

Inclusive studies of 3N-SRCs

John Arrington Argonne National Lab

If two-body physics (SRCs) dominate beyond some value of x; $\sigma_A \sim \sigma_2$ independent of x, Q²

2N plateaus if (1) negligible 1-body contributions

Onset of scaling can be estimated simply from Fermi momentum.

1*-body contributions disappear earlier in x as Q² increases. Low Q² -> very limited scaling region.

A>2

Note: largely Q² independent as function of light code α , but α can't be reconstructed in inclusive scattering for

2N plateaus if (1) negligible 1-body contributions (2) existence of <u>identical</u> 2N-SRCs in A and ²H

Cross section for deuteron goes to zero as $x \rightarrow$ kinematic limit (x \approx 2)

Even if SRC is internally identical to deuteron, motion of SRC in nucleus will extend strength to x>2

Not obvious that such a region exists, until CLAS showed scaling in A/³He

x_{min} > 2.5; what about x_{max}?

For 2N-SRCs, we could predict where 1*-body contributions vanish For 3N-SRCs, not clear where 2*-body contributions vanish Expect x_{min} to decrease as Q² increases, making scaling start at smaller x \rightarrow Higher Q² expands lower bound of possible scaling region

Difference between stationary 2N-SRC and moving 2N-SRC makes A/²H diverge as $x \rightarrow 2$, but effect small until x=1.8-1.9.

Difference between stationary 3N-SRC and moving 3N-SRC makes A/³He diverge as $x \rightarrow 3$, appears to impact potential plateau at $x \sim 2.6$ or so.

At higher Q^2 , this effect starts at smaller x \rightarrow Higher Q^2 decreases upper bound of possible scaling region

Not clear what Q^2 is optimal (data to be taken at $Q^2 \sim 2$, 3, 4 GeV²)

Is there any Q^2 with significant separation of x_{min} (2N contributions negligible) and x_{max} (small impact of 3N motion)?

Need better modeling of 2N-SRC and 3N-SRC motion A/⁴He comparisons better for $x \rightarrow 3$ region

Note: looking for 3N-SRCs at larger x doesn't necessarily mean looking for larger initial nucleon momenta.

Struck nucleon in green, assume k=600 MeV/c

2N-SRC: Kinetic energy of recoil nucleon is ~180 MeV

3N-SRC (linear): KE of recoil nucleons is ~45 MeV each

Since inclusive scattering cross section is integral over spectral function rather than momentum distribution, the kinematics for the 2N- and 3N-SRCs are different (less energy transfer required)

Backups

