Possibilities for large acceptance nucleon polarimetry & (γ,NN) revisited

Dan Watts, University of Edinburgh

Outline

- Recent work on large acceptance nucleon polarimetry
 - -> Useful in next generation SRC experiments?
- Revisit some (γ,NN) results

EDPOL2: CB@MAMI

- EDPOL2 Run completed Aug '17
- 10cm liquid deuterium target
- d<u>(γ,pn</u>) n(γ,π⁰)n n(γ,η)n

 $n(\theta,\phi) = n_{o}(\theta) \{1 + A(\theta) [P_{y}\cos(\phi) - P_{x}\sin(\phi)]$

Expected statistical accuracy for D(y,pn)

EDPOL1 CB@MAMI – hydrogen target

PRL 112, 022501 (2014) PHYSICAL REVIEW LETTERS week ending 17 JANUARY 2014

Measurement of the ${}^{1}H(\vec{\gamma},\vec{p})\pi^{0}$ Reaction Using a Novel Nucleon Spin Polarimeter

FIG. 3 (color online). C_x^* excitation functions for $\vec{\gamma} p \to \pi^0 \vec{p}$ (black circles) for fixed pion polar angles θ_{cm} . Previous data came from JLab [2] (magenta triangles). The PWA solutions shown are SAID CM12 [36] (cyan long-dash line), SAID SN11 [37] (green short-dash line), BnGa2011-2 [38] (solid red line), and MAID07 [39] (violet dash-dotted line).

- EDPOL1 no MWPC.
- Geant4: New classes: Parameterise p-¹²C scattering data (+SAID PWA for QF NN)

$d(\gamma, \mathbf{pn})$ with CLAS@JLAB

- CLAS start counter as analysing medium
- Two **proton** final state -> Incident neutron vector from kinematics & intercept of scatter track with SC -> Scatter vector from CLAS drift chambers

q13 Experiment@CLAS

Liq D₂ target 40 cm long Circular (q13a) 20 triggers

Linear (g13b) 30 triggers

0.8

E, (GeV)

Analysis of Zachariou (Edinburgh)

SRC

• Next step with CLAS data $A(\gamma, NN)$

Physics -> Test Glauber predictions, HHC in medium, .. (more?) Evolution of transferred/induced nucleon polarisation with A, E_{γ} Analysing powers may cancel to first order in ratios of targets \checkmark Glue-X possibilities?

• Use in future experiments at CLAS12, .. ?

Wide range of kinematic variables (Q², ω , *x*..) in one experiment \checkmark

Gives access to neutron (as well as proton) polarisation ✓

Transferred polarisation (likely) only measurable transverse to the nucleon scatter plane X

• Worth the effort? Need steer from theory

$$\frac{P_x}{P_z} = -\frac{2M_p}{(E+E')\tan(\theta/2)} \frac{G_E^P(Q^2)}{G_M^P(Q^2)}$$

(y,NN) revisited

¹²C(γ,NN) @ MAMI – pair momentum distributions

Relative pair momentum (s- wave, p-wave, d-wave)

Final state of (A-2) nucleus

DPW, MacGregor et. al. PRC 62 014616 (2000)

Contributing shells – e.g. (1s)(1p) narrower and at higher Q than $(1p)^2$

$^{12}C(\gamma, pn) - high Q excess$

FIG. 10. Recoil momentum distributions for ${}^{12}C(\gamma, np)$ for $E_m \leq 40$ MeV presented as a ratio to the 2N knockout MC predictions. The plot shows data from the kinematic regions I (squares), II (triangles), and III (circles) described in the text. The solid line shows the ratio of the pair momentum distribution obtained with SRC's to that calculated without SRC's for ¹⁶O [8]. The dotted (dashed) lines show the ratio of the P_r distribution predicted using Hartree-Fock (Woods-Saxon) wave functions (with no SRC's) to that using HO.

(Orlandini)

- Clear excess at high Q over • mean field (selecting (1p)² knockout)
- Excess rather uniform for different photon energy ranges, kinematics (different reaction mechanisms, different nucleon energies, different phase space)
- Is comparison possible with the . new more detailed theories?
- Can other processes fool us? e.g. 2N+FSI

DPW, Macgregor et. al. PRC 62 014616 (2000)

Photoinduced 3-nucleon knockout ¹²C(γ,ppn)

- Comparison with Valencia model
 - -> Suggestion of direct 3-nucleon knockout (3N) contribution
 - -> Significant 2N+FSI and QF π +(π ,2N)

Summary

- Recoil nucleon polarimetry may be possible is it worthwhile?
- The A(γ,NN) MAMI data may be worth revisiting given the exciting advances in theory in recent years.
- Other ongoing studies subthreshold Kaon photoproduction from nuclei.

 We are also looking at possiblities for sub-threshold Kaon photoproduction Kaon has large mean free path – less sensitive to FSI Need forward angle Kaon detection (new weak sub-cluster method) Possibility to tag isospin of struck nucleon?

 $\gamma + p \rightarrow K^+ \Sigma^0$ (tag with gamma from sigma decay, or proton pi0)

 γ +n -> K⁺ Σ^{-} (Tag with pi- or neutron)

• Ratio of these reactions above and below the fermi surface?

TABLE I. Ratio $a_0:a_1:a_2$ obtained from fitting the ${}^{12}C(\gamma,np)$ and ${}^{12}C(\gamma,pp)$ recoil momentum spectra with the combination $\Sigma_L a_L F_L(P)$ for two excitation regions of the residual nucleus and E_{γ} regions below and through the Δ resonance. Errors in the fitted parameters are shown in brackets.

	Eγ	$E_X \leq 3 \text{ MeV}$	$3 \leq E_X \leq 9$ MeV
(γ,np)	150–200 200–500	$\begin{array}{c} 0.35(\pm 0.02); \ 0.02(\pm 0.13); \ 0.63(\pm 0.07) \\ 0.37(\pm 0.01); \ 0.01(\pm 0.10); \ 0.62(\pm 0.05) \end{array}$	$0.20(\pm 0.01): 0.53(\pm 0.13): 0.27(\pm 0.07)$ $0.22(\pm 0.01): 0.43(\pm 0.08): 0.35(\pm 0.04)$
(γ,pp)	150–200 200–500	$0.11(\pm 0.02)$: $0.59(\pm 0.29)$: $0.30(\pm 0.18)$ $0.15(\pm 0.02)$: $0.16(\pm 0.17)$: $0.69(\pm 0.09)$	$0.06(\pm 0.01): 0.54(\pm 0.17): 0.40(\pm 0.12)$ $0.06(\pm 0.01): 0.62(\pm 0.09): 0.32(\pm 0.05)$

Nucleon scattering and polarisation

 $n(\theta,\phi) = n_{o}(\theta) \{1 + A(\theta)[P_{v}\cos(\phi) - P_{x}\sin(\phi)]\}$

Number of nucleons scattered In the direction θ , ϕ

Polar angle distribution for unpolarised nucleons

x and y (transverse) components of nucleon polarisation

Analysing power of scatterer

The CB proton polarimeter

C_x - transferred poln. from circ. pol γ : $p(\gamma,\pi^0)p$

p(γ,η)p C_{x'}

• Next steps O_x , T, P also $p(\gamma, 2\pi)$ and $p(\gamma, \pi\eta)$ channels

The Crystal Ball and TAPS

Crystal Ball 672 Nal Crystals Stops: Protons ~ 420 MeV Chrg. π ~ 240 MeV Kaons ~ 341 MeV Muons ~ 233 MeV

384 BaF₂ crystals Stops: Protons ~ 360 MeV Chrg. π ~ 180 MeV Kaons ~ 280 MeV

EDPOL1 with CB@MAMI

G4 – Stationary proton target: $p(\gamma,\pi^0)p$

G4 – typical (n,p) charge exchange: $p(\gamma,\pi^+)n$

Count rate estimate – as per PAC proposal

γ-flux :	1.2 x 10 ⁵ γs ⁻¹ MeV ⁻¹	
target nuclei	2.1 x 10 ²³ nuclei/cm ²	
Meson det. eff	π⁰~80% ղ~35%	Analyzing power = ~ 0.2 prot
DAQ live	~70%	~0.1 neut
Polarimeter efficiency	prot 3%	
	neut 1% (G4)	$d\sigma/d\Omega_{avg}$ = 3 µb/sr for π
$d\Omega_{avg}$ for $\theta_{\pi} \pm 10^0$	~2 sr	$d\sigma/d\Omega_{avg} = 0.7 \ \mu b/sr$ for η
Beamtime	950 hours (inc. TO)	$d\sigma/d\Omega_{avg} = 0.3 \ \mu b/sr$ for D(γ ,pn)

No. of analyzable nucleon scatters = $d\sigma/d\Omega_{avg} x d\Omega_{avg} x \gamma x$ nuclei x daq x pol eff x meson eff x beamtime

Channel	σ: Ο_x/T	$\sigma: \mathbf{C}_{\mathbf{x}}^{I}$	σ: Ρ	
p(γ,π ⁰)p	0.06	0.03	0.02	For 400 hours errors would be a factor 1.55 larger $\Delta C_x = \sqrt{(2/A^2N)}$ $\Delta O_x = 2/\sqrt{(A^2N)}$ Ey bin ± 25 MeV θ bin ± 10°
n(γ,η)n		0.2	0.14	
p(γ,π+)n	0.21	0.09	0.04	
n(γ,π ⁰)n	0.21	0.09	0.04	
p(γ,η)n		0.1	0.07	
D(γ, <u>p</u> n)	0.27	0.08	0.04	
				$\sigma_{\pi/N}$ Diff \pm 10

Analysing powers for ¹²C(n,p) scattering

- Previous polarimeters (e.g. Yerevan) use ¹H(n,p) analysing powers for ¹²C(n,p).
- Supported by recent RCNP measurements, older Saclay data, A1 at MAMI

Wakasa et. al. NIM A547 (2005) 269 NPOL3 at RCNP Cyclotron

