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EMC and SRC in EFT

I. SUPPLEMENTAL NOTES FOR OUR PAPER ON EMC-SRC IN EFT

0. New Expessions:

We will show that the EMC ratio can be expressed as

R(x,A) =
2

A

fA(x)

fd(x)
= 1 + (a2(A)� 1)

✓

1� f p(x) + fn(x)

fd(x)

◆

. (1)

In this expression, the factorization of the x and A dependence in (R� 1) is seen explicitly.

It is also easy to see the slope of R is linearly proportional to a2. Also, it is easy to see

a2 = R(2 > x > 1, A) because f p(x > 1) + fn(x > 1) = 0.

To derive Eq.(1), we need

fA(x)

A
= fN(x) + g2(A)f2(x),

a2 = R(2 > x > 1, A) = g2(A)/g2(2). (2)

Then

fA(x)

A
=

fd(x)

2
+ (g2(A)� g2(2)) f2(x)

=
fd(x)

2
+ (a2(A)� 1) g2(2)f2(x)

=
fd(x)

2
+ (a2(A)� 1)

✓

fd(x)

2
� fN(x)

◆

, (3)

which implies Eq.(1).

Taking the moments of Eq.(3), we have

2

A

hxmiA
hxmid = 1 + (a2(A)� 1)

✓

1� 2hxmiN
hxmid

◆

. (4)

1. Power counting:

(a) Nuclear force power counting (1105.2919):
�

N †N
�2

is O(Q0) and
�

N †N
�3

is O(Q3).

The is obtained by counting the engineering dimension. As usual, q0 is O(Q2) and |~q| is
O(Q).

(b) Operator power couning: using the same counting rule as (a), then v(µ0 · · · vµn)
�

N †N
�

is O(Q�3), v(µ0 · · · vµn)
�

N †N
�2

is O(Q0) while v(µ0 · · · vµn)
�

N †N
�3

is O(Q3). We will focus

on the tensor component with all µi = 0, therefore @(µ0vµ1 · · · vµn)
�

N †N
�

is O(Q�1). Op-

erators like this comes out when we replace vµ by vµ + i@µ/M in the one body operator as

1

WD: sketch and consequences, f2(x) from LQCD	

Joel Lynn (after lunch): g2(A) from GFMC	

Jiunn-Wei Chen (Sunday): EFT details, extensions



Effective field theory

EFT provides rigorous description of low-energy QCD with 
quantifiable uncertainties	

Hard partonic processes not naturally described 	

Operator product expansion: moments of PDFs are matrix 
elements of local twist-2 operators 
 
 
 
 
 
 
 
Evaluate in rest frame, EFT methods applicable

2

been applied to PDFs in the meson and single-nucleon
[22–27] and multi-nucleon sectors [17, 28] as well as to
other light-cone dominated observables [29–33].

The structure functions describing lepton-nucleus DIS,
FA
2 (x, Q2), can be expressed in terms of nuclear PDFs

qAi (x, Q) (for simplicity of presentation, we choose the
DIS scheme where the renormalization and factorization
scale are set equal to the hard scale of DIS, µ = µf = Q,
although the results below do not depend on the scheme)
as FA

2 (x, Q2) =
P

i Q
2
ix qAi (x, Q), where the sum is over

quarks and anti-quarks of flavor i of charge ±Qi in a nu-
cleus A. In what follows, we focus on the isoscalar PDFs,
qA = qAu +qAd ; in the relevant experiments, nuclear PDFs
are typically “corrected” for isospin asymmetry of the
targets. The dominant (leading-twist) parton distribu-
tions are determined by target matrix elements of bilocal
light-cone operators. Applying the operator product ex-
pansion, the Mellin moments of the parton distributions,

hxniA(Q) =

Z A

�A

xnqA(x, Q)dx, (3)

are determined by matrix elements of local operators,

hA; p|Oµ0···µn |A; pi = hxniA(Q) p(µ0 . . . pµn) (4)

with

Oµ0···µn = q�(µ0iDµ1 · · · iDµn)q, (5)

where (...) indicates that enclosed indices have been sym-

metrized and made traceless and Dµ = (
�!
Dµ � �Dµ)/2 is

the covariant derivative.
In EFT, each of the QCD operators is matched to

hadronic operators [17]

Oµ0...µn ! hxniNMnv(µ0 · · · vµn)N†N
⇥
1 + ↵nN†N

⇤
,

+ hxni⇡⇡↵i@(µ0 · · · i@µn)⇡↵ + . . . , (6)

where N (⇡) is the nucleon (pion) field, v is the nu-
cleon four velocity and hxniN(⇡) is the nth moment of
the isoscalar quark PDF in a free nucleon (pion). The
hxniN (⇡) terms are one-body operators acting on a sin-
gle hadron only, while the ↵n terms are two-body opera-
tors. Here we have only kept the SU(4) (spin and isospin)

singlet two-body operator / �
N†N

�2
and neglected

the SU(4) non-singlet operator / (N†�N)2 � (N†⌧N)2

which changes sign when interchanging the spin (�) and
isospin (⌧ ) matrices [34]. The latter operator has an ad-
ditional O(1/N2

c ) ⇠ 0.1 suppression in its prefactor [35]
with Nc the number of colors. It is also a good approx-
imation to replace the nucleon velocity by the nucleus
velocity.

The relative importance of the hadronic operators of
Eq. (6) in a nuclear matrix element can be systemat-
ically estimated from the power counting of the EFT,
which assigns a power of the small expansion parameter

✏ ⇠ m⇡/⇤, P/⇤ (with P the typical momentum in the
problem and ⇤ ⇠ 0.5 GeV the range of validity of the
EFT) to each Feynman diagram. In Weinberg’s power
counting scheme [36], the nucleon one-body operator is
O(✏�3), the nucleon two-body operator is O(✏0), while
the pion one-body operator connecting two nucleons is
O(✏2n). Since hx0i⇡ = 0 (the total quark number is zero
in a pion), the pion operator will not contribute until
O(✏2) hence it is higher order compared with the other
operators in Eq. (6). The same order of importance for
these operators is also found using the power counting
of Ref. [37], but with a less suppressed two-body e↵ect
compared with the one-body nucleon operator. Other
higher dimensional operators are omitted here because
they are higher order in the power counting [17].

Using nucleon number conservation, hA|N†N |Ai = A,
the nuclear matrix element of Eq. (6) is

hxniA(Q) = hxniN (Q)
h
A + ↵n(⇤, Q)hA|(N†N)2|Ai⇤

i
,

(7)
where ↵n is A independent but ⇤ dependent and is com-
pletely determined by the two-nucleon system. This rela-
tion is valid for all n, so after an inverse Mellin transform,
the isoscalar PDFs satisfy

qA(x, Q)/A = qN (x, Q) + g2(A, ⇤)q̃2(x, Q, ⇤), (8)

where

g2(A, ⇤) =
1

A

⌦
A| �N†N

�2 |A↵
⇤
, (9)

and q̃2(x, Q, ⇤) is an unknown function independent of
A. Here, the factorization scale of the PDF is µf =
Q, while ⇤ is the nuclear physics “ultraviolet” cut-o↵
that separates the high energy parton physics from lower
energy hadronic and nuclear e↵ects. The two scales must
be significantly separated for the EFT description to be
valid. Including perturbative QCD running, this result
also holds at the level of the structure function,

FA
2 (x, Q2)/A = FN

2 (x, Q2) + g2(A, ⇤)f2(x, Q2, ⇤). (10)

Equation (10) was also obtained phenomenologically in
Ref. [9] using impulse approximation.

The second term on the right-hand side of Eq. (10) is
the nuclear modification of the nucleon structure function
FN
2 . The shape of distortion, i.e., the x dependence of f2,

which is due to physics above the scale ⇤, is A indepen-
dent and hence universal among nuclei. The magnitude
of distortion, g2, which is due to physics below the scale
⇤, depends only on A and ⇤.

Linear EMC-SRC relation in EFT: At smaller
Q2, the analysis in the previous section can be gener-
alized to all the sub-leading terms in the operator prod-
uct expansion which leads to Eq. (10) again with the
Q2 dependence of FA

2 modified. This implies, as long as
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Twist-two operators in EFT

EFT: match QCD operators to all possible hadronic operators 
with same symmetries	

Used in π and N sectors to connect lattice PDF moments to 
experiment [Arndt & Savage; Chen & Ji; Detmold et al.,…]	

Isoscalar, spin independent operator matching:	

!

!

 
 
 where

Vµ1...µn =
(

v + i
D

M

)µ1

. . .

(
v + i

D

M

)µn

+cnN†Vµ1...µnN + c′nN†S{µ1Aµ2Vµ3...µn}N + . . .

qγ{µ1Dµ2 . . . Dµn}q −→ an
1

Λn
tr

[
Σ†Dµ1 . . . DµnΣ + h.c.

]

LECs

+αnN†Vµ1...µnN N†N + βnN†Vµ1...µnτ ξ+
j N N†τ ξ+

j + . . .

τ ξ±
j =

1
2

(
ξ†τjξ ± ξτjξ

†)



Twist-two matrix elements

Nucleon matrix elements	

!

Nuclear matrix elements 

!

!

    term suppressed by       [Kaplan & Savage 96; K & Manohar 
97]	

Ellipsis includes higher-body operators, terms with derivatives: 
higher-order in power-counting

vµ1 . . . vµn⟨N |Oµ1...µn |N⟩ = ⟨xn⟩q

⟨xn⟩q|A ≡ vµ1 . . . vµn⟨A|Oµ1...µn |A⟩

= ⟨xn⟩q
[
A + αn⟨A|(N †N)2|A⟩ + βn⟨A|(N †τN)2|A⟩

]
+ . . .

N2
cβn

Includes pionic and  
nucleonic terms

Dominant terms



Power counting

EFT power counting 	
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!

!

!
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Twist-two matrix elements

Inverse Mellin transform  
 
 
 
 
 
 
with                                     
 
and	

Factorisation of (x,Q2) and A dependence: universality	

Observed in data: [Daté et al. 84,..., Gomez et al. 95]	

Requires there be only a single relevant non-trivial source of 
A dependence in EFT operator	

Factorisation breaks: holds to O(ε) or      : expect ~20%

⟨xn⟩q|A ≡ vµ1 . . . vµn⟨A|Oµ1...µn |A⟩= ⟨xn⟩q
[
A + αn⟨A|(N †N)2|A⟩ + βn⟨A|(N †τN)2|A⟩

]
+ . . .
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✓
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◆
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been applied to PDFs in the meson and single-nucleon
[22–27] and multi-nucleon sectors [17, 28] as well as to
other light-cone dominated observables [29–33].

The structure functions describing lepton-nucleus DIS,
FA
2 (x, Q2), can be expressed in terms of nuclear PDFs

qAi (x, Q) (for simplicity of presentation, we choose the
DIS scheme where the renormalization and factorization
scale are set equal to the hard scale of DIS, µ = µf = Q,
although the results below do not depend on the scheme)
as FA

2 (x, Q2) =
P

i Q
2
ix qAi (x, Q), where the sum is over

quarks and anti-quarks of flavor i of charge ±Qi in a nu-
cleus A. In what follows, we focus on the isoscalar PDFs,
qA = qAu +qAd ; in the relevant experiments, nuclear PDFs
are typically “corrected” for isospin asymmetry of the
targets. The dominant (leading-twist) parton distribu-
tions are determined by target matrix elements of bilocal
light-cone operators. Applying the operator product ex-
pansion, the Mellin moments of the parton distributions,

hxniA(Q) =

Z A

�A

xnqA(x, Q)dx, (3)

are determined by matrix elements of local operators,

hA; p|Oµ0···µn |A; pi = hxniA(Q) p(µ0 . . . pµn) (4)

with

Oµ0···µn = q�(µ0iDµ1 · · · iDµn)q, (5)

where (...) indicates that enclosed indices have been sym-

metrized and made traceless and Dµ = (
�!
Dµ � �Dµ)/2 is

the covariant derivative.
In EFT, each of the QCD operators is matched to

hadronic operators [17]

Oµ0...µn ! hxniNMnv(µ0 · · · vµn)N†N
⇥
1 + ↵nN†N

⇤
,

+ hxni⇡⇡↵i@(µ0 · · · i@µn)⇡↵ + . . . , (6)

where N (⇡) is the nucleon (pion) field, v is the nu-
cleon four velocity and hxniN(⇡) is the nth moment of
the isoscalar quark PDF in a free nucleon (pion). The
hxniN (⇡) terms are one-body operators acting on a sin-
gle hadron only, while the ↵n terms are two-body opera-
tors. Here we have only kept the SU(4) (spin and isospin)

singlet two-body operator / �
N†N

�2
and neglected

the SU(4) non-singlet operator / (N†�N)2 � (N†⌧N)2

which changes sign when interchanging the spin (�) and
isospin (⌧ ) matrices [34]. The latter operator has an ad-
ditional O(1/N2

c ) ⇠ 0.1 suppression in its prefactor [35]
with Nc the number of colors. It is also a good approx-
imation to replace the nucleon velocity by the nucleus
velocity.

The relative importance of the hadronic operators of
Eq. (6) in a nuclear matrix element can be systemat-
ically estimated from the power counting of the EFT,
which assigns a power of the small expansion parameter

✏ ⇠ m⇡/⇤, P/⇤ (with P the typical momentum in the
problem and ⇤ ⇠ 0.5 GeV the range of validity of the
EFT) to each Feynman diagram. In Weinberg’s power
counting scheme [36], the nucleon one-body operator is
O(✏�3), the nucleon two-body operator is O(✏0), while
the pion one-body operator connecting two nucleons is
O(✏2n). Since hx0i⇡ = 0 (the total quark number is zero
in a pion), the pion operator will not contribute until
O(✏2) hence it is higher order compared with the other
operators in Eq. (6). The same order of importance for
these operators is also found using the power counting
of Ref. [37], but with a less suppressed two-body e↵ect
compared with the one-body nucleon operator. Other
higher dimensional operators are omitted here because
they are higher order in the power counting [17].

Using nucleon number conservation, hA|N†N |Ai = A,
the nuclear matrix element of Eq. (6) is

hxniA(Q) = hxniN (Q)
h
A + ↵n(⇤, Q)hA|(N†N)2|Ai⇤

i
,

(7)
where ↵n is A independent but ⇤ dependent and is com-
pletely determined by the two-nucleon system. This rela-
tion is valid for all n, so after an inverse Mellin transform,
the isoscalar PDFs satisfy

qA(x, Q)/A = qN (x, Q) + g2(A, ⇤)q̃2(x, Q, ⇤), (8)

where

g2(A, ⇤) =
1

A

⌦
A| �N†N

�2 |A↵
⇤
, (9)

and q̃2(x, Q, ⇤) is an unknown function independent of
A. Here, the factorization scale of the PDF is µf =
Q, while ⇤ is the nuclear physics “ultraviolet” cut-o↵
that separates the high energy parton physics from lower
energy hadronic and nuclear e↵ects. The two scales must
be significantly separated for the EFT description to be
valid. Including perturbative QCD running, this result
also holds at the level of the structure function,

FA
2 (x, Q2)/A = FN

2 (x, Q2) + g2(A, ⇤)f2(x, Q2, ⇤). (10)

Equation (10) was also obtained phenomenologically in
Ref. [9] using impulse approximation.

The second term on the right-hand side of Eq. (10) is
the nuclear modification of the nucleon structure function
FN
2 . The shape of distortion, i.e., the x dependence of f2,

which is due to physics above the scale ⇤, is A indepen-
dent and hence universal among nuclei. The magnitude
of distortion, g2, which is due to physics below the scale
⇤, depends only on A and ⇤.

Linear EMC-SRC relation in EFT: At smaller
Q2, the analysis in the previous section can be gener-
alized to all the sub-leading terms in the operator prod-
uct expansion which leads to Eq. (10) again with the
Q2 dependence of FA

2 modified. This implies, as long as
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I. SUPPLEMENTAL NOTES FOR OUR PAPER ON EMC-SRC IN EFT

0. New Expessions:

We will show that the EMC ratio can be expressed as
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In this expression, the factorization of the x and A dependence in (R� 1) is seen explicitly.

It is also easy to see the slope of R is linearly proportional to a2. Also, it is easy to see

a2 = R(2 > x > 1, A) because f p(x > 1) + fn(x > 1) = 0.

To derive Eq.(1), we need
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a2 = R(2 > x > 1, A) = g2(A)/g2(2). (2)
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which implies Eq.(1).

Taking the moments of Eq.(3), we have
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R(1 < x < 2, A) = a2(A)
fp(x > 1) = fn(x > 1) = 0

dR(x,A)/dx = (a2(A)� 1)h(x)
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Pion and nucleon fields	

Heavy baryon formalism: 	
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Nv(x) = eiMv·xN(x)
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