unitary transformation with scale separation: U — Ui(k,q)
@ Factorization: when k < XA and g > A, Ux(k, q) — Ki(k)Qx(q)
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Nuclear scaling from RG factorization (schematic!)
@ RG unitary transformation with scale separation: U — Ui(k,q)
@ Factorization: when k < XA and g > A, Ux(k, q) — Ki(k)Qx(q)
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) ] X *He 107" ---A:4, 2-body only |
L g S " + A=2, PHQ 2-body only, \=2
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o | M _\_\‘ '_\_._\_ : o o2l x_A=4, PHQ 2-body only, 3=2 | |
10" \ ,\Is Z@ . N
S 0 Universal 0056;;{%&&
2 >>),
wE " deppendence O e
107F given by ; b“@“~
10| Qoa w N
% AN
10* L L L 0 2 4 6 8 10 12
0 1 2 3 p
k (fm™)

[From C. Ciofi degli Atti and S. Simula]

[Anderson et al., arXiv:1008.1569]

[also Bogner, Roscher, arXiv:1208.1734]



Nuclear scaling from RG factorization (schematic!)
@ RG unitary transformation with scale separation: U — Ui(k,q)
@ Factorization: when k < XA and g > A, Ux(k, q) — Ki(k)Qx(q)

na(q) _ (AlUagaqUtIA) _ (A [Ky(K))LJ Q:(9)dq: @ (91K (K)IA)
na(q)  (d|UabaqUild)  (d] [Kn(K)[Qx(q')3qqQx(q)]Kr(K)|d)
— na(q) ~ Canp(q) at large g 1;In'est case: Abosons in toy 1D model
10t [N : ' 5 ‘ ——A=2, 2-body only _
N H - A=3, 2-body only
) ] X *He 107" - - -A=4, 2-body only |
10 "'\.“\: “He 3 * A=2, PHQ 2-body only, A=2
b .-v_\\__‘\ ©  A=3, PHQ 2-body only, 2=2
10 == — R D - 3 4 102k x A=4, PHQ 2-body only, 1=2 | |
& 4 <
é 10" \ ,\Is Z@ ) N
= b 10 Universal 2 *"’x.,&&
E oty ~ deppe>n>d};nce CTQb%e/) >
107F given by ; tk@‘x‘«
10° oa v
‘ Po
10* L L 0 2 4 6 8 10 12

[From C. Ciofi degli Atti and S. Simula]

k (fm™)

[Anderson et al., arXiv:1008.1569]

[also Bogner, Roscher, arXiv:1208.1734]



Nuclear scaling from RG factorization (schematic!)
@ RG unitary transformation with scale separation: U — Ui(k,q)
@ Factorization: when k < XA and g > A, Ux(k, q) — Ki(k)Qx(q)

n(k) (fm°)

na(q) _ (AlUahaqU'|A) (Al [K\(K)Ky(K)|A)

nq(q)

= na(q) =~ Canp(q) at large q

T T
10" P\ 2
\ H

Tk 3

10 oo\ He
- b
ey, He
L et 3
N b
!
10" | \ .\
107 kb
10°
‘0-‘ Il Il |
0 1 2 3
-
k (fm™)

[From C. Ciofi degli Atti and S. Simula]

(d|UalaqUt|d)  (d| [Kx(K")Ka(K)|d)

Test case: A

Universal ey X
o) g,
dependence O >
given by h b,@‘x‘
Qoa w S
o %,
, °
0 2 4 6 8 10 12

bosons in toy 1D model

——A=2, 2-body only
-='A=3, 2-body only
- -=-A=4, 2-body only |
* A=2, PHQ 2-body only, A.=2
©  A=3, PHQ 2-body only, 2=2
x A=4, PHQ 2-body only, 1=2 | |

[Anderson et al., arXiv:1008.1569]

[also Bogner, Roscher, arXiv:1208.1734]



U-factorization with SRG [Anderson et al., arXiv:1008.1569]
@ Factorization: U, (k, q) — K\(k)Qx(q) when k < Aand g > A

@ Operator product expansion for nonrelativistic wf’s (see Lepage)
A A
V@ = (@) [ B ZOWe) +(@) [ Pdppt Z()W(p) + -

@ Construct unitary transformation to get U, (k, q) = Ki\(k)Q\(q)

Ur(h.@) = 3 (k12 610) = [ [ P ZvA(p)] (@ +

QO ' o e et v s

@ Test of factorization of U:

Ui(ki, q) . Kix(
Un(ko,q)  Ki(
N

ki) Qx(q)
ko)Qx(q)’
K

so for g > A = 2H 124

[U(k,q) / Uky,a)l

@ Look for plateaus: k; < 2fm'< g
= it works!

@ Leading order = contact term! Ol
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@ Operator product expansion for nonrelativistic wf’s (see Lepage)
A A
V@ = (@) [ B ZOWe) +(@) [ Pdppt Z()W(p) + -

@ Construct unitary transformation to get U, (k, q) = Ki\(k)Q\(q)

Xlow
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@ Test of factorization of U:
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U-factorization with SRG [Anderson et al., arXiv:1008.1569]
@ Factorization: U, (k, q) — K\(k)Qx(q) when k < Aand g > A

@ Operator product expansion for nonrelativistic wf’s (see Lepage)
A A
V@ = (@) [ B ZOWe) +(@) [ Pdppt Z()W(p) + -

@ Construct unitary transformation to get U, (k, q) = Ki\(k)Q\(q)

Ur(h.@) = 3 (k12 610) = [ [ P ZvA(p)] (@ +

10 T

@ Test of factorization of U:

Ux(ki,Q) N KA(kI)QA(q)
Us(ko,q) = Ki(ko)Qx(q)’
N

<

<

T
Ki(k) LO, 4 £ 1
A =

o

<

2

soforg> A= gZry —

@ Look for plateaus: k; < 2fm'< g
= it works!

@ Leading order = contact term!




How should one choose a scale and/or scheme?

@ To make calculations easier or more convergent

@ QCD running coupling and scale: improved perturbation
theory; choosing a gauge: e.g., Coulomb or Lorentz

e Low-k potential: improve many-body convergence,
or to make microscopic connection to shell model or ...

@ (Near-) local potential: quantum Monte Carlo methods work
@ Better interpretation or intuition = predictability
e SRC phenomenology?
@ Cleanest extraction from experiment
o Can one “optimize” validity of impulse approximation?
o Ideally extract at one scale, evolve to others using RG
@ Plan: use range of scales to test calculations and physics
e Find (match) Hamiltonians and operators with EFT

e Use renormalization group to consistently relate scales and
quantitatively probe ambiguities (e.g., in spectroscopic factors)



Summary: Precision nuclear structure and reactions

@ We’re in a golden age for low-energy nuclear physics
Many complementary methods able to incorporate 3NFs
Synergies of theory and experiment
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Summary: Precision nuclear structure and reactions

@ We’re in a golden age for low-energy nuclear physics

e Many complementary methods able to incorporate 3NFs

e Synergies of theory and experiment

e Large-scale collaborations facilitate progress

e Many opportunities and challenges for precision physics
@ EFT and RG have become important tools for precision

e Robust uncertainty quantification is a frontier

@ Scale and scheme dependence is inevitable = deal with it!
@ Challenges for which EFT/RG perspective + tools can help
Can we have controlled factorization at low energies?
How should one choose a scale/scheme in particular cases?
What is the scheme-dependence of SF’s and other quantities?
What are the roles of short-range/long-range correlations?
How do we consistently match Hamiltonians and operators?
...and many more. Calculations are in progress!



Backups



EMC effect from the EFT perspective

@ Exploit scale separation between short- and long-distance physics

e Match complete set of operator matrix elements (power count!)
e Cf. needing a model of short-distance nucleon dynamics
e Distinguish long-distance nuclear from nucleon physics

@ EMC and effective field theory (examples)

e “DVCS-dissociation of the deuteron and the EMC effect”
[S.R. Beane and M.J. Savage, Nucl. Phys. A 761, 259 (2005)]

“By constructing all the operators required to reproduce the matrix
elements of the twist-2 operators in multi-nucleon systems, one sees
that operators involving more than one nucleon are not forbidden by the
symmetries of the strong interaction, and therefore must be present.
While observation of the EMC effect twenty years ago may have been
surprising to some, in fact, its absence would have been far more
surprising.”

e “Universality of the EMC Effect”
[J.-W. Chen and W. Detmold, Phys. Lett. B 625, 165 (2005)]

@ “SRCs and the EMC Effect in EFT” [Chen et al., arXiv:1607.03065]



A dependence of the EMC effect is long-distance physics!
@ EFT treatment by Chen and Detmold [Phys. Lett. B 625, 165 (2005)]

=" @xqf(x) = Ra(x)=FH(x)/AFN(x)

“The x dependence of Ra(x) is governed by short-distance
physics, while the overall magnitude (the A dependence) of
the EMC effect is governed by long distance matrix elements
calculable using traditional nuclear physics.”

@ Match matrix elements: leading-order nucleon operators to
isoscalar twist-two quark operators

» /
= (x2)gvHo .- v NTN[1 + anNTN] - -

Ra(x) = AFZN(X) 1405, ()G(A) where  G(A) = (AI(N'N)?|A) /Ao

— the slope 2% scales with G(A [Why is this not cited more?]
p ax



Scaling and EMC correlation via low resolution

@ SRG factorization, e.g.,
Ux(k,q) — Kx(k)Qx(9)
when k < Aand g > A

L | 21 ndf 0.7688 /3
0.4~ a .0.07879 + 0.006376

@ Dependence on high-q
independent of A
— universal [cf. Neff et al.]
@ A dependence from
low-momentum matrix
elements =— calculate!

@ EMC from EFT using OPE:
| T [ |

o Isolate A dependence, which ) Y E—
factorizes from x a,(A/d)

P EMC A dependence from L.B. Weinstein, et al., Phys. Rev. Lett. 106, 052301 (2011)
long-distance matrix elements

If the same leading operators dominate, then does linear A
dependence of ratios follow immediately?
Need to do quantitative calculations to explore!



What about long-range correlations?

SF calculations with FRPA
Chiral N3LO Hamiltonian

@ Soft = small SRC

@ SRC contribution to SF changes

dramatically with lower resolution

Compare short-range correlations
(SRC) to long-range correlations
from particle-vibration coupling

LRC > SRC!!

How scale/scheme dependent
are long-range correlations?

Additional microscopic
calculations are needed!

C. Barbieri, PRL 103 (2009)

TABLE L. Spectroscopic factors (given as a fraction of the
IPM) for valence orbits around *°Ni. For the SC FRPA calcu-
lation in the large harmonic oscillator space, the values shown
are obtained by including only SRC, SRC and LRC from
particle-vibration couplings (full FRPA), and by SRC, particle-
vibration couplings and extra correlations due to configuration
mixing (FRPA + AZ,). The last three columns give the results
of SC FRPA and SM in the restricted 1p0f model space. The
AZ,s are the differences between the last two results and are
taken as corrections for the SM correlations that are not already
included in the FRPA formalism.

10 osc. shells Exp. [29] 1p0f space

FRPA Full FRPA

(SRC) FRPA +AZ, FRPA SM AZ,
YINi:
vipys @ 061 079 077 —0.02
Wfs, 095—659 055 079 075 —0.04
vipy, 095 065 062 05811) 082 079 —0.03
SNi:
W0fya 0.69 089 086 —0.03
Cu:
mwlpy, 096 066 062 080 0.76 —0.04
70fs;, 096 060 058 080 0.78 —0.02
mips, 096 067 065 081 079 —0.02
Co:
70f7,, 095 073 071 089 0.87 —0.02




What can we say about the flow of NN- - - N potentials?

@ Can arise from counterterm for new UV cutoff dependence,
e.g. changes in A; must be absorbed by 3-body coupling Do(/\ )

00)4 In(k//\ Do(/\c)O( Co 4|l'l ag/\ )

RG invariance dictates 3-body coupling flow [Braaten & Nieto]
@ General RG: 3NF from integrating out or decoupling high-k states

C1,C3,Cq CDp Cg



Is there 3NF universality?

@ Evolve chiral NNLO EFT potentials in momentum plane wave basis
[K. Hebeler, Phys. Rev. C85 (2012) 021002]

@ In one 3-body partial wave, fix one Jacobi momentum (p, q)

<pqa |V, [ paa>[fm]

to\=15fm""

and plot vs. the other one:

= ' I T T — T
O o—o 450/500 MeV 17"
[ »— 600/500 MeV .
0.081- =—a 550/600 MeV - ;
P . e+ 450/700MeV | .
0065 oy o, T 600/700 MeV |
0.04
0.02 3
0
0.02| q=15fm
1 | |
0 1 2 3
p[fm ]] q[fm 1]

@ Collapse of curves includes non-trivial structure




Is there 3NF universality?

@ Evolve in discretized momentum-space hyperspherical harmonics
[K. Wendt, Phys. Rev. C87 (2013) 061001]

basisto A = 1.4fm ™"

@ Contour plot of integrand for 3NF expectation value in triton

Q [fm™']
0123456

0 T —T—T— 10°
ik 1
ool il 107"
7
E 3l 4 )
£ 3 10°2
o 4r T
5k 107
A=oo P . P . L Feo2
6 f——— — } —— } ——1 0 MeV fm
By 1 T T ~107*
3l 1 1 1 | —107?
4 I —10t
O =140 !
6 L i L L L _100

450/500 MeV 600/500 MeV

550/600 MeV

450/700 MeV

600/700 MeV

@ Local projections of 3NF also show flow toward universal form

@ Can we exploit universality a la Wilson? Stay tuned!



Nuclear structure natural with Jow momentum scale

Softened potentials (SRG, Vi x, UCOM, ...) enhance convergence

@ Softening allows importance

@ Convergence for no-core shell truncation (IT) and converged

model (NCSM):
. $ —— )‘ S coupled cluster (CCSD)
16§ E
2 Lithium-6 E %0 [TNeSM €esb
S sE ground-state energy 3 NN+3N-ind. | NN+3N-ind.
g na Jurgenson et al. (2009) 7 -100f,
5 O Vo =N'LO (500 MeV) ] % \
5 -4 N = (500 MeV) 3 Z 00 1 7Q =20MeV
= £ 2 | == ‘
M -8F Original Vi =N'LO E w
E -12| (already soft!) E 10k
P -16F E
T 20 . E
3 24‘, Softened with SRG 3 130
5 :28; o0 “[/ e 1200 NN-3N-full | NN+3N-full
_nt h=1.5fm _&_ 3 ,
E . . . . . . . k| =-130¢
36 i é a‘a fo 1‘2 1‘4 1‘6 18 3
Matrix Size [N“m] -1400
@ (Already) soft chiral EFT potential sol
and evolved (softened) SRG

24 681012141618 16 14 12 10 8 6 4 2
vvvv €max

[Roth et al., PRL 109, 052501 (2012)]
@ Also enables ab initio nuclear reactions with NCSM/RGM [Navratil et al.]

potentials, including NNN



Nuclear structure natural with Jow momentum scale

Team Roth: SRG-evolved N3LO with NNN

[PRL 109, 052501 (2012)]

@ Coupled cluster with interactions H(\): A is a decoupling scale
@ Only when NNN-induced added to NN-only = ) independent

@ With initial NNN: predictions from fit only to A = 3 properties

@ Open questions: red (400 MeV) works, blue (500 MeV) doesn’t!

-100, NN-only - NN+3N-ind. NN+3N-full 250 NN-only NN+3N-ind. NN+3N-full
110 \ ) 300 8
120 EN 350 exp. M §i
- -35 = = —— ]
=130 \ S =-400) =
2 2 A\
= 140}, 160 =450 40Ca N D
150}, \ 70 = 20 MeV -500) \\‘_\‘_‘_‘ 7 = 20 MeV
NS | ssof INTTees
L e
-170 R S
“120 2300
-140) ; 400 exp. R ] .
§-180 §-500
: 200 \\*_‘—i 240 \b\ : 600 BCa \
E 70 = 20MeV === - 0 = 20MeV \
\ EESS N N
2 \ 3=
220 l\:‘L 700 :\:\.ﬂ_._‘ p
240 A R
800 i

2 46 81012142 4 6 8 1012142 4 6 8 1012 14
e, e e

@ Same predictions for A's! (issues about NNN resolved by 4N?)



Every operator flows

@ Evolution with s of any
operator O is given by:

Os = Us0U!
so Os evolves via

dOs
ds

@ Us =3, [vi(s))(vi(0)|
@ Matrix elements of evolved

operators are unchanged
—> How does this play out”

= [[Gs, HS]7 OS]

n(k) [fm’]

@ Example: momentum
distribution < g|alaq|vg >
(in deuteron)

10 E
10°E
10

10°E

10

10

107

10

—— AVI8
—--- VgatA=2fm”

————— Ve ath=15fm"

—--=-= CD-Bonn
----- N’LO (500 MeV)

N Lol

vl vl ol vl sl ol




Flow equations lead to many-body operators
@ Consider a's and a'’s wrt s.p. basis and reference state:
avs

ds HZ@’ZM}’Z@W%} :"'+Z atatataaa+- -
G 2-body  2-body 3-body!

so there will be A-body forces (and operators) generated

@ Is this a problem?

e Ok if “induced” many-body forces are same size as natural
ones

e Alternative: choose a non-vacuum reference state [Scott]

@ Nuclear 3-body forces already needed in unevolved
potential
e In fact, there are A-body forces (operators) initially

o Natural hierarchy from chiral EFT
— stop flow equations before unnatural 3-body size

e Many-body methods must deal with them!
@ SRG is a tractable method to evolve many-body operators



Observations on three-body forces

@ Three-body forces arise from
eliminating/decoupling dof’s
o excited states of nucleon
o relativistic effects
@ high-momentum
intermediate states
@ Omitting 3-body forces leads
to model dependence
@ observables depend on A/A

e cutoff dependence as tool

@ NNN at different A/ can be
evolved or fit to yEFT

@ how large is 4-body?

E,(‘He) [MeV]

53
~

r A=3.4 binding energies
" SRG NN only, A in fm™'

N’LO

—— NN potentials

B—8 SRG N’LO (500 MeV) |

8 8.2 8.4
E,(’H) [MeV]

8.6

8.8



Observations on three-body forces

@ Three-body forces arise from
eliminating/decoupling dof’s $W$w£ Xﬂt X
o excited states of nucleon ‘ -

o relativistic effects

@ high-momentum Fv
intermediate states

@ Omitting 3-body forces leads
to model dependence

@ observables depend on A/
e cutoff dependence as tool
@ NNN at different A/ can be

NN from N’LO (500 MeV)
L 3NFfitto gy and ryyy Ay =20fm ' -

low k

3N

NN +3N A ]

b 3rd order pp+hh

Energy/nucleon [MeV]
!
G
T

evolved or fit to YEFT f :232 gi
@ how large is 4-body? 25| == A= 1.8 fm " NN only y
e saturation of nuclear matter [ e A=28fm ' NN only ¥
(K. Hebeler — corrected + T ¥ E— 14 1.6

improved 3NF treatment) k. [fm ']



Tjon line revisited

I I I I
30 ---- Tjon line for NN-only potentials L
| e—e SRG NN-only O
2. — SRGNN+NNN(A>1.7fm™) .~ |
| 7\,:1.85;]" |
= A=15 o -LKExpt.
% 281 .
= /=20 i
- [ A=2.5
£ 271 -
_ | “A=3.0 |
i .
26 L 44
284 —
B of 3 g 4 7
~EN’LO B b
25 (500 MeV) 831 X -
28'2 Il ‘ Il Il Il Il i
8.45 8.5
Py \ \ \ L 1

7.6 7.8 8 8.2 8.4 8.6 8.8
E,CH) [MeV]



Every operator flows [see Anderson et al., arXiv:1008.1569]

@ Evolution with s of any

2 — .
operator O is given by: 107 N
10" L (aqaq)deuteron 4
=y Ok ’ ]
so Os evolves via — F ___ s '-‘23(;1?9‘,’?"’9" ]
I F =20fm ]
=3 -1

= 10 F A\ P——— = -1 E
dOs s g \ A=15fm :
ds - [[Gs’ HS]’ OS] N:-\ 10-2 ; \'\\‘\\\ : ;
o E AN 3
~ E \ \\ 3
® Us =3, [i(s)) (wi(0)| S b VN
. <t E \ 3
@ Matrix elements of evolved JF LN 3
operators are unchanged 10g Loy E
|- . \ 4

H -5 | | ST [
@ Consider momentum 107, 1 > 3 4

distribution < ¢d|a2aq|¢d > qlfm ]
atq=0.34and 3.0fm™"



High and low momentum operators in deuteron

@ Integrand of (Ua},a,U") for g = 0.34fm™"

k (im™)

K (m™)

K (fm™") K (fm™") K (fm™) K (fm™")
Q. 1 2 3 01 2 3 0 1 2 3 2 3
.
2
3l

2 =6.0 fm" 2.=3.0 fm’”! % =2.0 fm"! A =1.5fm"

—1
@ Integrand for g = 3.02fm

K () K (T K fm™ K (fm™)
Q.1 2 3 01 23 01 23 2 3
1
2
3 [ ] [ n

2 =6.0 fm™’ 2.=3.0 fm’’! 2 =2.0 fm! A =15fm"’

L5 o o =
o o

0.01
0.005
0
-0.005
-0.01

4 [u(@)™* w(a)] [fm’]

Momentum
distribution

T T

+
A (aqaq)deu(emn

---a=201fm"

- a=15Mm"

@ Decoupling = High momentum components suppressed

@ Integrated value does not change, but nature of operator does
@ Similar for other operators: (r?), (Qq), (1/r) (1), (G¢), (Ga),

(Gm)

— NLO unevolved 3




High and low momentum operators in deuteron
@ Integrand of (4| (UagaqUT) |4hg) for g = 0.34 fm™"

K (fm™") K (fm™") K (fm™) K (fm™")
Q. 1 2 3 01 2 3 0 1 2 3 01 2 3 ; @ Momentum
1 05 distribution
ng ‘ 0 102‘2”‘:””‘””“”‘
; 3 05 10" (aqaq)deu(emn
A =6.0 fm’ 2.=3.0 fm’’ 2 =2.0fm"’ A=1.5m" E o . ]
-1 = 10 — N’LO unevolved
%5 . ---a=201fm"
-1 3 10F - a=15Mm"
@ Integrand for g = 3.02 fm B
e
K (m) K (") K (m™) K @) < w0k
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 x10° ¥ :
0 1 0 \
L N \
1 ‘ 05 N p— 2 3
E2 0 qlim™]
<3 . |— . 05
2 =6.0 fm™’ 2.=3.0 fm’’! 2 =2.0 fm! 2 =15fm"’

-1
@ Decoupling = High momentum components suppressed
@ Integrated value does not change, but nature of operator does

@ Similar for other operators: (r?), (Qq), (1/r) (1), (G¢), (Ga),
(Gm)



High and low momentum operators in deuteron
@ Integrand of (14| (UalaqU?) [144) for g = 0.34 fm™"

K (fm™") K (fm™") K (fm™) K (fm™")
0 1 2 3 01 2 3 0 1 2 3 0 1 2 3 30Momentum

distribution

— T T

k (im™)

: +
A (aqaq)deuteron

— N°LO unevolved 7§
---A=20Mm’"
- a=15fm"

@ Integrand for g = 3.02fm™’

K () K (T K fm™ K (fm™)
0 1 2 3 0 1 2 3 0 1 2

4 [u(@)™* w(a)] [fm’]

K (m™)

@ Decoupling = High momentum components suppressed
@ Integrated value does not change, but nature of operator does

@ Similar for other operators: (r?), (Qq), (1/r) (1), (G¢), (Ga),
(Gm)



Factorization [Anderson et al., arXiv:1008.1569]
@ If k < Xand g > \ = factorization: Uy(k, g) — K\(k)Q\(q)?
@ Operator product expansion for nonrelativistic wf’s (see Lepage)

Wie(r) = / dr' Weyda(r') + (1) / dr' ey V25,(r) + O(d")
@ Similarly, in momentum space

V() ~ 1 (q) / o Z(NWA(p) + 1 () / pPapp? Z(\) WA (p) + -

@ By projecting potential in momentum subspace, recover OPE via:

> 1
A = _ /2d / _ _ / Voc /‘0
@)= [ a6l 5 1)V
(q) = / " q20q (6l ——1d) L V(. )
= — == 5 5 2
! \ Qs H=Qy ' Op? P#=0

@ Construct unitary transformation to get U, (k, q) = Ky\(k)Q.(q)

Xlow

A
Un(k, @) = 3 (kled) (la) — [D (ki) /0 pPdp ZO)W(P)| (@) + -+



Impact of V) “collapse” on A > 3 observables

Energy/nucleon [MeV]

Spread [MeV]

@ Limited cases so far and NN-only: [K. Hebeler, E. Jurgenson]

0 e e ———r]
: NN-only 7 6'5, ‘ ro ]
10t ] Fo3 o AVI8 (36/44) | T
g s [ H e—s CD-Bonn (32/44) | ]
r N3LO (32/2
20f 2 -7 NN-only +N3LOG2/28) | 4
: z ]
=30+ b I 4
[ e—e EGM 550/600 MeV 2 r ]
[ =—a EGM 600/700 MeV N M -7.5+
_40F +— EM 500 MeV N F
r > EM 600 MeV J o8 [
F— e 4 [
20 6o bare NN . B g _gl-
I5F " A=20fm 1 2 [ i
10F CH 1
5+ r Exp i
Gi T it M -85 | | | | | B
0.8 1.0 1.2 1.4 1.6 1 2 3 4 5 ‘ 10
A ,
ky [fm ] Afm ]

@ Nuclear matter spread (V. x Shown) sizable at \ =~ 2 fm~"

@ Binding energy collapse in light nuclei only for A < 1.5 fm~"



