12/3/16

Search for multi-nucleon SRCs

Methods and Strategies

Erez. O. Cohen, M. Strikman Tel Aviv University EG2 data-mining

Erez. O. Cohen

MIT, Dec-2016

Outline

- What are multi-nucleon SRC (e.g. 3N-SRC)
- Motivation.
- Search methods, Strategies and Issues.

2

preliminary Results

Introduction and Motivation

What are multi-nucleon SRCs?

 $k(c.m.) = |\vec{k_1} + \vec{k_2} + \vec{k_3}| < k_F$

4

K3

 $|\vec{k}_1|, |\vec{k}_2|, |\vec{k}_3| > k_F$

- Large individual momenta.
- Large relative momentum and small c.m. momentum (w.r.t Fermi momentum)

3N-SRC

00 ≈ 0.16 GeV/fm³

k2

- Isospin and topological structure of 2N-SRC is known.
- Practically nothing is known experimentally on multi-nucleon SRC.
- multi-nucleon SRC are more important in dense systems like n-stars.

5

Theoretical predictions of 3N-SRC

6

[Vanhalst, Ryckebusch, Cosyn, PhysRevC.86.044619]

[Artiles ,Sargsian, arXiv:1606.00468v1]

[C. B. Mezzetti, arXiv:1112.3185]

Search methods, Strategies and Issues

Search methods for 3N-SRC (fully exclusive)

scattered electron

EG2 data, within data mining initiative:

Target: ²H + ¹²C/²⁷Al/⁵⁶Fe/²⁰⁸Pb.

CLAS, Hall-B, JLAB (2004), 5 GeV e-beam

- ppp-SRC search in (e,e'ppp) data
 - proton-ID known, good resolutions.
 - poor statistics.

- npp-SRC search in (e,e'npp) data
 - neutron-ID (Meytal' talk), and bad resolution.
 - Expected similar statistics to ppp-SRC: gain on #npp/ #ppp ~ loss on efficiency and (e,e'n) cross-section

8

recoiling protons

knocked

proton

Search methods for 3N-SRC (triple coincidence)

- npp-SRC detect only two recoil protons
 - Higher statistics.
 - Harder to discriminate competing channels.

undetected neutron?

Erez. O. Cohen

• npp-SRC search in (e,e'dp) and (e,e'pd) data

Re-Analyzing existing CLAS data via the data-mining initiative

Scattered electron

Knocked-o

electror

Correlated recoil proton

- EG2 experiment.
- 2004 at Hall-B, JLAB.
- * 5 GeV e-beam.

Target - D + solid (simultaneously) 2 H + 12 C/ 27 Al/ 56 Fe/ 208 Pb.

Search methods for 3N-SRC (fully exclusive)

scattered electron

EG2 data, within data mining initiative:

Target: ²H + ¹²C/²⁷Al/⁵⁶Fe/²⁰⁸Pb.

CLAS, Hall-B, JLAB (2004), 5 GeV e-beam

ppp-SRC search in (e,e'ppp) data

- proton-JD known, good resolutions.
- poor statistics.

npp-SRC search in (e,e'npp) data

- neutron-ID (Meytal' talk), and bad resolution.
- Expected similar statistics gain on #npp/#ppp ~ loss on efficiency and (e,e'n) cross-section

recoiling protons

knocked

proton

ppp-SRC events selection

(e,e'p) Leading proton

(e,e'p) Kinematics

- * XB>12
- 1>|pmiss|>0.3 GeV/c

[PRL 108, 092502 (2012), PRL 113, 022501 (2014)]

Quantitative challenges in EMC and SRC Research and Data-Mining

- θ_{pq} < 25⁰
- 0.62 < |p|/|q| < 0.96

(e,e'ppp) : (e,e'p) events, in which two recoil protons were detected w/ momentum > 300 MeV/c, and $|p^{\mu}_{Lead} - q^{\mu} + p^{\mu}_{2} + p^{\mu}_{3}| \le 3m_{p}+150$ MeV/c.

Quantitative challenges in EMC and SRC Research and Data-Mining

Random coincidence (CTOF)

random coincidence background ~ 10%

Quantitative challenges in EMC and SRC Research and Data-Mining

Erez. O. Cohen

MIT, Dec-2016

Opening angle

p_{cm} in the transverse directions

FSI-1

- we can not exclude FSI, but it is apparently not dominated by FSI.
- FSI that are expected to contribute isotropically to ϕ .

1.6

1.2

0.8

0.6

0.4

0.2

ppp-SRC candidates

A typical event: p_{miss} balanced by 2 protons, in a co-planar but not co-linear geometry.

p_{miss} ~0.7 GeV/c p₃ ~ 0.4 GeV/c p₂ ~ 0.4 GeV/c

Search methods for 3N-SRC (fully exclusive)

scattered electron

- ppp-SRC search in (e,e'ppp) data
 - proton-ID known, good resolutions.
 - poor statistics.

Target: ${}^{2}H + {}^{12}C/{}^{27}Al/{}^{56}Fe/{}^{208}Pb.$

EG2 data, within data mining initiative:

CLAS, Hall-B, JLAB (2004), 5 GeV e-beam

recoiling protons

knocked

proton

npp-SRC search in (e,e'npp) data

- neutron ID (Meytal' talk), and bad resolution.
- Expected similar statistics gain on #npp/#ppp ~ loss on efficiency and (e,e'n) cross-section

• npp-SRC search in (e,e'dp) and (e,e'pd) data

(n)pp-SRC events selection

- (e,e') kinematics $x_B > 0.8$
- two slow protons, 0.3 GeV/c
- $(p_1 + p_2)_{\perp} < 0.4 \text{ GeV/c}$
- $W_e \leq 2 (GeV/c^2)^2$

$x_B - \alpha$ correlation

• For 3N-SRC at rest $\alpha_{miss} = 3 - \alpha_1 - \alpha_2$. For large Q², $\alpha_{miss} = x_B$.

Quantitative challenges in EMC and SRC Research and Data-Mining

Erez. O. Cohen

MIT, Dec-2016

Search methods for 3N-SRC (triple coincidence)

- npp-SRC detect only two recoil protons
 - Higher statistics.
 - Harder to discriminate competing channels.

undetected neutron?

• npp-SRC search in (e,e'dp) and (e,e'pd) data

npp-SRC from (e,e'dp) in process 🗰

Thank you for your time...

Comments/Suggestions/Questions: cohen.erez7@gmail.com

BACKUP SLIDES

protons angles with respect to momentum transfer

division of (e, e'pp?) sample

 x_B

SRC vs. competing channels - ?pp sample Using x_B-α correlation, separate DIS/res. from SRC candidates

[L. Frankfurt, M. Sargsian, and M. Strikman, International Journal of Modern Physics A 23, 2991 (2008)]

$$\alpha = x_B \left(1 + \frac{2p_z}{\omega + |\vec{q}|} \right) + \frac{W_N^2 - m^2}{2m\omega}$$
$$W_N^2 = (\vec{p} + \vec{q})$$

for QE processes, $W_N \sim m$, and for high Q^2

$$\lim_{Q^2 \to \infty} \alpha = x_B$$

