EMC and SRC in EFT

1. Universality of the EMC effect

Jiunn-Wei Chen, William Detmold
Phys.Lett. B625 (2005) 165-170
2. Short Range Correlations and the EMC Effect in Effective Field Theory Jiunn-Wei Chen, William Detmold, Joel E. Lynn, Achim Schwenk arXiv:1607.03065

William Detmold, MIT

EMC and SRC in EFT

$$
\frac{f^{A}(x)}{A}=f^{N}(x)+g_{2}(A) f_{2}(x)
$$

- WD: sketch and consequences, $f_{2}(x)$ from LQCD
- Joel Lynn (after lunch): $g_{2}(A)$ from GFMC
- Jiunn-Wei Chen (Sunday): EFT details, extensions

William Detmold, MIT

- EFT provides rigorous description of low-energy QCD with quantifiable uncertainties
- Hard partonic processes not naturally described
- Operator product expansion: moments of PDFs are matrix elements of local twist-2 operators

$$
\begin{gathered}
\mathcal{O}^{\mu_{0} \cdots \mu_{n}}=\bar{q} \gamma^{\left(\mu_{0}\right.} i D^{\mu_{1}} \cdots i D^{\left.\mu_{n}\right)} q \\
\left.\langle A ; p| \mathcal{O}^{\mu_{0} \cdots \mu_{n}}|A ; p\rangle=\left\langle x^{n}\right\rangle_{A}(Q) p^{\left(\mu_{0}\right.} \ldots p^{\mu_{n}}\right) \\
\left\langle x^{n}\right\rangle_{A}(Q)=\int_{-A}^{A} x^{n} q_{A}(x, Q) d x
\end{gathered}
$$

Evaluate in rest frame, EFT methods applicable

- EFT: match QCD operators to all possible hadronic operators with same symmetries
- Used in $\boldsymbol{\pi}$ and N sectors to connect lattice PDF moments to experiment [Arndt \& Savage; Chen \& ji; Detmold et al.....]
- Isoscalar, spin independent operator matching:

\[

\]

where

$$
\mathcal{V}^{\mu_{1} \ldots \mu_{n}}=\left(v+i \frac{D}{M}\right)^{\mu_{1}} \ldots\left(v+i \frac{D}{M}\right)^{\mu_{n}} \quad \tau_{j}^{\xi \pm}=\frac{1}{2}\left(\xi^{\dagger} \tau_{j} \xi \pm \xi \tau_{j} \xi^{\dagger}\right)
$$

- Nucleon matrix elements

$$
v_{\mu_{1}} \ldots v_{\mu_{n}}\langle N| \mathcal{O}^{\mu_{1} \ldots \mu_{n}}|N\rangle=\left\langle x^{n}\right\rangle_{q}
$$

- Nuclear matrix elements

$$
\left\langle x^{n}\right\rangle_{q \mid A} \equiv v_{\mu_{1}} \ldots v_{\mu_{n}}\langle A| \mathcal{O}^{\mu_{1} \ldots \mu_{n}}|A\rangle
$$

Includes pionic and nucleonic terms

$$
=\left\langle x^{n}\right\rangle_{q}\left[A+\alpha_{n}\langle A|\left(N^{\dagger} N\right)^{2}|A\rangle+\beta_{n}\langle A|\left(N^{\dagger} \tau N\right)^{2}|A\rangle\right]+\ldots
$$

Dominant terms

- β_{n} term suppressed by N_{c}^{2} [Kaplan \& Savage 96; K \& Manohar 97]
- Ellipsis includes higher-body operators, terms with derivatives: higher-order in power-counting

- Inverse Mellin transform

$$
\left\langle x^{n}\right\rangle_{q \mid A}=\left\langle x^{n}\right\rangle_{q}\left[A+\alpha_{n}\langle A|\left(N^{\dagger} N\right)^{2}|A\rangle\right.
$$

- $\frac{f^{A}(x)}{A}=f^{N}(x)+g_{2}(A) f_{2}(x)$
with $g_{2}(A, \Lambda)=\frac{1}{A}\langle A|\left(N^{\dagger} N\right)^{2}|A\rangle_{\Lambda}$ and $\quad \alpha_{n}=\frac{1}{\left\langle x^{n}\right\rangle_{q}} \int d x x^{n} f_{2}(x)$
- Factorisation of (x, Q^{2}) and A dependence: universality
- Observed in data: [Daté et al. 84,..., Gomez et al. 95]
- Requires there be only a single relevant non-trivial source of A dependence in EFT operator
- Factorisation breaks: holds to $O(\varepsilon)$ or N_{c}^{2} : expect $\sim 20 \%$
- Factorised form (also holds for QE cross section)

$$
\frac{f^{A}(x)}{A}=f^{N}(x)+g_{2}(A) f_{2}(x)
$$

- Simple manipulations imply

$$
R(x, A)=\frac{2}{A} \frac{f^{A}(x)}{f^{d}(x)}=1+\left(a_{2}(A)-1\right)\left(1-\frac{f^{p}(x)+f^{n}(x)}{f^{d}(x)}\right)
$$

where $a_{2}(A)=\frac{g_{2}(A, \Lambda)}{g_{2}(2, \Lambda)}=\frac{\langle A|\left(N^{\dagger} N\right)^{2}|A\rangle_{\Lambda}}{\langle d|\left(N^{\dagger} N\right)^{2}|d\rangle_{\Lambda}} \quad$ (scheme indep.!)

- Consequently
- $R(1<x<2, A)=a_{2}(A)$ as $f_{p}(x>1)=f_{n}(x>1)=0$
- EMC slope: $d R(x, A) / d x=\left(a_{2}(A)-1\right) h(x)$
- EMC-SRC relation!
- LECs α_{n} can be determined from experiment
OR
- Lattice QCD can probe EMC effect from first principles
- Calculate $\langle N N| \mathcal{O}^{(n)}|N N\rangle$ to determine LECs
- α_{n} can be extracted using background twist-2 fields
- NPLQCD: Recent successful calculations of electroweak matrix elements in $A=2,3,4$ nuclei
- Twist-2 matrix elements being calculated right now
- With a few moments, reconstruct $f_{2}(x)$

EMC and SRC in EFT

$$
\frac{f^{A}(x)}{A}=f^{N}(x)+g_{2}(A) f_{2}(x)
$$

- WD: sketch and consequences, $f_{2}(x)$ from LQCD
- Joel Lynn (after lunch): $g_{2}(A)$ from GFMC
- Jiunn-Wei Chen (Sunday): EFT details, extensions

William Detmold, MIT

- Heavy baryon formalism: $N_{v}(x)=e^{i M v \cdot x} N(x)$
- Δ-isobar omitted for simplicity

$$
\begin{aligned}
& \mathcal{L}=\frac{f^{2}}{8} \operatorname{tr}\left[\partial^{\mu} \Sigma^{\dagger} \partial_{\mu} \Sigma\right]+\frac{\lambda f^{2}}{4} \operatorname{tr}\left[m_{Q} \Sigma^{\dagger}+m_{Q} \Sigma\right] \\
& \text { Velocity }+N^{\dagger} \imath v \cdot D N+g_{A} N^{\dagger} S^{\mu} \widehat{A_{\mu} N} \text { Spin } \\
& +C_{0}\left(N^{\dagger} N\right)^{2}+C_{2}\left(N^{\dagger} D_{i} N\right)^{2}+\ldots \\
& \text { All possible operators } \\
& D^{\mu}=\partial^{\mu}+\frac{1}{2}\left(\xi^{\dagger} \partial^{\mu} \xi+\xi \partial^{\mu} \xi^{\dagger}\right) \\
& A^{\mu}=\frac{i}{2}\left(\xi^{\dagger} \partial^{\mu} \xi-\xi \partial^{\mu} \xi^{\dagger}\right)
\end{aligned}
$$

where

EMC and SRC details

- In detail

$$
\begin{aligned}
\frac{f^{A}(x)}{A} & =f^{N}(x)+g_{2}(A) f_{2}(x) \\
a_{2} & =R(2>x>1, A)=g_{2}(A) / g_{2}(2)
\end{aligned}
$$

$$
\begin{aligned}
\frac{f^{A}(x)}{A} & =\frac{f^{d}(x)}{2}+\left(g_{2}(A)-g_{2}(2)\right) f_{2}(x) \\
& =\frac{f^{d}(x)}{2}+\left(a_{2}(A)-1\right) g_{2}(2) f_{2}(x) \\
& =\frac{f^{d}(x)}{2}+\left(a_{2}(A)-1\right)\left(\frac{f^{d}(x)}{2}-f^{N}(x)\right)
\end{aligned}
$$

