

Nir Barnea The Racah institute for Physics The Hebrew University, Jerusalem, Israel

December 2, 2016 Quantitative challenges in EMC and SRC Research and Data-Mining

Short Range Correlations in a many-body system

Heavy Fermions

The Mara river, Kenya (2016).

Short Range Correlations in a many-body system

Heavy Fermions

The Mara river, Kenya (2016).

We start with 2-body Schrodinger ...

$$\left[-\frac{\hbar^2}{m}\nabla^2 + V(\mathbf{r})\right]\psi = E\psi$$

At vanishing distance, $r \longrightarrow 0$

- The energy becomes negligible $E \ll \hbar^2/mr^2$
- The w.f. ψ assumes an asymptotic energy independent form φ

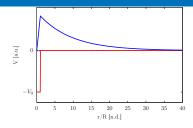
$$\left[-\frac{\hbar^2}{m}\nabla^2 + V(r)\right]\varphi(\mathbf{r}) = 0$$

$$r\varphi(r) = 0|_{r=0}$$

• Valid for any A-body system.

The Limit of vanishing energy

- Short range: only the s-wave survives
- Most of the wave function is outside the range of the potential.
- The wave funcion depends on a single length scale the scattering length *a*



• The potential can be replaced by the boundary condition [Bethe-Peierles]

$$\left.\frac{d\log(r\psi)}{dr}\right|_0 = \left.\frac{u'}{u}\right|_0 = -\frac{1}{a}$$

Consequently,

$$\psi \longrightarrow \left(\frac{1}{r} - \frac{1}{a}\right)$$

• Valid for any short range potential.

A system of spin up - spin down fermions

Tan relations connects the contact *C* with:

Q Tail of momentum distribution $|a|^{-1}$, $d^{-1} \ll k \ll r_0^{-1}$

$$n_{\sigma}(\mathbf{k}) \longrightarrow rac{\mathbf{C}}{k^4}$$

O The energy relation

$$T + U = \sum_{\sigma} \int \frac{dk}{(2\pi)^3} \frac{\hbar^2 k^2}{2m} \left(n_{\sigma}(k) - \frac{C}{k^4} \right) + \frac{\hbar^2 C}{4\pi ma}$$

A system of spin up - spin down fermions

Tan relations connects the contact *C* with:

Q Tail of momentum distribution $|a|^{-1}$, $d^{-1} \ll k \ll r_0^{-1}$

$$n_{\sigma}(k) \longrightarrow rac{C}{k^4}$$

Output: The energy relation

$$T + U = \sum_{\sigma} \int \frac{d\mathbf{k}}{(2\pi)^3} \frac{\hbar^2 k^2}{2m} \left(n_{\sigma}(\mathbf{k}) - \frac{\mathbf{C}}{k^4} \right) + \frac{\hbar^2 \mathbf{C}}{4\pi m a}$$

A system of spin up - spin down fermions

Tan relations connects the contact *C* with:

Q Tail of momentum distribution $|a|^{-1}$, $d^{-1} \ll k \ll r_0^{-1}$

$$n_{\sigma}(\mathbf{k}) \longrightarrow rac{\mathbf{C}}{k^4}$$

Output: The energy relation

$$T + U = \sum_{\sigma} \int \frac{d\mathbf{k}}{(2\pi)^3} \frac{\hbar^2 k^2}{2m} \left(n_{\sigma}(\mathbf{k}) - \frac{\mathbf{C}}{k^4} \right) + \frac{\hbar^2 \mathbf{C}}{4\pi ma}$$

$$\frac{dE}{d1/a} = -\frac{\hbar^2 \mathbf{C}}{4\pi m}$$

A system of spin up - spin down fermions

Tan relations connects the contact *C* with:

Q Tail of momentum distribution $|a|^{-1}$, $d^{-1} \ll k \ll r_0^{-1}$

$$n_{\sigma}(k) \longrightarrow rac{C}{k^4}$$

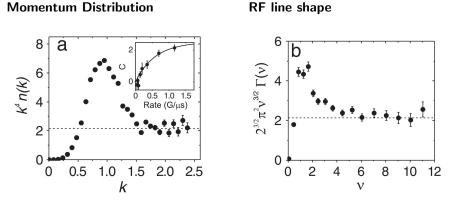
Output: The energy relation

$$T + U = \sum_{\sigma} \int \frac{d\mathbf{k}}{(2\pi)^3} \frac{\hbar^2 k^2}{2m} \left(n_{\sigma}(\mathbf{k}) - \frac{\mathbf{C}}{k^4} \right) + \frac{\hbar^2 \mathbf{C}}{4\pi m a}$$

$$\frac{dE}{d1/a} = -\frac{\hbar^2 \mathbf{C}}{4\pi m}$$

0 ...

The Contact - Experimental Results

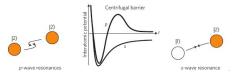


Verification of Universal Relations in a Strongly Interacting Fermi Gas J. T. Stewart, J. P. Gaebler, T. E. Drake, and D. S. Jin, Phys. Rev. Lett. 104, 235301 (2010)

Generalization to *p*-wave

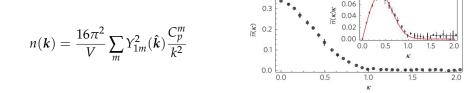
 $\ell \neq 0$ partial waves

The contact formalism is not limited so *s*-waves A system of one component fermions dominated by *p*-wave interaction



0.4

The asymptotic momentum distribution takes the form



C. Luciuk, *et al.*, Nature Phys. **12**, 599 (2016) Nir Barnea (HUJI)

The short range factorization

[Tan, Braatan & Platter, Werner & Castin,...]

• The interaction is represented through the boundary condition

$$\left[\partial \log r_{ij} \Psi / \partial r_{ij}\right]_{r_{ij}=0} = -1/a$$

• Thus, when two particles approach each other

$$\Psi \xrightarrow[r_{ij} \to 0]{} \underbrace{(1/r_{ij} - 1/a)}_{\text{universal}} A_{ij}(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k \neq i,j})$$

• The contact *C* represents the probability of finding an interacting pair within the system

$$C \equiv 16\pi^2 \sum_{ij} \langle A_{ij} | A_{ij} \rangle$$

Where

$$\langle A_{ij}|A_{ij}\rangle = \int \prod_{k\neq i,j} d\mathbf{r}_k \, d\mathbf{R}_{ij} \, A_{ij}^{\dagger} \left(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k\neq i,j}\right) \cdot A_{ij} \left(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k\neq i,j}\right)$$

The short range factorization

[Tan, Braatan & Platter, Werner & Castin,...]

• The interaction is represented through the boundary condition

$$\left[\partial \log r_{ij} \Psi / \partial r_{ij}\right]_{r_{ij}=0} = -1/a$$

• Thus, when two particles approach each other

$$\Psi \xrightarrow[r_{ij} \to 0]{} \underbrace{(1/r_{ij} - 1/a)}_{\text{universal}} A_{ij}(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k \neq i, j})$$

• The contact *C* represents the probability of finding an interacting pair within the system

$$C \equiv 16\pi^2 \sum_{ij} \langle A_{ij} | A_{ij} \rangle$$

Where

$$\langle A_{ij}|A_{ij}\rangle = \int \prod_{k\neq i,j} d\mathbf{r}_k \, d\mathbf{R}_{ij} \, A_{ij}^{\dagger} \left(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k\neq i,j}\right) \cdot A_{ij} \left(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k\neq i,j}\right)$$

[Braatan & Platter, Werner & Castin,...]

The Efimov effect - 3 Bosons

- $a_s \longrightarrow \infty$, **NO** length scale
- The effective potential must scale as $1/r^2$
- The resulting spectrum

$$\frac{E_n}{E_0} = e^{-2\pi n/|\nu_0|} \approx 515^{-n}.$$

• At the origin $ho \longrightarrow 0$

$$\Psi \longrightarrow c \sin \left[\nu_0 \log(\kappa \rho/2) - \phi\right] / \rho^2$$

• Consequntly $n(\mathbf{k})$ gets an oscillating $1/k^5$ tail

Nuclear Scales

- The interaction range $r_0 = \hbar/m_{\pi}c \approx 1.4 \text{ fm}$
- Scattering lengths $a_t \approx 5.4 \; {
 m fm}$, $a_s \approx 20 \; {
 m fm}$
- Interparticle distance $d \approx 2.4 \text{ fm}$

Conclusions

- The Tan conditions are not strictly applicable in nuclear physics
- The interaction range is significant
- There could be different interaction channels not only s-wave
- Therefore, we need replace the asymptotic form

$$\Psi \xrightarrow[r_{ij} \to 0]{} (1/r_{ij} - 1/a) A_{ij}(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k \neq i,j})$$

Consequently we don't expect a 1/k⁴ tail

Nuclear Scales

- The interaction range $r_0 = \hbar/m_{\pi}c \approx 1.4 \text{ fm}$
- Scattering lengths $a_t \approx 5.4 \; {
 m fm}$, $a_s \approx 20 \; {
 m fm}$
- Interparticle distance $d \approx 2.4 \text{ fm}$

Conclusions

- The Tan conditions are not strictly applicable in nuclear physics
- The interaction range is significant
- There could be different interaction channels not only s-wave
- Therefore, we need replace the asymptotic form

$$\Psi \xrightarrow[r_{ij} \to 0]{} (1/r_{ij} - 1/a) A_{ij}(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k \neq i,j})$$

• Consequently we don't expect a $1/k^4$ tail

Nuclear Scales

- The interaction range $r_0 = \hbar/m_{\pi}c \approx 1.4 \text{ fm}$
- Scattering lengths $a_t \approx 5.4 \; {
 m fm}$, $a_s \approx 20 \; {
 m fm}$
- Interparticle distance $d \approx 2.4 \text{ fm}$

Conclusions

- The Tan conditions are not strictly applicable in nuclear physics
- The interaction range is significant
- There could be different interaction channels not only s-wave
- Therefore, we need replace the asymptotic form

$$\Psi \xrightarrow[r_{ij} \to 0]{} \sum_{\alpha} \varphi_{\alpha}(\mathbf{r}_{ij}) A_{ij}^{\alpha}(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k \neq i,j})$$

• Consequently we don't expect a $1/k^4$ tail

• In nuclear physics we have 3 possible particle pairs

 $ij = \{pp, nn, pn\}$

• For each pair there are different channels

 $\alpha = (s, \ell)jm$

For each pair we define the contact matrix

 $C^{\alpha\beta}_{ij} \equiv 16\pi^2 N_{ij} \langle A^{\alpha}_{ij} | A^{\beta}_{ij} \rangle$

• For $\ell = 0$ we need consider only 4 contacts

 $P = \{(pp)_{S=0}, (nn)_{S=0}, (np)_{S=0}, (np)_{S=1}\}$

Adding isospin symmetry the number of contacts is reduced to 2,

 $C_s \longleftrightarrow \{(pp)_{S=0}, (nn)_{S=0}, (np)_{S=0}\}$ $C_t \longleftrightarrow \{(np)_{S=1}\}$

• In nuclear physics we have 3 possible particle pairs

 $ij = \{pp, nn, pn\}$

• For each pair there are different channels

 $\alpha = (s, \ell)jm$

• For each pair we define the contact matrix

$$C^{\alpha\beta}_{ij} \equiv 16\pi^2 N_{ij} \langle A^{\alpha}_{ij} | A^{\beta}_{ij} \rangle$$

• For $\ell = 0$ we need consider only 4 contacts

 $P = \{(pp)_{S=0}, (nn)_{S=0}, (np)_{S=0}, (np)_{S=1}\}$

• Adding isospin symmetry the number of contacts is reduced to 2,

 $C_s \longleftrightarrow \{(pp)_{S=0}, (nn)_{S=0}, (np)_{S=0}\}$ $C_t \longleftrightarrow \{(np)_{S=1}\}$

• In nuclear physics we have 3 possible particle pairs

 $ij = \{pp, nn, pn\}$

• For each pair there are different channels

$$\alpha = (s, \ell)jm$$

• For each pair we define the contact matrix

$$C^{\alpha\beta}_{ij}\equiv 16\pi^2 N_{ij}\langle A^{\alpha}_{ij}|A^{\beta}_{ij}\rangle$$

• For $\ell = 0$ we need consider only **4** contacts

 $P = \{(pp)_{S=0}, (nn)_{S=0}, (np)_{S=0}, (np)_{S=1}\}$

Adding isospin symmetry the number of contacts is reduced to 2,

 $C_s \longleftrightarrow \{(pp)_{S=0}, (nn)_{S=0}, (np)_{S=0}\}$ $C_t \longleftrightarrow \{(np)_{S=1}\}$

• In nuclear physics we have 3 possible particle pairs

 $ij = \{pp, nn, pn\}$

• For each pair there are different channels

$$\alpha = (s, \ell)jm$$

• For each pair we define the contact matrix

$$C^{\alpha\beta}_{ij} \equiv 16\pi^2 N_{ij} \langle A^{\alpha}_{ij} | A^{\beta}_{ij} \rangle$$

• For $\ell = 0$ we need consider only **4** contacts

$$P = \{(pp)_{S=0}, (nn)_{S=0}, (np)_{S=0}, (np)_{S=1}\}$$

• Adding isospin symmetry the number of contacts is reduced to 2,

$$C_s \longleftrightarrow \{(pp)_{S=0}, (nn)_{S=0}, (np)_{S=0}\}$$

$$C_t \longleftrightarrow \{(np)_{S=1}\}$$

The nuclear contact relations/applications

- O The nuclear photoabsorption cross-section The quasi-deutron model R. Weiss, B. Bazak, N. Barnea, PRL 114, 012501 (2015)
- O The 1-body and 2-body momentum distributions
 - R. Weiss, B. Bazak, N. Barnea, PRC 92, 054311 (2015)
 - M. Alvioli et al., arXiv:1607.04103 [nucl-th] (2016)
 - R. Weiss, E. Pazy, N. Barnea, Few-Body syst. (2016)
- Generalized treatment of the photoabsorption cross-section

R. Weiss, B. Bazak, N. Barnea, EPJA (2016)

Electron scattering

O. Hen et al., PRC 92, 045205 (2015)

Symmetry energy

B.J. Cai, B.A. Li, PRC 93, 014619 (2016)

...

Factorization and Universality in nucler physics

- What is the meaning of universality in nuclear physics?
- Can we derive model independent results?
- To what extent the contact formalism applicable to nuclei?
- How do we fix the **contact** experimentally?
- How do we fix the contact using ab-initio calculations?
- What is the role of 3-body correlations?
- Formal derivation of the W.F. factorization.
- Validity range, small parameter?
- Can we develop a simple theory to account for all SRC dominated reactions and observables? (probably yes)

Thank you !