

Momentum sharing in asymmetric nuclei

A data-mining project using CLAS EG2 data

Meytal Duer

Tel-Aviv University

SRC workshop, MIT

December 3, 2016

np-dominance in asymmetric nuclei

M. Sargsian Phys. Rev. C89(2014)3, 034305 O. Hen et al., Science 346, 614 (2014)

Possible inversion of the momentum sharing

Simple np-dominance model

$$n_{p}(k) = \begin{cases} \eta \cdot n_{p}^{M \cdot F \cdot}(k) & k < k_{0} \\ \frac{A}{2Z} \cdot a_{2}(A/d) \cdot n_{d}(k) & k > k_{0} \end{cases}$$

(for neutrons: $Z \rightarrow N$)

Prediction:

 $\langle T_{p(n)} \rangle = \int n_{p(n)} \cdot \frac{k^2}{2m} \cdot d^3k$

O. Hen et al., Science 346, 614 (2014)

Motivation

Simple estimate based on np-dominance

²⁰⁸Pb: P=82 N=126

Motivation

Simple calculation based on the np-dominance model

$$\frac{A(e, e'n) / {}^{12}C(e, e'n)_{k>k_0}}{A(e, e'n) / {}^{12}C(e, e'n)_{k$$

$$\frac{A(e,e'p)/^{12}C(e,e'p)_{k>k_0}}{A(e,e'p)/^{12}C(e,e'p)_{k$$

Motivation The goal: Extracting $\frac{A(e,e'n)_{high}/A(e,e'n)_{low}}{{}^{12}C(e,e'n)_{high}}/{}^{12}C(e,e'n)_{low}}$ ratios (and same for protons) To do so: * Identify (e,e'n) mean-field events (*low momentum*) * Identify (e,e'n) 2N-SRC events (high momentum) * Extract ratios and their uncertainties Electrons [1] Protons [2],[3]

Neutrons - detecting neutrons in CLAS EC (M. Braverman TAU thesis, 2014)

⁶ [1] Approved CLAS analysis note, L. El Fassi, 2011) [2] O. Hen et al., Phys. Lett. B 772, 63 (2013) [3] O. Hen et al., Science 346, 614 (2014)

Analysis of QE events:

Identifying A(e,e'n) and A(e,e'p) mean-field events

I dentifying A(e,e'n) and A(e,e'p) high momentum events

Selecting M.F. QE events

QE peak [1]-[3]: P_{miss}<0.25 GeV/c E_{miss}<0.08 GeV

[1] T.G. ONeill et al., Phys. Lett. B 87, 351 (1995).
[2] D. Abbott et al. Phys. Rev. Lett. 80, 5072 (1998).
[3] K. Garrow et al. Phys. Rev. C. 66, 044613 (2002).

neutrons

Problem:

Poor resolution in the EC - $\Delta P \approx 0.2 GeV/c$

Solution 1: Using electron quantities & scattering angle of the nucleon

Protons after the QE cuts:

(QE cuts:Pmiss<0.25 GeV/c Emiss<0.08 GeV)

Solution 2: Using smeared protons to define and test the cuts

Neutron measured momentum resolution

Neutron interaction probability: 32% - inner layer 47% - outer layer 20% - both layer

$$P_{p} \rightarrow P_{smeared} = \sum Gauss(P_{p}, \sigma)$$

How to determine Pmiss and Emiss cuts?

False Positive & Negative probabilities

False Positive \simeq False Negative \simeq 10%

Sanity check:

A(e,e'p)/A(e,e'n) M.F. ratios

[4] W. P. Ford, S. Jeschonnek & J. W. Van Orden, arXiv:1411.3306v1 [nucl-th] (2014) ¹³

A(e,e'p)/C(e,e'p) M.F.ratios

(compare smeared and un-smeared protons)

Analysis of QE events:

I Identifying A(e,e'n) and A(e,e'p) mean-field events

I. Identifying A(e,e'n) and A(e,e'p) high momentum events

1st step:
Following approved CLAS analysis note (O. Hen 2012)
to identify high momentum (e,e'p) events* $x_B > 1.2$ * $0.3 \le P_{miss} \le 1 GeV/c$

*
$$0.62 \le |\vec{P}_{lead}| / |\vec{q}| \le 0.96$$

*
$$M_{miss} \leq 1.1 \, GeV/c^2$$

* $\theta_{pq} \leq 25^{\circ}$

nd step: Modifying the cuts to select high momentum (e,e'n) events

Same strategy:

I. Cut on common quantities:

 $x_{B} > 1.1$ $0.62 \le \frac{\left|\vec{P}_{N}\right|}{\left|\vec{q}\right|} \le 0.96$ $\theta_{Na} \le 25^{\circ}$

I. Using smeared protons: To determine cuts on P_{miss} && M_{miss}

False Positive & Negative probabilities

False Positive $\simeq 15\%$

False Negative \simeq 20 %

A(e,e'p)/C(e,e'p) ratios

(compare smeared and un-smeared protons)

[1] O. Hen et al., Phys. Lett. B 772, 63 (2013)

Sanity check:

(Statistical error)

Analysis of QE events:

I ldentifying A(e,e'n) and A(e,e'p) mean-field events

I. Identifying A(e,e'n) and A(e,e'p) high momentum events

Protons and **neutrons** super ratios

$$\frac{A(e,e'N)_{high}/A(e,e'N)_{low}}{{}^{12}C(e,e'N)_{high}}/{}^{12}C(e,e'N)_{low}}$$

Protons move faster than neutrons in N>Z nuclei

$$\langle T_{p} \rangle > \langle T_{n} \rangle$$

Backup Slides

 $A(e, e'N)_{k < k_F} \propto \int_{0}^{k_0} n^{M.F.}(k) k^2 dk$

 $A(e, e'N)_{k>k_F} \propto \int_{k_0}^{\infty} n^{SRC}(k) k^2 dk$

Considered 3 models for nm.F.

- * Wood-Saxon
- * Serot-Walecka
- * Ciofi & Simula

Considered 2 values of Ko:

```
* 300 MeV/c
```

```
* k<sub>F</sub>
```

Uncertainty was taken as the difference between the different results.

Detecting neutrons

- * No DC and SC signals
- * EC fiducial cut

* Velocity cut: β<0.95

Empirical momentum correction, takes values up to 2.34 GeV/c

Neutron detection efficiency

 $\epsilon = \frac{\#d(e,e'p\pi^+\pi^-n)}{\#d(e,e'\pi^+\pi^-)n}$

smeared protons

neutrons

Without applying any cuts

 E_{miss} P_{miss} cuts

un-smeared protons

smeared protons (neutrons)

 $\boldsymbol{P}_{miss}[GeV/c]$

Comparing un-smeared protons

All un-smeared protons

Comparing un-smeared protons

Checking the event selection Energy momentum conservation: $(E_{beam}, (0, 0, E_{beam})) + (M_N, \vec{0}) = (E', \vec{P}_{e'}) + (E_N, \vec{P}_N)$ $|\vec{P}_{N}| = \sqrt{(E + M_{N} - |\vec{P}_{e'}|)^{2} - M_{N}^{2}}$ smeared protons neutrons $P_p[GeV/c]$ $P_n[GeV/c]$ 3.2 36 3.8 42 $P_{\rho'}[GeV/c]$ $P_{e'}[GeV/c]$

Checking the event selection

From energy momentum conservation:

 $|\varphi_N - \varphi_e| = 180^\circ$

smeared protons

Comparing the smeared protons and neutrons

smeared protons

neutrons

Comparing the smeared protons and neutrons

smeared protons

neutrons

200

Applying corrections

protons

- * Coulomb correction
- * Detection efficiency
- * Acceptance correction

neutrons

- * Detection efficiency
- ***** Acceptance correction

Protons simulation

* 10,000 electrons from the data.

* Proton momentum & scattering angle uniformly distributed.

* 100xphi angle uniformly distributed.

* Running through CLAS MC simulation.

* Dividing event by event by the ratio of reconstructed/generated.

Protons simulation - results

Sector #1 Sector #2 0.9 0.8 45 45 n o θ_p [degrees] [degrees] 0.7 07 40 40 0.6 35 0.5 35 0.4 30 30 0.3 0.3 25 25 0.2 0.2 20 0.1 20 p [GeV/c] p [GeV/c] Sector #3 Sector #4 50 0.9 45 45 0.8 θ_p [degrees] θ_{p} [degrees] 0.7 40 40 0.6 35 35 0.5 0.4 30 30 25 25 0.2 0.2 0.1 0.1 20 1.4 2.4 p [GeV/c] p [GeV/c] Sector #5 Sector #6 50 0.9 0.9 0.8 0.8 45 45 θ_p [degrees] degrees 0.7 0.7 40 40 0.6 35 35 0.5

30

25

20[

p [GeV/c]

0.2 0.1

2.2

2.4

30

25

20

1.2

1.4

1.6

p [GeV/c]

0.4

0.3

0.2

0.1

Uncertainties of the event selection

Cut	Cuts sensitivity						
	Range	С	AI	Fe	Pb		
-0.05 <y<0.25< td=""><td>±0.05</td><td>0.84%</td><td>0.83%</td><td>0.58%</td><td>0.81%</td></y<0.25<>	±0.05	0.84%	0.83%	0.58%	0.81%		
0.95<ω<1.7 GeV	±0.05 GeV	2.1%	1.9%	1.9%	1.7%		
$\theta_{pq} < 8^{o}$	±1°	2.0%	1.8%	1.5%	1.4%		
$1.3 < Q^2 < 3.5 GeV^2 / c^2$	±0.2 GeV ² /c ²	0.61%	0.39%	0.68%	0.35%		
P_{miss} < 0.3 GeV/c	±0.025 GeV/c	0.82%	0.49%	0.56%	0.38%		
E_{miss} < 0.24 GeV	±0.02 GeV	1.9%	2.2%	2.1%	2.1%		
EC fiducial cut: 10 cm	30 cm	0.1%	0.11%	0.10%	0.09%		

Contributions to the uncertainty

Nuclei	A(e,e'p)/A(e,e'n)	Statistics	Neutron Effic.	Simulation	Event selection
С	2.37±0.23	±0.15 (59%)	±0.07 (27%)	±0.031 (11%)	±0.19 (74%)
Al	2.36±0.26	±0.19 (73%)	±0.08 (29%)	±0.030 (11%)	±0.17 (62%)
Fe	2.48±0.24	±0.15 (62%)	±0.07 (29%)	±0.032 (12%)	±0.18 (75%)
Pb	2.21±0.24	±0.18 (75%)	±0.09 (37%)	±0.034 (12%)	±0.13 (54%)

Protons and neutrons M.F ratios

Corrected for transparency and normalized by Z (N).

Identifying the Leading Nucleon

un-smeared protons

smeared protons

neutrons

We adopted the cuts (O. Hen 2012): $\mathbf{0.62} \le \frac{\left|\vec{P}_{N}\right|}{\left|\vec{q}\right|} \le \mathbf{0.96} \qquad \theta_{pq} \le 25^{\circ}$

Missing Momentum & Missing Mass cuts

un-smeared protons 'good event': $0.3 < P_{miss-unsmeared} < 1 GeV/c$ && $M_{\text{miss-unsmeared}} < 1.1 \text{ GeV}/c^2$ 'bad event': P_{miss-unsmeared} < 0.3

bad event': $P_{miss-unsmeared} < 0.3$ $P_{miss-unsmeared} > 1 GeV/c$ $M_{miss-unsmeared} > 1.1 GeV/c^2$ smeared protons neutrons

The selected events:

This analysis Proton analysis (smeared protons & neutrons) (O. Hen et al.)

 $x_B > 1.1$ $x_B > 1.2$ 0.62 < p/q < 0.960.62 < p/q < 0.96 $\theta_{pq} < 25^{\circ}$ $\theta_{pq} < 25^{\circ}$ $M_{miss} < 1.2 GeV/c^2$ $M_{miss} < 1.1 GeV/c^2$ $0.4 < P_{miss} < 1 GeV/c$ $0.3 < P_{miss} < 1 GeV/c$

Comparing smeared protons & neutrons distributions:

Comparing smeared protons & neutrons distributions:

Missing energy distribution

50

A(e,e'p)/C(e,e'p) ratios

(for smeared protons)

Corrections:

1. Normalization: target density & beam charge (FC)

	С	AI	Fe	Pb
Beam charge	3581.8	2719.4	5632.3	5079.6
Thickness [g/cm ²]	0.3	0.156	0.315	0.159

2. Radiative correction

3. False positive & negative probabilities

	С	AI	Fe	Pb
False positive [%]	15.1	14.5	15.0	14.2
False negative [%]	14.9	14.7	14.8	14.6

Radiative Correction

Done using Misak code (CLAS NOTE 90-007) for inclusive (e,e') processes

Input file:

INCIDENT	ELECTRON	5.014	0.000	0.000	0.000	0.000	3.000
TARGET	PB	208.000	82.000	0.260	25.000	0.025	0.010
RAD_EFFECT	YES	0.14	0.020	0.010	0.010	0.050	0.010
SWELLING	V2	0.000	0.200	0.000	0.000	0.000	0.000
EMC	NES	0.000	0.000	0.000	0.000	0.000	0.000
ELEC_SPECT		0.000	0.000	0.000	0.000	0.000	0.000
Ee` -RANGE	NES	2.710	3.430	0.015	0.000	0.000	0.000
THe -RANGE		0.000	0.000	0.000	22.500	0.000	0.000
QO -RANGE	NES	0.830	0.840	0.010	0.000	0.000	0.000
W -RANGE	NO	0.900	0.910	0.025	0.000	0.000	0.000
X -RANGE	YES	1.10	1.78	0.025	0.000	0.000	0.000
INTEGRATION	N	0.000	0.001	0.001	0.001	0.000	200.000

Output file:							
$\theta_e[deg.]$	E'[GeV]	σ	σ_R	σ_R/σ	X _B		
13.5000000	4.42063046	4.43465996	3.27398014	0.738270819	1.1000038		
13.5000000	4.43228626	4.22524166	3.08815813	0.730883181	1.12499964		
13.5000000	4.44349337	3.98750830	2.88599110	0.723758042	1.14999974		
13.5000000	4.45427656	3.72525787	2.67181277	0.717215538	1.17499924		
13.5000000	4.46466017	3.43619990	2.44445562	0.711383402	1.19999981		
13.5000000	4.47466516	3.12433052	2.20719647	0.706454217	1.22499967		
13.5000000	4.48431253	2.80245376	1.96815252	0.702296138	1.25000024		
13.5000000	4.49362087	2.47654080	1.73224092	0.699459851	1.27500081		
13.5000000	4.50260735	2.16126084	1.50825989	0.697861135	1.30000043		
13.5000000	4.51128817	1.86491084	1.30000114	0.697084904	1.32499838		
13.5000000	4.51968002	1.59822047	1.11500192	0.697652161	1.34999883		
13.5000000	4.52779675	1.36697018	0.955449700	0.698954284	1.37500083		
13.5000000	4.53565025	1.17481065	0.823031425	0.700565159	1.39999974		
13.5000000	4.54325438	1.02072394	0.716113329	0.701573968	1.42499936		
13.5000000	4.55062103	0.903844237	0.633903861	0.701341927	1.45000100		
13.5000000	4.55775976	0.818772256	0.572003424	0.698611140	1.47499907		
13.5000000	4.56468248	0.759974122	0.527037442	0.693493903	1.49999964		
13.5000000	4.57139826	0.721946955	0.496739984	0.688056052	1.52500010		
13.5000000	4.57791615	0.687721431	0.469726115	0.683017969	1.55000007		
13.5000000	4.58424473	0.595497608	0.406235248	0.682177782	1.57499981		
13.5000000	4.59039259	0.522537053	0.355940789	0.681178093	1.6000086		
13.5000000	4.59636641	0.463264525	0.314598382	0.679090142	1.62499917		
13.5000000	4.60217428	0.413414866	0.279868931	0.676968694	1.64999843		
13.5000000	4.60782337	0.370711714	0.249916166	0.674152315	1.67500007		
13.5000000	4.61331940	0.333176047	0.223424718	0.670590580	1.70000076		
13.5000000	4.61866808	0.299870700	0.200065240	0.667171657	1.72499883		
13,5000000	4.62387705	0.269912452	0.178801313	0.667441909	1.75000262		

For each target 34 files: $13.5 < \theta_e < 30$ [deg.]

Final correction:

Nuclei	С	AI	Fe	Pb
Correction factor	0.776	0.785	0.729	0.724

Contributions for the uncertainty 1. Statistical error

2. Cut sensitivity

Cut	Sensitivity range	AI/C	Fe/C	Pb/C
x>1.1	±0.05	0.83%	1.5%	2.0%
0.62 <p q<0.96<="" td=""><td>±0.05</td><td>2.0%</td><td>2.5%</td><td>2.4%</td></p>	±0.05	2.0%	2.5%	2.4%
$\theta_{pq} < 25^{\circ}$	±5°			
M_{miss} < 1.2 GeV/ c^2	±0.05 GeV/c ²	1.7%	1.8%	1.2%
$0.4 < P_{miss} < 1 GeV/c$	±0.025 GeV/c	2.2%	1.1%	2.6%

3. Radiative correction (negligible)

4. False positive and negative probabilities

AI/C	Fe/C	Pb/C
0.3%	0.9%	1.0%

5. Target density and beam charge (negligible)

Contributions for the uncertainty

	AI/C	Fe/C	Pb/C
σ_A/σ_C	2.0±0.1	3.2±0.3	7.6±0.8
Event selection	±0.13 (92%)	±0.25 (80%)	±0.75 (93%)
False positive & negative	±0.02 (14%)	±0.03 (10%)	±0.08 (10%)
Statistics	±0.08 (57%)	±0.06 (20%)	±0.15 (19%)

Protons and neutrons high momentum ratios

Corrected for transparency and normalized by Z (N)