#### **Quantitative challenges in EMC and SRC Research and Data-Mining**

Massachusetts Institute of Technology

December 2-5, 2016





we don't need an hour long "SRC Overview" - this is an audience of experts.

srae

Eli Piasetzky Tel Aviv University,

From: "Fomin, Nadia"

2 December 2016



#### If the experts agree



### NP with no SRC = elephant with no trunk



#### We are Otolaryngologists





# Large high-momentum tail similar in shape to all nuclei and dominated by 2N-SRC pairs



TEL AUIU UNIVERSITY



Q: If one calculate 10% and the data show 20% how bad is it ?:

Q: How well we know to extract the strength from the data ?:

CM corrections to a<sub>2</sub>(A,Z) ?

Scaling to d (what about other S,T pairs in heavy asymmetric nuclei ?



A(e,e')

ratios





transition between mean-field and SRC:

| Ge                     | eorge Laskaris (15 min |
|------------------------|------------------------|
| Exclusive reactions II | aria Patsyuk (15 min)  |
| Da                     | an Watts (15 min)      |

#### Nucleons with momentum > 1 GeV/c :

| Inclusive and semi-inclusive<br>reactions I | Nadia Fomin and Misak Sargsia                                      |
|---------------------------------------------|--------------------------------------------------------------------|
| 3N-SRC in Exclusive Reactions               | Eli Piasetzky and<br>Mark Strikman (15 min)<br>Erez Cohen (15 min) |



#### Can we formulate a nuclear contact theory? Why?

Concept developed for dilute two-component Fermi systems with a strong short-range interaction.

S. Tan Annals of Physics 323 (2008) 2952, ibid 2971, ibid 2987



λ

| Factorization and Universality | Nir Barnea and Or Hen (30 min)<br>Ronen Weiss (15 min)<br>Will Detmold (15 min) |
|--------------------------------|---------------------------------------------------------------------------------|
|                                |                                                                                 |

|                                  | Stefano Gandolfi (20 min)    |
|----------------------------------|------------------------------|
| Two body densities in coordinate | Reynier Cruz Torres (10 min) |
| and momentum space               | Joel Lynn (15 min)           |
|                                  | Maximilian Alvioly (15 min)  |

# Large high-momentum tail similar in shape to all nuclei and dominated by 2N-SRC pairs





How these pairs were produced ? Who are their Parents ? What are their quantum numbers ?

How they move (CM motion, relative momentum distributions) ?

q Q and S have directions, we never study their relative orientation in SRC pairs





complicated underlying N-N interaction Dense system (all parameters are comparable)

EFT

'ab-initio' many body calculation



momentum space

### Generalized contact theory

|                                      | Christian Waiss (ao min) |  |
|--------------------------------------|--------------------------|--|
| SRC in EFT                           | Dick Furnstahl (15 min)  |  |
|                                      | Sushant Mor (10 min)     |  |
| <u>ור</u>                            |                          |  |
| Factorization and universality       | Nir Barnea and Or Hen    |  |
| Two body densities in coordinate and | Stefano Gandolfi         |  |

Mean Field:



Precise calculations of a neutron skin in asymmetric nuclei neglecting SRC.

comparing the length of F and M elephants without taking the Trunk into account.



### EFT is a great way to do Gastroenterology is it also an effective way to do Otolaryngology ?



### gastroenterologists



### Otolaryngologists

#### Quantitative challenges in EMC and SRC Research and Data-Mining

Massachusetts Institute of Technology

December 2-5, 2016

## Q: Do all the experts think that the EMC has to do with modification of nucleons in nuclei ?

| Sunday, Dec. 4 <sup>th</sup> (EMC), |                                         |                                |  |
|-------------------------------------|-----------------------------------------|--------------------------------|--|
| Kolker room, 2                      | Kolker room, 26-414,                    |                                |  |
| Jerry Miller / La                   | Jerry Miller / Larry Weinstein          |                                |  |
| 9:00 - 10:00                        | EMC Overview                            |                                |  |
| 10:00 - 11:00                       | EMC Theory                              | wark Strikman and Jerry Willer |  |
| 11:00 - 11:30                       | Coffee Break                            |                                |  |
| 11:30 - 12:30                       | Tagged Structure Functions Shalev Gilad |                                |  |
| 12:30 - 14:15                       | Lunch Break                             |                                |  |
| 14:15 - 15:30                       | Isospin dependence and PVDIS            | Seamus Riordan and Ian Cloet   |  |
| 15:30 - 16:15                       | In-Medium Form-Factors and the          | Steffen Strauch                |  |
|                                     | coulomb sum rule                        |                                |  |



## Q: modification of 'mean field' vs. 'tail' nucleons?



SRC are the frontier of cold dense nuclear matter study

- Nuclear: 0.16 nucleons/fm<sup>3</sup>
- Nucleon: 0.36 nucleons/fm<sup>3</sup>
- SRC pair: ~ 0.55 nucleons/fm<sup>3</sup>

SRC pairs ~ x3.5 saturation nuclear density! SRC pairs probe densities relevant to neutron stars! 15



### **Tensor correlations (np - dominace):**

### Reduce the kinetic symmetry Energy (at $\rho_0$ )

 $E_{sym}(\rho) \approx E(\rho)_{PNM} - E(\rho)_{SNM}$ 

(nn- pairs)

(np- pairs)







Soften the potential symmetry density dependence

Impact on Compact Astronomical Systems and HI Reactions ?

### **Incorporating SRC Into N. Star Global Analysis**

reduces the density dependence of the symmetry potential!





 $E_{sum}^{pot}(\rho/\rho_0) = S_{pot} \cdot (\rho/\rho_0)^{\gamma}$ 

How does it affect neutron stats properties?

### Study of 3N correlation







### 3N-SRC in Exclusive Reactions

Eli Piasetzky and Mark Strikman (15 mi Erez Cohen (15 min)





Next generation experiments, even the exclusive, can yield 1-2 order of magnitude more SRC events



| experiment   | pp pairs                                       | np pairs                        | nn pairs                    | 12 ~ ( )                            |
|--------------|------------------------------------------------|---------------------------------|-----------------------------|-------------------------------------|
| EVA/BNL      | -                                              | 18                              | -                           | $^{12}C(p,2pn)$                     |
| E01-015/JLab | 263                                            | 179                             | -                           | $^{12}C(e,e'pn) ^{12}C(e,e'p)$      |
| E07-006/JLab | 50                                             | 223                             | - 4                         | He(e,e'pn) <sup>4</sup> $He(e,e'p)$ |
| CLAS/JLab    | 1533                                           | -                               | -                           | C, Al, Fe, Pb(e, e'pp)              |
|              |                                                |                                 |                             |                                     |
| Total        | <2000                                          | <450                            | 0                           |                                     |
| 12 GeV JLa   | b: $\frac{\sigma_{MOTT}(1)}{\sigma_{MOTT}(4)}$ | $\frac{2GeV)}{4GeV)} \approx 8$ | <b>Detector</b><br>(e,e' p) | acceptance: 5                       |

### How to use this high statistic capability ?

### Proton and <sup>12</sup>C beams

dt

Dubna / GSI : 5-10 GeV/c 10<sup>9</sup> protons/sec

 $pp \rightarrow pp$  elastic scattering near 90<sup>°</sup> c.m:  $\frac{d\sigma}{d\sigma} \propto s^{-10}$ 





Lower energy increase the cross-section and the sensitivity to SRC via S weighting. But... need to keep a hard process.

### 4 – 6 GeV beams are ideal!

| Exclusive reactions II | George Laskaris (15 min)<br>Maria Patsyuk (15 min) |
|------------------------|----------------------------------------------------|
|                        | Dan Itzatta (canala)                               |





### **Inverse complete kinematics**





# GSI setup used with 0.4 GeV/c beam

### Physics Letters B 753 (2016) 204-210

### 5 GeV/c <sup>12</sup>C beam at Dubna

| Exclusive reactions II | Maria Patsyuk (15 min) |
|------------------------|------------------------|
|                        | Dan Watta (canala)     |

