Possible Topics for Inclusive/Sem-Inclusive eA scattreing

Misak Sargsian Florida International University, Miami

Quantitative SRC, 2–5 Dec, 2016, MIT

I. Inclusive x > 1

- 1. Extraction of a2(A,Z) for wide range of Nuclei
- 2. Extraction of Light-Front Momentum Distribution of Nuclei
- 3. Possible Medium Modification Effects in Quasi-Elastic Region
- 4. Probing Polarized Structure of the Deuteron at x > 1
- 5. Probing Superfast Quarks Setting up Studies of nuclear partonic distributions at x>1
- 6. Probing superfast quarks in jet production at LHC/EIC

II. Inclusive x > 2

- 1. Looking for the Plateau in Inclusive Cross Section Ratios
- 2. Understanding Transition from 2N to 3N SRCs
- 3. Extraction of Momentum Distribution in 3N SRC Region
- 4. Center of mass motion effects in 3N SRCs Semi-Inclusive Reactions

III. Semi-Inclusive Processes

- 1. Probing Deuteron & Extracting Nuclear TMDs
- 2. Looking for the Plateaus? in (e,e'N) Reactions
- 3. Probing $x \alpha$ correlations in fast backward production off nuclei
- 4. Probing Non-nucleonic Components in Nuclei in Backward Production of Resonances Trident Experiments

Emergence of Short-Range Correlations

- start with A-body Schroedinger equation interacting by two body potential only $\left[-\sum_{i} \frac{\nabla_{i}^{2}}{2m} + \frac{1}{2} \sum_{i,i} V(x_{i} - x_{j})\right] \psi(x_{1}, \cdots, x_{A}) = E\psi(x_{1}, \cdots, x_{A})$
 - Introducing

$$\psi(x_1, \cdots, x_A) = \int \Phi(k_1, \cdots, k_A) e^{i \sum_i k_i x_i} \prod_i \frac{d^3 k_i}{(2\pi)^{3/2}}$$
$$V(x_i - x_j) = \int U(q) e^{iq(x_i - x_j)} d^3q$$

$$\left(\sum_{i}\frac{k_i^2}{2m}-E_b\right)\Phi(k_1,\cdots,k_A) = -\frac{1}{2}\sum_{i,j}\int U(q)\,\Phi(k_1,\cdots,k_i-q,\cdots,k_j+q,\cdots,k_A)d^3q$$

- Assume: system is dilute

$$\left(\sum_{i}\frac{k_i^2}{2m}-E_b\right)\Phi(k_1,\cdots,k_A) = -\frac{1}{2}\sum_{i,j}\int U(q)\,\Phi(k_1,\cdots,k_i-q,\cdots,k_j+q,\cdots,k_A)d^3q$$

- then the k dependence of the wave function for $k^2/2m_N \gg |E_B|$ Amado, 1976

$$\Phi^{(1)}(k_1,\cdots,k_c,\cdots,-k_c,\cdots,k_A) \approx \frac{U_{NN}(k_c)}{k_c^2} F_A(k_1,\cdots,k_A)$$

- Assume:
$$U_{NN}(q) \sim \frac{1}{q^n}$$
 with $n > 1$

$$\Phi^{(2)}(\cdots k_{c},\cdots) \sim \frac{1}{k_{c}^{2+n}} \int \frac{1}{q^{n}} dq \sim \frac{U_{NN}(k_{c})}{k_{c}^{2}} \int \frac{1}{q^{n}} dq$$
- For large k_{c} $\Phi^{(2)}(k_{c}) \ll \Phi^{(1)}(k_{c})$
Frankfurt, Strikman 1981

- 3N SRCs are parametrically smaller than 2N SRC

- The same is true for relativistic equations as: Bethe-Salpeter or Weinberg Light Cone Equations
- From $\Phi^{(1)}(k_1, \cdots, k_c, \cdots, -k_c, \cdots, k_A) \approx \frac{U_{NN}(k_c)}{k_c^2} F_A(k_1, \cdots, \cdots, k_A)$ follows

for large $k > k_{Fermi}$

$$n_A(k) \approx a_{NN}(A) n_{NN}(k)$$

Frankfurt, Strikman Phys. Rep, 1988 Day,Frankfurt, Strikman, MS, Phys. Rev. C 1993

- Experimental observations

Egiyan et al, 2002,2006 Fomin et al, 2011 Modeling High Momentum and Missing Energy Nuclear Spectral Functions

- All best models are nonrelativistic
- SRC model allows to derive relativistic spectral functions if we know how to treat 2N SRCs relativistically

$$S_A^{MF} = -Im \int \chi_A^{\dagger} \Gamma_{A,N,A-1}^{\dagger} \frac{\not{p}_1 + m}{p_1^2 - m^2 + i\varepsilon} \hat{V}^{MF} \frac{\not{p}_1 + m}{p_1^2 - m^2 + i \times \varepsilon} \left[\frac{G_{A-1}(p_{A-1})}{p_{A-1}^2 - M_{A-1}^2 + i\varepsilon} \right]^{on} \Gamma_{A,N,A-1} \chi_A \frac{d^4 p_{A-1}}{i(2\pi)^4} \hat{V}^{MF} = ia^{\dagger}(p_1, s_1) \delta^3(p_1 + p_{A-1}) \delta(E_m - E_\alpha) a(p_1, s_1)$$

$$\psi_{N/A}(p_1, s_1, s_A, E_\alpha) = \frac{\bar{u}(p_1, s_1)\Psi_{A-1}^{\dagger}(p_{A-1}, s_{A-1}, E_\alpha)\Gamma_{A,N,A-1}\chi_A}{(M_{A-1}^2 - p_{A-1}^2)\sqrt{(2\pi)^3 2E_{A-1}}}$$

$$S_A^{MF}(p_1, E_m) = \sum_{\alpha} \sum_{s_1, s_{A-1}} |\psi_{N/A}(p_1, s_1, s_A, E_\alpha)|^2 \,\delta(E_m - E_\alpha)$$

$$S_{A}^{2N} = Im \int \chi_{A}^{\dagger} \Gamma_{A,NN,A-2}^{\dagger} \frac{G(p_{NN})}{p_{NN}^{2} - M_{NN}^{2} + i\varepsilon} \Gamma_{NN \to NN}^{\dagger} \frac{p_{1} + m}{p_{1}^{2} - m^{2} + i\varepsilon} \hat{V}^{2N} \frac{p_{1} + m}{p_{1}^{2} - m^{2} + i\varepsilon} \left[\frac{p_{2} + m}{p_{2}^{2} - m^{2} + i\varepsilon} \right]^{on} \times \Gamma_{NN \to NN} \frac{G(p_{NN})}{p_{NN}^{2} - M_{NN}^{2} + i\varepsilon} \left[\frac{G_{A-2}(p_{A-2})}{p_{A-2}^{2} - M_{A-2}^{2} + i\varepsilon} \right]^{on} \Gamma_{A,NN,A-2} \chi_{A} \frac{d^{4}p_{2}}{i(2\pi)^{4}} \frac{d^{4}p_{A-2}}{i(2\pi)^{4}}, \quad (1)$$

- Light-Front Approximation

 $n_{CM}(p_{NN}) = N_0(A)e^{-\alpha(A)p_{NN}^2}$

$$n_{NN}^N(p_{rel}) = \frac{a_2(A)}{(2x_N)^\gamma} n_d(p_{rel}) \qquad \begin{array}{l} \text{O.Artiles \& M.S. 2016} \\ x_N = \frac{N}{A} \end{array}$$

2N SRC model Non Relativistic Approximation

Fomin et al PRL 2011

1. Extraction of a2(A,Z) for wide range of Nuclei

$$R=rac{A_2\sigma[A_1(e,e')X]}{A_1\sigma[A_2(e,e')X]}$$

a2's as relative probability of 2N SRCs

Table 1: The results for $a_2(A, y)$					
A	У	This Work	Frankfurt et al	Egiyan et al	Famin et al
³ He	0.33	$2.07{\pm}0.08$	$1.7{\pm}0.3$		2.13 ± 0.04
$^{4}\mathrm{He}$	0	$3.51{\pm}0.03$	$3.3{\pm}0.5$	$3.38{\pm}0.2$	$3.60 {\pm} 0.10$
$^{9}\mathrm{Be}$	0.11	$3.92{\pm}0.03$			$3.91 {\pm} 0.12$
$^{12}\mathrm{C}$	0	$4.19 {\pm} 0.02$	$5.0{\pm}0.5$	$4.32{\pm}0.4$	$4.75 {\pm} 0.16$
$^{27}\mathrm{Al}$	0.037	$4.50 {\pm} 0.12$	$5.3{\pm}0.6$		
$^{56}\mathrm{Fe}$	0.071	$4.95{\pm}0.07$	$5.6{\pm}0.9$	$4.99{\pm}0.5$	
$^{64}\mathrm{Cu}$	0.094	$5.02 {\pm} 0.04$			$5.21{\pm}0.20$
$^{197}\mathrm{Au}$	0.198	$4.56 {\pm} 0.03$	$4.8 {\pm} 0.7$		$5.16 {\pm} 0.22$

Implications: For Nuclear Matter $a_2(A, y) = a_2(A, 0)f(y)$

Fitting f(y)

- 4 data points

- 2 boundary conditions due to the neglection of pp/nn

f(0) = 1 and f(1) = 0

-2 more boundary conditions $y \to 1 \text{ and } y \to 0$ corresponds to $A \to \infty$ f'(0) = f'(1) = 0-1 more positiveness of f(y)

2. Extraction of Light-Front Momentum Distribution of Nuclei

$$F_{2A} = K\alpha f_A(\alpha)$$

$$K \sim \sigma_{eN}^{LF}$$

$$f_A(\alpha) = \int \frac{1}{\alpha} \rho_A(\alpha, p_t) d^2 p_t$$

$$\alpha_{2N} = 2 - \frac{q_- + 2m_N}{2m_N} \left(1 + \frac{\sqrt{W_{2N}^2 - 4m_N^2}}{W_{2N}}\right)$$

3. Possible Medium Modification Effects in Quasi-Elastic Region

D.Day Data Base

4. Probing Polarized Structure of the Deuteron at x > 1

- Tensor Polarized Deuteron = Compact Deuteron

4. Probing Polarized Structure of the Deuteron at x > 1

- Tensor Polarized Deuteron = Compact Deuteron

5. Probing Superfast Quarks – Setting up Studies of nuclear partonic distributions at x>1

Bjorken
$$x = \frac{Q^2}{2m_N\nu}$$

- x > 1 requires a momentum transfer from the nearby nucleon or the quark from the nearby nucleon.
- x>1 "super-fast quarks"

SuperFast quarks – short distance probes in nuclei

$$x = \frac{Q^2}{2m_N q_0} > 1$$

Two factors driving nucleons close together

Kinematic
$$p_{min} \equiv p_z = m_N \left(1 - x - x \left[\frac{W_N^2 - m_N^2}{Q^2}\right]\right)$$

Dynamical:QCD evolution

NN Interactions

- Probing F2 of the Deuteron at x > 1 (Jlab12,EIC)

$$F_{2d} = \int_{x}^{2} \rho_d^N(\alpha, p_t) F_{2N}(\frac{x}{\alpha}, Q^2) \frac{d^2 \alpha}{\alpha} d^2 p_t$$

$$F_{2D} = F_{2,(6q)} \sim (1 - \frac{x}{2})^{10}$$

$$x_N = \frac{x}{\alpha}$$

$$A^{\sigma} = \sum_{h_{1},h_{2}} \int \frac{d\alpha}{\alpha} \frac{d^{2}p_{2}}{2(2\pi)^{3}} \\ \left\{ \sum_{\eta_{1},\lambda_{1}} H^{\sigma}_{(\eta_{1f},\eta_{1}),(\lambda_{1f},\lambda_{1})} \frac{\psi^{h_{1}}_{N}(k_{1},\eta_{1};k_{2},\eta_{2};k_{3},\eta_{3})}{x_{1}\sqrt{2(2\pi)^{3}}} \frac{\psi^{h_{2}}_{N}(l_{1},\lambda_{1};l_{2},\lambda_{2};l_{3},\lambda_{3})}{y_{1}\sqrt{2(2\pi)^{3}}} \right\} \frac{\Psi^{h_{1},h_{2},m_{d}}_{d}(p_{1},p_{2})}{(1-\alpha)\sqrt{2(2\pi)^{3}}}$$

$$F_{2d}(x_{Bj},Q^2) = \sum_{i,j} x_{Bj} e_i^2 \int dx_1 dy_1 \frac{d^2 l_{1f,t}}{2(2\pi)^3} \frac{8\alpha_{QCD}}{l_{1f,t}^4} f_i(x_1,Q^2) f_j(y_1,l_{1f,t}^2) \times \frac{1}{y_1^2} \left[1 - \frac{x_{Bj}}{x_1 + y_1} \right]^2 \Theta(x_1 + y_1 - x_{Bj}) \left[\sum_{h_1,h_2} \int \frac{\Psi_d(\alpha, p_t)}{\alpha(1 - \alpha)} \frac{d\alpha}{\sqrt{2(2\pi)^3}} \frac{d^2 p_t}{(2\pi)^2} \right]^2$$

where $x_{Bj} = \frac{Q^2}{2m_N \nu}$.

II. Probing the F2 of medium/heavy nuclei at x > 1 (CERN,, FermiLab, Jlab6 - Jlab12, EIC)

Existing Experiments:

1. BCDMS Collaboration 1994 (CERN): $52 \leq Q^2 \leq 200 \,\, {
m GeV^2}$

2. CCFR Collaboration 2000 (FermiLab): $Q^2 = 120 \; {
m GeV^2}$

3. E02-019 Experiment 2010 (JLab) $Q^2_{AV}=7.4~{
m GeV^2}$

1. BCDMS Collaboration 1994 (CERN): Z.Phys C63 1994

Structure function of Carbon in deep-inelastic scattering of 200GeV muons

 $Q^2 = 61, 85 \text{ and } 150 \text{ GeV}^2$ x = 0.85, 0.95, 1.05, 1.15 and 1.3

$$F_{2A}(x,Q^2) = F_{2A}(x_0 = 0.75,Q^2)e^{-s(x-0.75)}$$

 $s = 16.5 \pm 0.6$

More than Fermi Gas but very marginal high momentum component

2. CCFR Collaboration 2000 (FermiLab): Phys. Rev. D61 2000

Using the neutrino and antineutrino beams in which structure function of Iron was measured in the charged current sector for average

$$Q^2 = 120 \text{ GeV}^2 \text{ and } 0.6 \le x \le 1.2.$$

$$F_{2A} \sim e^{-s(x-x_0)}$$

$$s = 8.3 \pm 0.7(stat) \pm 0.7(syst)$$

3. E02-019 Experiment 2010 (JLab)
Phys.Rev.Lett 204 2010
(ee') scattering of

$${}^{2}H, {}^{3}He, {}^{4}He, {}^{9}Be, {}^{12}C, {}^{64}Cu \text{ and } {}^{197}Au$$

 $6 < Q^{2} < 9 \text{ GeV}^{2}$
 $\xi = \frac{2x}{(1+r)} \text{ where } r = \sqrt{1 + \frac{4M_{N}^{2}x^{2}}{Q^{2}}}$

QCD Evolution Equation for Nuclear Partonic Distributions

Adam Freese, MS ArXiv 2015

$$\begin{aligned} \frac{dq_{i,A}(x,Q^2)}{d\log Q^2} &= \frac{\alpha_s}{2\pi} \int_x^A \frac{dy}{y} \left(q_{i,A}(y,Q^2) P_{qq}(\frac{x}{y}) + G_A(y,Q^2) P_{qg}(\frac{x}{y}) \right) \\ P_{qq}(x) &= C_2 \left[(1+x^2) \left(\frac{1}{1-x} \right)_+ + \frac{3}{2} \delta(1-x) \right] \\ P_{qg}(x) &= T \left[(1-x)^2 + x^2 \right], \end{aligned}$$

with $C_2 = \frac{4}{3}$ and $T = \frac{1}{2}$. Here the + denominator is Altarelli - Parisi function defined as:

$$\int_{0}^{1} dz \frac{f(z)}{(1-z)_{+}} = \int_{0}^{1} \frac{f(z) - f(0)}{1-z}$$
$$\begin{aligned} \frac{dq_{i,A}(x,Q^2)}{d\log Q^2} &= \frac{\alpha_s}{2\pi} \left\{ 2\left(1 + \frac{4}{3}\log(1 - \frac{x}{A})\right) q_{i,A}(x,Q^2) \\ &+ \frac{4}{3} \int_{x/A}^1 \frac{dz}{1-z} \left(\frac{1+z^2}{z} q_{i,A}(\frac{x}{z},Q^2) - 2q_{i,A}(x,Q^2)\right) + \int_{x/A}^1 dz \frac{(1-z)^2 + z^2}{2z} G_A(\frac{x}{z},Q^2) \right\} \end{aligned}$$

$$F_{2A}(x,Q^2) = \sum_{i} e_i^2 x q_{i,A}(x,Q^2),$$

$$\frac{dF_{2A}(x,Q^2)}{d\log Q^2} = \frac{\alpha_s}{2\pi} \left\{ 2\left(1 + \frac{4}{3}\log(1 - \frac{x}{A})\right) F_{2,A}(x,Q^2) + \frac{4}{3} \int_{x/A}^1 \frac{dz}{1-z} \left(\frac{1+z^2}{z} F_{2A}(\frac{x}{z},Q^2) - 2F_{2A}(x,Q^2)\right) + \frac{f_Q}{2} \int_{x/A}^1 dz [(1-z)^2 + z^2] \frac{x}{z} G_A(\frac{x}{z},Q^2) \right\}$$

$$\begin{array}{l} \text{Neglecting } G_A(x,Q^2) \\ \frac{dF_{2A}(x,Q^2)}{d\log Q^2} = \frac{\alpha_s}{2\pi} \left\{ 2\left(1 + \frac{4}{3}\log(1 - \frac{x}{A})\right) F_{2,A}(x,Q^2) + \frac{4}{3} \int\limits_{x/A}^1 \frac{dz}{1-z} \left(\frac{1+z^2}{z} F_{2A}(\frac{x}{z},Q^2) - 2F_{2A}(x,Q^2)\right) \right\} \end{array}$$

Using input $F_{2A}^{(0)}(\xi,Q^2)$ from JLab analysis at $Q^2 = 7.4 \text{ GeV}^2$

and calculate the evolution to Q^2 region of CCFR and BCDMS

6. Probing superfast quarks in jet production at LHC/EIC

 $p + A \rightarrow \text{dijet} + X$

- Reaction is treated in Leading Twist Approximation
- Jets are produced in two-body parton-parton scattering
- one <u>parton from the probe</u> <u>other from the nucleus</u>
- <u>nuclear parton</u> originated from the bound nucleon

$$p_{p}^{\mu} = \left(p_{p}^{+}, \frac{m_{p}^{2}}{p_{p}^{+}}, \mathbf{0}_{T}\right) = (2E_{0}, 0, \mathbf{0}_{T}) = \left(\sqrt{\frac{As_{NN}^{\text{avg.}}}{Z}}, 0, \mathbf{0}_{T}\right)$$
$$p_{A}^{\mu} = \left(\frac{M_{A}^{2}}{p_{A}^{-}}, p_{A}^{-}, \mathbf{0}_{T}\right) = (0, 2ZE_{0}, \mathbf{0}_{T}) = \left(0, \sqrt{AZs_{NN}^{\text{avg.}}}, \mathbf{0}_{T}\right)$$

Checking Calculation for "Conventional" kinematics

$$\frac{d\sigma(x_A > 1)}{dp_T} = \int_{-2.5}^{2.5} d\eta_3 \int_{-5}^{-3} d\eta_4 \frac{2p_T d^3 \sigma}{d\eta_3 d\eta_4 dp_T^2} \Theta(x_A - 1)$$

Integrated cross section
at 7TeV per proton
$$\frac{d\sigma(x_{max} > x_A > x_{min})}{dp_T} = \int_{50GeV/c} dp_T \int_{-2.5}^{2.5} d\eta_3 \int_{-5}^{-3} d\eta_4 \frac{2p_T d^3\sigma}{d\eta_3 d\eta_4 dp_T^2} \Theta(x_A - x_{min}) \Theta(x_{max} - x_A)$$

	Unmodified (SRCs)	Modified (no SRCs)	Modified (SRCs)
All x_A	$58 \ \mu \mathrm{b}$	$55~\mu{ m b}$	$55 \ \mu \mathrm{b}$
$0.6 < x_A < 0.7$	$1.7 \ \mu \mathrm{b}$	$1.2 \ \mu \mathrm{b}$	$1.3 \ \mu \mathrm{b}$
$0.7 < x_A < 0.8$	$0.60 \ \mu \mathrm{b}$	$0.37~\mu{ m b}$	$0.43 \ \mu \mathrm{b}$
$0.8 < x_A < 0.9$	$0.20 \ \mu \mathrm{b}$	$0.11 \ \mu \mathrm{b}$	$0.13 \ \mu \mathrm{b}$
$0.9 < x_A < 1$	59 nb	20 nb	33 nb
$1 < x_A$	21 nb	3.0 nb	9.3 nb

The expected yield for $x_A > 1$ events at the LHC is 326 events for a month of run time based on previously achieved luminosity of 35.5/nb.

Summary & Outlook

- x > 1 Deep Inelastic Scatterings allow to probe nuclei at unprecedented Short-Distances
- They will allow to probe the nuclei at core distances where explicit quark-gluon degrees of freedom become essential
- Price small cross sections
- Can be studied at Jlab12, LHC and potentially at EIC

II. Inclusive x > 2

- 1. Looking for the Plateau in Inclusive Cross Section Ratios
- 2. Understanding Transition from 2N to 3N SRCs
- 3. Extraction of Momentum Distribution in 3N SRC Region
- 4. Center of mass motion effects in 3N SRCs Semi-Inclusive Reactions

Meaning of the scaling values

Day, Frankfurt, MS, Strikman, PRC 1993
$$R = rac{A_2\sigma[A_1(e,e')X]}{A_1\sigma[A_2(e,e')X]}$$

For
$$2 < x < 3$$
 $R \approx \frac{a_3(A_1)}{a_3(A_2)}$ For $1 < x < 2$ $R \approx \frac{a_2(A_1)}{a_2(A_2)}$
 (e,e)
 $(e$

What we Learned from A(e,e')X Reactions

	$a_{2N}(A)$
$^{3}\mathrm{He}$	$0.080 \pm 0.000 \pm 0.004$
$^{4}\mathrm{He}$	$0.154 \pm 0.002 \pm 0.033$
¹² C	$0.193 \pm 0.002 \pm 0.041$
56 Fe	$0.227 \pm 0.002 \pm 0.047$

$a_{3N}(A)$
$0.0018 \pm 0.0000 \pm 0.0006$
$0.0042 \pm 0.0002 \pm 0.0014$
$0.0055 \pm 0.0003 \pm 0.0017$
$0.0079 \pm 0.0003 \pm 0.0025$

 $a_2({}^{12}C)=0.194\%\ a_3({}^{12}C)=0.0055\%$

 $a_2({}^{56}Fe) = 0.227\%$ $a_3({}^{56}Fe) = 0.0079\%$

- Assume: system is dilute

$$\left(\sum_{i}\frac{k_i^2}{2m}-E_b\right)\Phi(k_1,\cdots,k_A) = -\frac{1}{2}\sum_{i,j}\int U(q)\,\Phi(k_1,\cdots,k_i-q,\cdots,k_j+q,\cdots,k_A)d^3q$$

- then the k dependence of the wave function for $k^2/2m_N \gg |E_B|$ Amado, 1976

$$\Phi^{(1)}(k_1,\cdots,k_c,\cdots,-k_c,\cdots,k_A) \approx \frac{U_{NN}(k_c)}{k_c^2} F_A(k_1,\cdots,k_A)$$

- Assume:
$$U_{NN}(q) \sim \frac{1}{q^n}$$
 with $n > 1$

$$\Phi^{(2)}(\cdots k_{c},\cdots) \sim \frac{1}{k_{c}^{2+n}} \int \frac{1}{q^{n}} dq \sim \frac{U_{NN}(k_{c})}{k_{c}^{2}} \int \frac{1}{q^{n}} dq$$
- For large k_{c} $\Phi^{(2)}(k_{c}) \ll \Phi^{(1)}(k_{c})$
Frankfurt, Strikman 1981

- 3N SRCs are parametrically smaller than 2N SRC

3N SRC:

 $\alpha = \frac{A(E_k + k_z)}{E_A + p_{Az}}$ Light-Cone Momentum Fraction Distribution $j - 1 < \alpha < j$ for jxN SRC V_{3N} A.Freese, M.S., M.Strikman 2015 $k_1 = \frac{p_2}{p_2}$ $k_1 = \frac{p_2}{p_3}$ $k_1 = \frac{p_2}{p_3}$ $k_1 = \frac{k_1}{k_2}$ $k_2 = \frac{k_1}{k_3}$ O. Artiles M.S. 2016 $\rho_3(\alpha, \mathbf{p}_T) = \mathcal{N}_{3N} \int d\alpha_3 d^2 \mathbf{p}_{3T} \frac{1}{\alpha_3(3 - \alpha - \alpha_3)} \left\{ \frac{3 - \alpha_3}{2(2 - \alpha_3)} \right\}^2 |\psi_d(k_{12})|^2 |\psi_d(k_{23})|^2$

- $N_{3N} \sim a_2(A,z)^2$

- ppp and nnn strongly suppressed compared with ppn or pnn- pp/nn recoil state is suppressed compared with pn

Probing SRCs in Inclusive Scattering:

 $\frac{2\sigma(eA \to e'X)}{A\sigma(ed \to e'X)} = \frac{\rho_A(\alpha_{2N})}{\rho_d(\alpha_{2N})} = a_2(A) \quad \text{For } 1 < \alpha_{2N} < 2$ $q + 2m = p_f + p_s$ $\alpha_{2N} = 2 - \frac{q_- + 2m_N}{2m_N} \left(1 + \frac{\sqrt{W_{2N}^2 - 4m_N^2}}{W_{2N}^2} \right)$

$$\frac{3\sigma(eA \to e'X)}{A\sigma(e^3He \to e'X)} = \frac{\rho_A(\alpha_{3N})}{\rho_{^3He}(\alpha_{3N})} = a_3(A) \quad \text{For} \quad 2 < \alpha_{3N} < 3$$

 $\frac{3\sigma(e+A\to e'X)}{A\sigma(e+{}^{3}He\to e'X)}$ scales as a function x at x>1

For finite Q2 - for 3N SRCs

$$R_3 = \frac{3\sigma(e+A \to e'X)}{A\sigma(e+{}^{3}He \to e'X)} = \frac{a_3(A)}{a_3({}^{3}He)} \sim \frac{a_2(A)^2}{a_2({}^{3}He)^2}$$

2. Extraction of Light-Front Momentum Distribution of Nuclei

$$F_{2A} = K\alpha f_A(\alpha)$$

$$K\sim\sigma_{eN}^{LF}$$

$$f_A(\alpha) = \int \frac{1}{\alpha} \rho_A(\alpha, p_t) d^2 p_t$$

$$\alpha_{3N} = 3 - \frac{q_- + 3m_N}{2m_N} \left[1 + \frac{m_S^2 - m_N^2}{W_{3N}^2} + \sqrt{\left(1 - \frac{(m_S + m_n)^2}{W_{3N}^2}\right) \left(1 - \frac{(m_S - m_n)^2}{W_{3N}^2}\right)} \right]$$

III. Semi-Inclusive Processes

- 1. Probing Deuteron & Extracting Nuclear TMDs
- 2. Looking for the Plateaus? in (e,e'N) Reactions
- 3. Probing $x \alpha$ correlations in fast backward production off nuclei
- 4. Probing Non-nucleonic Components in Nuclei in Backward Production of Resonances Trident Experiments

1. Probing Deuteron & Extracting Nuclear TMDs d(e,e'p)nImpossibility to Probe Deuteron at Small Distances at low Q²

1. Probing Deuteron & Extracting Nuclear TMDs

Generalized Eikonal Approximation at large Q2, 1997-2010

At Large Q² > 1-2 GeV² Eikonal Regime is Established)

M.Sargsian, PRC 2010

Probing Deuteron at Small Distances at large Q²

Probing Deuteron at Core Distances at large Q²

JLab proposal $Q^2 = 4 \text{ GeV}^2$

Instead of measuring <u>neutron momentum distribution</u>, the above predictions can be checked for proton distributions from ³He and ³H in ³He(e,e'p)X and ³H(e,e'p)X reactions New proposal: L. Weinste

New proposal: L. Weinstein, O. Hen, W.Boeglin, S.Gilad - SPKS

- How to probe 300-600 ? --- Using the "Window"

III. Semi-Inclusive Processes

- 1. Extracting Nuclear TMDs
- 2. Looking for the Plateaus? in (e,e'N) Reactions
- 3. Probing $x \alpha$ correlations in fast backward production off nuclei
- 4. Probing Non-nucleonic Components in Nuclei in Backward Production of Resonances Trident Experiments
- Hadronization Studies in Semi-Inclusive d(e,e,p_s)X DIS

W.Cosyn & M.Sargsian PRC2011

Extension of GEA for Inelastic and Deep-Inelastic Processes

W.Cosyn & M.Sargsian, PRC 2011

For the DIS processes of $e+d \rightarrow e' + X + p_s$

For quasielastic of $e+d \rightarrow e' + p_f + p_s$

A. Klimenko et al PRC 2006

W. Boeglin et al PRL 2011

Extraction of XN cross section

Extraction of XN cross section

for large $k > k_{Fermi}$

- Isospin composition ? $P_{pn/pX} = 0.92^{+0.08}_{-0.18}$

$$n_A(k) \approx a_{NN}(A) n_{NN}(k)$$

Theoretical analysis of BNL Data

E. Piasetzky, MS, L. Frankfurt,

M. Strikman, J. Watson PRL, 2006

$$rac{P_{pp}}{P_{pn}} \leq rac{1}{2}(1-P_{pn/pX}) = 0.04^{+0.09}_{-0.04}.$$

 $P_{pp/pn} = 0.056 {\pm} 0.018$

Direct Measurement at JLab R.Subdei, et al Science, 2008

Factor of 20

Expected 4 (Wigner counting)

Theoretical Interpretation $\Phi^{(1)}(k_1, \cdots, k_c, \cdots, -k_c, \cdots, k_A) \approx \frac{U_{NN}(k_c)}{k_c^2} F_A(k_1, \cdots' \cdots', \cdots, k_A)$ $n_A(k) \approx a_{NN}(A) n_{NN}(k)$

- Dominunce of pn short trunge correlations as compared to pp and nn SRCS
- Dominance of NN **Tensor** as compared to the NN **Central** Forces at s= 1fm

2005-20035

- Two New Properties of High Momentum Component
 - Energetic Protons in Neutron Rich Nuclei

at
$$p > k_F$$

$$\left[n^A(p) \sim a_{NN}(A) \cdot n_{NN}(p)
ight]$$
 (1

- Dominance of pn Correlations (neglecting pp and nn SRCs) $n_{NN}(p) \approx n_{pn}(p) \approx n_{(d)}(p)$ (2)

$$n^A(p) \sim a_{pn}(A) \cdot n_d(p)$$

 $a_2(A) \equiv a_{NN}(A) \approx a_{pn}(A)$

- Define momentum distribution of proton & neutron $n^{A}(p) = \frac{Z}{A}n_{p}^{A}(p) + \frac{A-Z}{A}n_{n}^{A}(p) \qquad (3)$ $\int n_{p/n}^{A}(p)d^{3}p = 1$
- Define

$$I_p = \frac{Z}{A} \int_{k_F}^{600} n_p^A(p) d^3 p \qquad \qquad I_n = \frac{A - Z}{A} \int_{k_F}^{600} n_n^A(p) d^3 p$$

- and observe that in the limit of no pp and nn SRCs $I_p = I_n$
- Neglecting CM motion of SRCs

 $\frac{Z}{A}n_p^A(p) \approx \frac{A-Z}{A}n_n^A(p)$

First Property: Approximate Scaling Relation

-if contributions by pp and nn SRCs are neglected and the pn SRC is assumed at rest

MS,arXiv:1210.3280 Phys. Rev. C 2014

- for $\sim k_F - 600 \text{ MeV/c}$ region:

$$x_p \cdot n_p^A(p) \approx x_n \cdot n_n^A(p)$$

where
$$x_p = \frac{Z}{A}$$
 and $x_n = \frac{A-Z}{A}$.

Realistic 3He Wave Function: Faddeev Equation

Be9 Variational Monte Carlo Calculation:

Robert Wiringa 2013 http://www.phy.anl.gov/theory/research/momenta/

Tanks to S. Pastore

Second Property: MS,arXiv:1210.3280 Phys. Rev. C 2014 Using Definition: $n^{A}(p) = \frac{Z}{A}n_{p}^{A}(p) + \frac{A-Z}{A}n_{n}^{A}(p)$ $n^A(p) \sim a_{NN}(A) \cdot n_{NN}(p)$ **Approximations:** $n_{NN}(p) \approx n_{pn}(p) \approx n_{(d)}(p)$ And: $I_p = I_n$ $I_p + I_n = 2I_N = a_{pn}(A) \int n_d(p) d^3p$ One Obtains: $x_p \cdot n_p^A(p) \approx x_n \cdot n_n^A(p) \approx \frac{1}{2} a_{NN}(A, y) n_d(p)$ where $y = |1 - 2x_p| = |x_n - x_p|$ - $a_{NN}(A,0)$ corresponds to the probability of pn SRC in symmetric nuclei - $a_{NN}(A, 1) = 0$ according to our approximation of neglecting pp/nn SRCs

Second Property: Fractional Dependence of High Momentum Component

 $a_{NN}(A, y) \approx a_{NN}(A, 0) \cdot f(y)$ with f(0) = 1 and f(1) = 0

$$f(|x_p - x_n|) = 1 - \sum_{j=1}^n b_i |x_p - x_x|^i$$
 with $\sum_{j=1}^n b_i = 0$

In the limit $\sum_{i=1}^{n} b_i |x_p - x_x|^i \ll 1$ Momentum distributions of p & n are inverse proportional to their fractions

$$\left(n_{p/n}^{A}(p) \approx \frac{1}{2x_{p/n}} a_2(A, y) \cdot n_d(p)\right)$$

 $x_{p/n} = \frac{Z/N}{\Lambda}$

Observations: High Momentum Fractions

MS,arXiv:1210.3280 Phys. Rev. C 2014

 $P_{p/n}(A,y) = rac{1}{2x_{p/n}} a_2(A,y) \int\limits_{k_F}^{\infty} n_d(p) d^3p$

Α	Pp(%)	Pn(%)
12	20	20
27	23	22
56	27	23
197	31	20

Requires dominance of pn SRCs in heavy neutron reach nuclei O. Hen, M.S. L. Weinstein, et.al. Science, 2014

Is the total kinetic energy inversion possible?

MS,arXiv:1210.3280 Phys. Rev. C 2014 Checking for He3 Energetic Neutron $E_{kin}^{p} = 14 \text{ MeV} \text{ (p}= 157 \text{ MeV/c})$ $E_{kin}^{n} = 19 \text{ MeV} \text{ (p}= 182 \text{ MeV/c})$

Energetic Neutron (Neff & Horiuchi) $E_{kin}^p = 13.97 \text{ MeV}$ $E_{kin}^n = 18.74 \text{ MeV}$

VMC Estimates: Robert Wiringa

MS,arXiv:1210.3280 Phys. Rev. C 2014

Table 1: Kinetic energies (in MeV) of proton and neutron

А	У	E^p_{kin}	E_{kin}^n	$\overline{E^p_{kin} - E^n_{kin}}$
⁸ He	0.50	30.13	18.60	11.53
$^{6}\mathrm{He}$	0.33	27.66	19.06	8.60
$^{9}\mathrm{Li}$	0.33	31.39	24.91	6.48
$^{3}\mathrm{He}$	0.33	14.71	19.35	-4.64
$^{3}\mathrm{H}$	0.33	19.61	14.96	4.65
$^{8}\mathrm{Li}$	0.25	28.95	23.98	4.97
$^{10}\mathrm{Be}$	0.2	30.20	25.95	4.25
$^{7}\mathrm{Li}$	0.14	26.88	24.54	2.34
$^{9}\mathrm{Be}$	0.11	29.82	27.09	2.73
$^{11}\mathrm{B}$	0.09	33.40	31.75	1.65

Asymmetric Nuclei

n

New Predictions

1. Per nucleon, more protons are in high momentum tail

2. Kin Energy Inversion $K_p > K_n$?

Neutron Stars

Protons my completely populate the high momentum tail -New Properties of High Momentum Distribution of Nucleons in Asymmetric Nuclei

- Protons are more Energetic in Neutron Rich High Density Nuclear Matter
 - First Experimental Indication
 - Confirmed by VMC calculations for A<12
 - For Nuclear Matter
 - For Medium/Heavy Nuclei

MS,arXiv:1210.3280 Phys. Rev. C 2014

M. McGauley, MS arXiv:1102.3973

O. Hen, M.S. L. Weinstein, et.al. Science, 2014, "accepted"

R.B. Wiringa et al, Phys. Rev. C 2014

W. Dickhoff et al Phys. Rev. C 2014

M. Vanhalst. W. Cosyn J. Ryckebusch, arXiv 2014 Implications: Energetic Protons in neutron rich Nuclei

Implications: Protons are more modified in neutron rich nuclei u-quarks are more modified then d-quarks in Large A Nuclei

- Flavor Dependence of EMC effect
- Different explanation of NuTev Anomaly
- Can be checked in neutrino-nuclei or in pvDIS processes

NuTeV Experiment: Zeller et al PRL 2002

- CC and NC scattering of ν_{μ} and $\bar{\nu}_{\mu}$ of ${}^{56}Fe$ at energies 64 and 53 GeV
- Measured Paschos Wolfenstein Ratio

$$\begin{split} R^{PW} &\equiv \frac{R^{\nu} - rR^{\bar{\nu}}}{1 - r} = (g_L^2 - g_R^2) \\ R^{\nu(\bar{\nu})} &\equiv \frac{\sigma(\nu(\bar{\nu})N \to \nu(\bar{\nu})X)}{\sigma(\nu(\bar{\nu})N \to l^-(l^+)X)} \qquad r = \frac{\sigma(\bar{\nu}N \to l^+X)}{\sigma(\nu N \to l^-X)} \approx \frac{1}{2} \\ R^{PW} \mid_{Z=N} &\approx \frac{1}{2} - sin^2 \theta_W \\ sin^2 \theta_W &= 0.2277 \pm 0.0013(stat) \pm 0.0009(syst) \\ sin^2 \theta_W &= 0.2227 \pm 0.0004 \end{split}$$

Anomaly's explanation: Bentz, Cloet, Londergan, Thomas, PRL09, 2011

- Presence of static isovector ρ^0 field in neutron reach matter
- u quarks feel less vector repulsion that d quarks
- Estimates in Nambu-Jona-Lasino model

 $\Delta R^{\rho^0} = -0.0025$

- with NuTev functionals
- $\Delta R^{\rho^0} = -0.0019 \pm 0.0006$

Anomaly's explanation: Our explanation $R^{PW} = \frac{\left(\frac{1}{6} - \frac{4}{9}sin^{2}\theta_{W}\right)\left\langle x_{A}u_{A}^{-}\right\rangle - \left(\frac{1}{6} - \frac{2}{9}sin^{2}\theta_{W}\right)\left\langle x_{A}d_{A}^{-}\right\rangle\right)}{\left\langle x_{A}d_{A}^{-}\right\rangle - \frac{1}{3}\left\langle x_{A}u_{A}^{-}\right\rangle}$

$$\Delta R^{PW} \approx \left(1 - \frac{7}{3}sin^2\theta_W\right) \frac{\langle x_A u_A^- \rangle - \langle x_A d_A^- \rangle)}{\langle x_A d_A^- \rangle + \langle x_A u_A^- \rangle}$$

$$\langle x_A u_A^- \rangle = \int_x^A \frac{x}{\alpha} \left[u(\frac{x}{\alpha}) - \bar{u}(\frac{x}{\alpha}) \right] \delta_u(p_k^2 - m^2) \rho_A^u(\alpha, p_t) \frac{d\alpha}{\alpha} d^2 p_t$$

$$\langle x_A d_A^- \rangle = \int_x^A \frac{x}{\alpha} \left[d(\frac{x}{\alpha}) - \bar{d}(\frac{x}{\alpha}) \right] \delta_d(p_k^2 - m^2) \rho_A^d(\alpha, p_t) \frac{d\alpha}{\alpha} d^2 p_t$$

- EMC Effect in A(e,e')X scattering

$$F_{2A} = (A - Z) \int_{x}^{A} F_{2n}(\frac{x}{\alpha}) \rho_n(\alpha, p_t) \frac{d\alpha}{\alpha} d^2 p_t$$
$$+ Z \int_{x}^{A} F_{2p}(\frac{x}{\alpha}) \rho_p(\alpha, p_t) \frac{d\alpha}{\alpha} d^2 p_t$$

Color Screening Model: Frankfrut Strikman 1987

$$F_{2n/p}^{eff}(\frac{x}{\alpha}) = F_{2p/n}(\frac{x}{\alpha})\delta_{p/n}(p_k^2 - m^2)$$

Anomaly's explanation: Our explanation

$$\Delta R^{PW} \approx \left(1 - \frac{7}{3}sin^{2}\theta_{W}\right) \frac{\langle x_{A}u_{A}^{-} \rangle - \langle x_{A}d_{A}^{-} \rangle)}{\langle x_{A}d_{A}^{-} \rangle + \langle x_{A}u_{A}^{-} \rangle}$$

$$\langle x_{A}u_{A}^{-} \rangle = \int_{x}^{A} \frac{x}{\alpha} \left[u(\frac{x}{\alpha}) - \bar{u}(\frac{x}{\alpha})\right] \delta_{u}(p_{k}^{2} - m^{2})\rho_{A}^{u}(\alpha, p_{t}) \frac{d\alpha}{\alpha} d^{2}p_{t}$$

$$\langle x_{A}d_{A}^{-} \rangle = \int_{x}^{A} \frac{x}{\alpha} \left[d(\frac{x}{\alpha}) - \bar{d}(\frac{x}{\alpha})\right] \delta_{d}(p_{k}^{2} - m^{2})\rho_{A}^{d}(\alpha, p_{t}) \frac{d\alpha}{\alpha} d^{2}p_{t}$$

$$\Delta P^{virt} = 0.0022 \pm 0.00006$$

 $\Delta R^{virt} = -0.0032 \pm 0.00096$ Preliminary to be compared $\Delta R^{
ho^0} = -0.0025$ Are the observed effects universal for any two-component asymmetric/imbalanced Fermi Systems?

- In Atomic Physics
- In QCD

Observations: High Momentum Fractions
$$P_{p/n}(A, y) = \frac{1}{2x_{p/n}} a_2(A, y) \int_{k_F}^{\infty} n_d(p) d^3 p$$
Checking for He3
Energetic Neutron
$$E_{kin}^p = 14 \text{ MeV} (p=157 \text{ MeV/c})$$
$$E_{kin}^n = 19 \text{ MeV} (p=182 \text{ MeV/c})$$

Implications: If proton are more energetic theirs structure may be more modified than neutrons in the nuclear medium u-quarks are more modified then d quarks in Large A Nuclei

- Different explanation of NuTev Puzzle
- Can be checked in neutrino-nuclei or in pvDIS processes

What these studies can tell us about structure of Neutron Stars ?

Number of nucleons beyond the Fermi Energy

$$P_{p/n}(A, y) = \frac{1}{2x_{p/n}} a_2(A, y) \int_{k_F}^{\infty} n_d(p) d^3 p$$
$$a_2(A, y) = a_2(\rho, y)$$
$$a_2(\rho, y) |_{\rho \to \infty} = ?$$
Implications: For Nuclear Matter

$$P_{p/n}(A, y) = \frac{1}{2x_{p/n}} a_2(A, y) \int_{k_F}^{\infty} n_d(p) d^3 p$$

Table 1: The results for $a_2(A, y)$

-

А	У	This Work	Frankfurt et al	Egiyan et al	Famin et al
³ He	0.33	$2.07{\pm}0.08$	$1.7{\pm}0.3$		2.13 ± 0.04
$^{4}\mathrm{He}$	0	$3.51{\pm}0.03$	$3.3{\pm}0.5$	$3.38{\pm}0.2$	$3.60 {\pm} 0.10$
$^{9}\mathrm{Be}$	0.11	$3.92{\pm}0.03$			$3.91{\pm}0.12$
$^{12}\mathrm{C}$	0	$4.19 {\pm} 0.02$	$5.0{\pm}0.5$	$4.32{\pm}0.4$	$4.75{\pm}0.16$
$^{27}\mathrm{Al}$	0.037	$4.50 {\pm} 0.12$	$5.3{\pm}0.6$		
$^{56}\mathrm{Fe}$	0.071	$4.95{\pm}0.07$	$5.6{\pm}0.9$	$4.99{\pm}0.5$	
$^{64}\mathrm{Cu}$	0.094	$5.02 {\pm} 0.04$			$5.21{\pm}0.20$
$^{197}\mathrm{Au}$	0.198	$4.56{\pm}0.03$	$4.8{\pm}0.7$		$5.16{\pm}0.22$

arxiv 1102.3973

Implications: For Nuclear Matter $a_2(A, y) = a_2(A, 0)f(y)$ Fitting f(y)

Extrapolation to infinite and superdense nuclear matter

with

compare $a_2(\rho_0, 0) \approx 8 \pm 1.24$

C.Ciofi degli Atti, E. Pace, G.Salme, PRC 1991

Asymmetric and superdense nuclear matter:

Implications: For Nuclear Matter

$$P_{p/n}(A, y) = \frac{1}{2x_{p/n}} a_2(A, y) \int_{k_F}^{\infty} n_d(p) d^3 p$$

For
$$x_p = \frac{1}{9}$$
 and $y = \frac{7}{9}$
and using $k_{F,N} = (3\pi^2 x_N \rho)^{\frac{1}{3}}$

Some Possible Implication of our Results

Cooling of Neutron Star:

Superfluidity of Protons in the Neutron Stars:

Protons in the Neutron Star Cores:

Isospin Locking and Large Masses of Neutron Stars

Is the Observed Effects Universal for Two Component Asymmetric Fermi Systems?

- Start with Two Component Asymmetric Degenerate Fermi Gas
- Asymmetric:
- Switch on the short-range interaction between two-component
 - While interaction between each components is weak
 - Spectrum of the small component gas will strongly deforme

Cold Atoms A. Bulgac, and M.M. Forbes, Zero Temperature Thermodynamics of Asymmetric Fermi Gases at Unitarity, Phys. Rev. A 75, 031605(R) (2007),

Finite T Nuclear Gas

A. Rios, A. Polls and W. H. Dickhoff, Depletion of Nuclear Fermi Gas Phys. Rev. C 79, 064308 (2009).

Is the Observed Effect Universal to Two Component Asymmetric Fermi Systems?

Is the Observed Effect Universal to Two Component Asymetric Fermi Systems?

A.Rios, A. Polls and W. H. Dickhoff, PRC 79, 064308 (2009).

Some Outlook

- More Symmetric Nuclei
- Measurements of pp/nn
 - 3N SRCS
- Nuclei with large asymmetry parameters
- Break-down of nucleon framework