
KeyForge: Mitigating Email Breaches
with Forward-Forgeable Signatures

Michael Specter
MIT

Sunoo Park
MIT & Harvard

Matthew Green
Johns Hopkins University

Abstract

Email breaches are commonplace, and they expose a wealth of personal, business, and politi-
cal data that may have devastating consequences. The current email system allows any attacker
who gains access to your email to prove the authenticity of the stolen messages to third parties
— a property arising from a necessary anti-spam / anti-spoofing protocol called DKIM. This
exacerbates the problem of email breaches by greatly increasing the potential for attackers to
damage the users’ reputation, blackmail them, or sell the stolen information to third parties.

In this paper, we introduce non-attributable email, which guarantees that a wide class of
adversaries are unable to convince any third party of the authenticity of stolen emails. We for-
mally define non-attributability, and present two practical system proposals — KeyForge and
TimeForge — that provably achieve non-attributability while maintaining the important protec-
tion against spam and spoofing that is currently provided by DKIM. Moreover, we implement
KeyForge and demonstrate that that scheme is practical, achieving competitive verification and
signing speed while also requiring 42% less bandwidth per email than RSA2048.

1 Introduction

Email is the world’s largest and most ubiquitous messaging scheme, spanning industry, government,
and personal use. Email content comprises a vast trove of sensitive information; it is common
knowledge that email breaches can have devastating consequences.

Making matters worse, email protocols today ensure that if a malicious party gains access to your
email, then she can cryptographically prove the authenticity of the stolen emails to any third party.
This greatly increases the intelligence value of stolen email: attackers can (even anonymously)
damage the reputation of users by publicly disseminating sensitive messages, or sell the messages
to interested third parties, all with high credibility. This property of email (“attributability”) arose
as an unintended side-effect of the DomainKeys Identified Mail (DKIM) standard,1 whose purpose
is to fight spam and spoofing attacks.

The consequences of this design are far from hypothetical. For example, during the 2016
U.S. election season, leaked emails from the Democratic National Committee (DNC) and other
operatives were released to the public via Wikileaks [50]. While the original senders did not
intentionally authenticate the emails, third parties were able to verify the authenticity of emails
due to the presence of cryptographic signatures from Google’s email server [49]. In some cases this
authentication directly contradicted disavowals by party officials [36].

Regardless of whether one believes the 2016 DNC leaks were ultimately for the better or worse,
it is alarming that an unintended side effect of a widely used protocol has created a broader

1As noted by a DKIM RFC author [15].

1

ar
X

iv
:1

90
4.

06
42

5v
1

 [
cs

.C
R

]
 1

2
A

pr
 2

01
9

ecosystem for credible propagation and misuse of illicitly obtained private communication. That
DKIM materially supports such an ecosystem is clear. Wikileaks has a webpage about DKIM
authentication [49] indicating that the organization relies heavily on non-repudiability to enhance
the credibility of its material. This is corroborated by recent incidents, e.g., [13], in which email
leaks were allegedly salted with falsified data.

This raises a natural question: can we mitigate the potential harms of such an ecosystem, while
maintaining the efficiency and strong spam- and spoofing-resistance of email today? It is a par-
ticularly pressing question as new reports of data breaches, including email account information,
seem to surface every few weeks. The 2013 breach of every one of Yahoo!’s 3 million email accounts
[46] is a vivid reminder that not only public figures are impacted by the consequences of compro-
mised email. Though the Yahoo! data has not been publicized, data from other large breaches
has been posted publicly online.2 Besides election season strategy, attackers’ motives have ranged
from financial gain — such as by selling patient healthcare data gleaned from emails [29] — to
industrial espionage and monitoring political dissidents and foreign officials [24]. In the absence of
any outside breach, such incentives may also prompt malicious insiders to sell or leak email data.

While the property that stolen email can be cryptographically attributed exacerbates email
leaks, DKIM itself serves a necessary purpose in the email ecosystem. Concretely, DKIM requires
email servers to provide a cryptographic signature on each outgoing email’s contents and metadata
(including the sender’s identity). This assures the receiving server that the sending domain actually
did intend to send the message, providing inter-domain accountability in case of spam, and moreover
ensuring that spoofing is detectable.

An initial intuition may be that attributability of stolen email is a necessary side-effect of any
spam- and spoofing-resistant email system. Indeed, it is unclear how a recipient can be certain that
an email was legitimately sent without gaining the ability to convince a third party of the same.

In this work, we challenge the above intuition and construct efficient protocols that achieve the
important spam- and spoofing-resistance that DKIM provides, while simultaneously guaranteeing
non-attributability of stolen email. Our protocols provably ensure that a wide class of adversaries
are unable to convince any scrupulous third party of the authenticity of stolen emails.

1.1 System Requirements

Requirements on email demand certain unique properties not commonly seen in other messaging
systems. For example, email is an any-mesh ecosystem; any domain owner on the internet could
set up the appropriate DNS records and become an server that interoperates with any other email
server. Similarly, a domain may be responsible for signing and verifying anything from hundreds
to millions of emails per day, and administrators are likely to have to contend with increasing
throughput requirements over time.

In considering throughput for any domain, while maintaining good constants on computation
time for signing and verification of emails is important, it is more important that the service be able
to scale — that adding more resources to the system actually provide linear or better performance
guarantees. Scalability in terms in terms of interconnection with other mail servers is as important
as email throughput.3

2 E.g., the recent “Collection 1” breach implicating 773 million email addresses [30]. Note that the “Collection 1”
breach consists of email addresses and passwords used to log in to websites, not necessarily email accounts.

3The IETF standard for DMARC [1] explicitly states that pre-sending agreements is a poor scalability choice for
this reason, see also [47].

2

An unintuitive result of these throughput requirements is that certain types of overhead that
would be trivial in other messaging contexts, such as requiring servers to communicate prior to
a message being sent or requiring round trips between servers on every message, are unlikely to
be viable in this environment. For example, it would be difficult to scale a service that requires
constant connection to, and maintain constant state with, an unbounded number of potentially
malicious servers.

In addition to efficiency and scalability, a practical solution for email non-attributability must
address the following considerations:

Untrusted recipients. A naive proposal is to rely on recipient behavior to ensure non-attributability:
e.g., having the receiving server delete all DKIM header information upon receipt. Such solu-
tions are inadequate for a threat model whose very purpose is to prevent attacks by the re-
cipient and/or the recipient’s server (or an attacker who compromises the recipient). Ideally,
non-attributability for a given sender’s emails should arise from the sender’s behavior alone.

Asynchrony. Email is inherently asynchronous and must operate across many nodes that are
unable to interact directly, as discussed above. Thus, schemes based on interactive authentica-
tion protocols, such as naturally deniable interactive zero-knowledge proofs — while they might
suffice for a synchronous communication setting — are not viable solutions for email. Schemes
based on other interactive protocols such as OTR [12] are inappropriate for similar reasons.

Universal forgeability One intuitive definition of email non-attributability could be that DKIM
signatures must be forgeable by the recipient of an email (“recipient forgeability”). Then,
even if the attacker presents validly signed emails a third party, she lacks credibility: had
she really broken into the recipient’s email, she could have produced the signatures herself.
Recipient forgeability could be achieved, for example, by using replacing DKIM signatures with
ring signatures [44] such that a valid signature can be produced by either the sender or the
recipient, as proposed by [3].

However, recipient forgeability is a weak notion of non-attributability. A stronger, and more
desirable, notion is that DKIM signatures must be forgeable by anyone after a small time
delay to prevent spam and spoofing attacks. This renders alleged attackers far less credible,
since anyone can forge valid-looking signatures without breaking into any email account at all.
We call this stronger notion “universal forgeability,” and consider it an essential feature of a
satisfactory non-attributability solution for email.

Incremental deployment. Given the vast number of existing email servers and the need for
interoperability, we consider the majority of the email ecosystem to be entrenched. For example,
it would be difficult to require substantial changes to mail routing, and one cannot expect that
every actor immediately switch to some new scheme. We do, however, hold the view that DKIM
itself can be replaced incrementally, and that new signing mechanisms represent a less onerous
impact on the email ecosystem.

Long-lived keys. One natural approach to short-lived credibility of signatures is to leverage
correspondingly short-lived keys and publish each secret key at the end of its lifetime; this
sort of approach to achieving forgeability has been mentioned in passing outside of the context
of email [12]. Similarly, one may leverage easily breakable keys in tandem with rapid key
rotation, a solution originally suggested by Jon Callas, one of the original creators of the DKIM
standard [15].

3

Unfortunately, too-frequent key rotation entails a variety of likely insurmountable practical
problems; rotating keys is a manual process that introduces risk of misconfiguration and key
theft, and no administrator wants to be responsible for disabling email for an entire organization.
Worse, DNS results are often cached, so replacing an individual DNS record with a new one
takes time and can yield inconsistent results for different DNS servers on the receiver’s end.
Thus, given the impracticability of very frequent key rotation, this simple scheme cannot give
a satisfactory non-attributability guarantee.

These observations point to a possible solution involving long-lived public keys but short-lived
secret keys, reminiscent of forward-secure signatures (FSS) [4, 10]. However, FSS were designed
with a rather different goal from ours: namely, to allow efficient key updating while preventing
derivation of past keys from present and future keys. In contrast, our setting requires that present
and future keys cannot be derived from past keys. The only way to achieve this property using an
FFS would be to precompute a long list of keys and then use the secret keys in backwards order
— this is arguably better than the simplest solution based on short-lived keys, but having to store
the whole list of keys is inefficient and unsatisfactory.

Our solution, KeyForge, does in fact leverage a signature scheme with long-lived public keys
and short-lived secret keys: we define a new primitive called forward-forgeable signatures (FFS)
capturing the specific requirements of our application, and give a construction of FFS from any hier-
archical identity-based signature scheme, as detailed in Section 4. Our second proposal, TimeForge,
requires no exposure of private keys, but achieves a slightly weaker notion of non-attributability
than KeyForge. TimeForge is explained in Section 5.2.

1.2 Key Ideas

There are two main ideas underlying the solutions we explore: delayed universal forgeability and
immediate recipient forgeability.

Delayed universal forgeability. The key idea in this approach is to ensure that signatures with
respect to past emails “expire” after a time delay ∆ and thereafter become forgeable by the general
public (i.e., arbitrary outsiders or non-parties). This property ensures that no attribution will be
credible after the time delay has elapsed. We call this property delayed universal forgeability. As
long as ∆ is set larger than the maximum viable time for email latency, the signature will still
be convincing to the recipient at the time of receipt, thus maintaining the spam- and spoofing-
resistance of DKIM.

Signatures that possess delayed universal forgeability retain all of the standard unforgeability
properties one would expect of a standard signature scheme, until the set time ∆ has passed. Thus
in cases where an attacker gains access to email and shows it to a third party within ∆ time after
the email was sent, a third party will be convinced of the email’s authenticity. Effectively, delayed
universal forgeability protects against adversaries that compromise an email account by breaking
in and taking a snapshot (“after-the-fact attacks”), but not adversaries that fully control an email
account and monitor its email in real time (“real-time attacks”). After-the-fact attacks cover a
broad range of realistic attacks, for example, including many data breaches. Next, we discuss how
we address real-time attacks.

Immediate recipient forgeability. Suppose that the fact of access to a particular client account
implies the ability to forge messages from arbitrary other servers to that recipient only : that is,
the ability to obtain valid DKIM signatures on email content and metadata of one’s choice. We
call this immediate recipient forgeability. Importantly, the recipient constraint ensures the inability

4

to impersonate any other server for the purposes of email addressed to other recipients, thus not
interfering with DKIM’s spam- and spoofing-resistance.

This undermines the credibility of any attacker who claims to have ongoing access to a particular
email account and attempts to convince third parties of the authenticity of emails that she claims
were sent to (and from) that account. This is also the case for real-time attacks, which may publish
allegedly-incoming emails immediately after they are received.

Combining both notions. While immediate recipient forgeability has the advantage of no time
delay, it has the disadvantage that the ability to forge is not universal: rather, it is limited to those
who have access to the recipient email account. In contrast, delayed universal forgeability enables
anyone at all to forge. Our protocols achieve the “best of both worlds,” in order to leverage both
their advantages.

Section 3 defines our threat model, discusses its limitations, and formalizes immediate recipient
forgeability and delayed universal forgeability with indistinguishability-based definitions (Defini-
tions 1–2).

1.3 Our Solutions

This paper fully specifies and evaluates our main proposal, KeyForge. We also outline an alternative
protocol TimeForge that achieves email non-attributability by rather different techniques assuming
the existence of a timestamping authority.

KeyForge Our main proposal is KeyForge, a protocol to replace DKIM and the associated au-
thentication mechanisms. The first idea of KeyForge is to achieve delayed universal forgeability by
publicizing signing keys after a set time delay ∆ (say, by posting them on the internet).

We present a new definition, forward-forgeable signatures (FFS), to formalize the requirements
of a signature scheme equipped with a method to selectively disclose “forging information” for
subsets of past signatures. The public key is required to persist over disclosures: otherwise, the
frequency of manual key updates and DNS updates would render fine-grained disclosures inviable.
We moreover define succinctness of FFS, a measure of how efficiently the disclosures can be made.
We construct FFS based on hierarchical identity-based signatures (HIBS) and use it as an essential
building block for KeyForge. Our construction achieves logarithmic succinctness.

The second idea of KeyForge is to achieve immediate recipient forgeability by having email
servers accept “forge requests” requesting that specific emails be sent to the requester in real time.
The restriction that the recipient must be the requester ensures that DKIM’s spam- and spoofing-
protection remains effective.

TimeForge. Our second proposal TimeForge assumes a publicly verifiable timekeeper (PVTK)
model, in which a reliable timekeeper periodically issues timestamps whose authenticity is publicly
verifiable (e.g., because the authority signs each timestamp). Rather than deploying and scaling a
new timekeeping service, we show that viable timekeeping systems can be constructed from exist-
ing Internet infrastructure, including OCSP staple responders [41], Certificate Transparency [35],
randomness beacons [39], and proof-of-work blockchains [37, 51].

In a nutshell, the idea of TimeForge is to substitute each DKIM signature on a message m at
time t with a succinct zero-knowledge proof of the statement S(m)∨R(m)∨T (t+∆), where: S(m)
denotes knowledge of a valid signature by the sender on m, R(m) denotes knowledge of a valid
signature by the receiver on m, and T (t + ∆) denotes knowledge of a valid timestamp for a time
later than t + ∆. Effectively, the inclusion of T (t + ∆) ensures delayed universal forgeability, and

5

the inclusion of R(m) ensures immediate recipient forgeability. The primitive just described can be
thought of as a forward-forgeable signature scheme in the PVTK model.

1.4 Summary of Contributions

• We provide formal definitions of:

– Email non-attributability (Section 3.3)

– Forward-forgeable signatures (Section 4)

• We give provably secure constructions of succinct forward-forgeable signatures (FFS) in
both the standard and PVTK models. FFS may be of independent interest beyond the
present application.

• We present two system designs — KeyForge, and TimeForge — that achieve email non-
attributability and could be applied to the existing email system with acceptable practical
and processing overhead.

• We present a fully implemented KeyForge and provide a comprehensive evaluation of Key-
Forge’s impact on signing, verification, and bandwidth costs.

2 Background on Email

MTA

MTA

MTA

MTA

MTA

MTA

Sender’s Server
(MSA)

Sender’s Client
(MUA)

Receiver’s Server
(MDA)

Receiver’s Client
(MUA)

Sender’s Domain Reciever’s Domain

Figure 1: Simplified email routing infrastructure

RFC 5598 [19] defines terminology for processing and delivering mail. This section introduces
basic terminology towards discussing our threat model and system requirements.

2.1 Email Routing

Figure 1 illustrates the architecture of email routing: an asynchronous routing protocol built on
top of TCP/IP.

Users first establish a relationship with a trusted email service provider, called a Mail Submission
Agent (MSA) on the sender side and a Mail Delivery Agent (MDA) on the receiver side. The MDA
is responsible for various tasks including verifying the authenticity of incoming messages.

The user’s email client is generically called a Mail User Agent (MUA). Email originates from an
MUA, and arrives at the user’s trusted MSA. Depending on the system’s configuration, the MSA
may send the email to other Mail Transfer Agents (MTAs) it trusts. Eventually, an MTA performs

6

a DNS lookup for the receiving domain to check which MTAs are authorized to process emails for
that domain. The email is then sent to one of these MTAs. After a number of hops that depend
on the sending and receiving organizations’ infrastructure, the email arrives at the receiver’s MDA,
which is responsible for verifying the message for the receiver’s MUA.

2.2 Email Authentication

The IETF has developed a number of standards that allow domains to sign and verify incoming and
outgoing messages. We provide a stylized overview of the four that have seen appreciable adoption:
DKIM, SPF, DMARC, and ARC.

DKIM. DomainKeys Identified Mail (DKIM) is an IETF standard for an MSA to sign outgoing
email, and an MDA to verify that email by looking up the MSA’s public key in the DNS.

Setup: The MSA generates a key pair and uploads the public key to the DNS.

Send: The MSA adds the location of its public key to the email’s metadata (or header), as well
as metadata allowing verification of the signature, and then signs the email and its headers.4

Verify: On receipt, the MDA performs a DNS lookup for the sender’s public key as specified
in the header, and then cryptographically verifies the email.

SPF The Sender Policy Framework (SPF) ensures that intermediary MTAs are permitted to send
and receive messages as a part of the domain. In a way, this solves a somewhat orthogonal
problem to DKIM in that SPF provides little guarantee that the message itself has not been
modified by an intermediary, but instead provides spoofing protection by limiting what IP
addresses are valid accepting MTAs.

DMARC An SPF or DKIM failure as a result of a misconfiguration is indistinguishable from a
failure due to an attempted message spoofing, and neither DKIM nor SPF provide mechanisms
for alerting the sending domain that there has been a problem. DMARC solves this by adding
a DNS TXT record specifying to the receiver what it should do in the case of such failures (such
as quarantine, reject, or accept the message despite the failure), as well as providing an email
address to send aggregated statistics on such failures.

ARC Authenticated Received Chain (ARC) is an experimental and largely unimplemented IETF
standard that aims to address the issues caused by indirect email flows.

Legitimate modification of messages in transit may occur in a number of circumstances. For
example, an MTA that is also a virus scanner may remove malicious attachments, or a mailing
list may prepend the mailing list’s name to the subject of an email. Unfortunately, any alteration
of the body or headers invalidates the original DKIM signature.

ARC acts as an attestation by an intermediary that some subset of DKIM, SPF, DMARC, or
previous ARC instances were verifiable before content was modified. To do so, the intermediary
adds its own signature to the header of the message, along with metadata about what was
verified.

4This usually includes a hash of the entirety of the message, but the specification does allow for portions of the
body of the message to go unsigned but it’s unclear how often this is done, and appears to be relatively rare.

7

2.3 Challenges for Synchronous Authentication Protocols

Email is inherently asynchronous, and any replacement for DKIM must therefore allow for non-
interactive verification of emails. The reason for this is twofold:

Third party MTAs. Many organizations choose to use third-party MTAs as an initial hop
between the organization’s own mail server and the internet. The reason one may choose to use
such MTAs is varied, but a common use case is to provide some protection from spam, malicious
attachments, or DDoS attacks. While these intermediaries are allowed to quarantine messages or
provide flow control to the MDA, they are not trusted to refrain from modifying or spoofing emails.
By scraping DNS results for the Alexa top 150k, we find that 31,615 have an MX record, and, of
these, 22% (6,793) are using a confirmed multi-hop third-party MTA provider.

Mail forwarding. Often users will forward email received from an account on one domain to
another through mail forwarding. These emails then must be verified by the receiving domain, and
there is no way for the receiver to communicate with the original sender.

3 Model and Security Definitions

This section presents threat models and formal definitions of email non-attributability.

Notation “PPT” means “probabilistic polynomial time.” |S| denotes the size of a set S. [n]
denotes the set {1, . . . , n} of positive integers up to n, and P(·) denotes powerset. ≈c denotes
computational indistinguishability. τ ||e denotes the result of appending an additional element e to
a tuple τ .

3.1 Model

Time We model time in discrete time-steps and assume that everyone has access to a fairly accurate
local clock. (This is a reasonable model because our system requires synchrony only at a coarse
granularity, such that realistic discrepancies in local clocks will not have any effect.)

Asynchrony Recognizing the asynchronous nature of email, ∆̂ denotes an upper bound on the
time required for email delivery. Our parameter settings depend on ∆̂, and our evaluation sets ∆̂
at 15 minutes, as discussed in Section 5.1.1.

DNS Our model assumes all parties and algorithms have access to DNS and can update their own
DNS records.

Publication We assume that each party has method of publishing persistent, updatable informa-
tion that is retrievable by all other parties and algorithms. This could be via DNS or on another
medium, such as posting information on a website.

3.2 Threat models

The type of attack with which we are concerned is disclosure of private communications at the
recipient’s server, whether because the recipient is compromised or because it is malicious. We
define two threat models, defined below.

Both our proposals KeyForge and TimeForge achieve security against Threat Model 2, which
is the stronger of the two threat models and captures advanced persistent threats. Threat Model 1

8

may be a meaningful threat model in a scenario where attackers may illicitly gain access to an
email server but are not likely to be able to maintain such access for extended periods of time. A
basic, simpler version of KeyForge achieves non-attributability for almost all emails (i.e., all but
very recent emails) under Threat Model 1.

Threat Model 1. (After-the-fact attacks) In this model, the recipient is presumed honest at the
time of email receipt, but is later compromised by an attacker that takes a snapshot of all past email
content.

Threat Model 2. (Real-time attacks) In this model, the receiver is presumed malicious at the
time of email receipt, i.e., presumed to have ongoing access and immediate intent to disclose the
content of received emails to third parties.

Client-server trust. In the current system, email clients rely heavily on their email servers. A
malicious email server could easily and undetectably misbehave in many essential functions: it could
drop incoming emails, modify outgoing emails (since typically, emails are not signed client-side), or
falsify the content and metadata of incoming emails (since typically, clients do not perform DKIM
verification themselves).

Thus, client-server trust is very high in practice. We treat the client and server as a single
entity for the purposes of this paper, except where specifically otherwise indicated.

No trusted parties. In a system where credibility is based on a reliable reputation system, a
trusted (reputable) party with the ability to eavesdrop on the communication channel would be
able to undermine non-attributability by keeping logs of all traffic it sees. For example, an MTA
in the email system, if it kept logs of all traffic, could effectively resolve the question of authorship
of emails by referring to its internal logs, in a manner convincing to anyone who simply trusts the
MTA based on its reputation. Our model assumes mutually distrustful parties: i.e., that no party
is taken simply on its word as in the scenario just described. In other words, credibility in our
model is evidence-based and not reputation-based.

3.3 Defining Non-Attributability

We define email non-attributability as a game involving an email protocol E, adversary A, simulator
S, and distinguisher D. For any email server S with internal state s, we denote by Es(S,R,m, µ, t)
the information that recipient R receives when S legitimately sends at time t an email message
m with metadata µ to R. For simplicity, our notation leaves implicit that parties other than the
sender participate in transmission and may affect the information received by R (for example, the
MTAs); however, the final received information Es(S,R,m, µ) should be thought to contain any
modifications made en route between S and R. While this definition refers to “internal state s” for
generality, the state s can for our purposes be thought to contain secret key material.

Intuitively, we require indistinguishability between a legitimate email Es(S,R,m, µ, t) and a
“fake” email that was created without access to the sending server at all: that is, without knowing
s. To model this, we consider a simulator S whose “goal” is to create an email that looks legitimate
without knowing s, and our security definition requires that Es(S,R,m, µ, t) is indistinguishable
from the output of S.

Next, we give two formal definitions of non-attributability. The first (Definition 1) considers a
simulator that has access to a particular recipient’s email server, and is required to output email
from any sender to that recipient. The second (Definition 2) is a stronger definition that considers

9

a simulator that is required to output email from any sender to any recipient and has access to
neither the sender’s nor the receiver’s email server.

In other words, if an adversary publishes an email allegedly authored by an honest party,
Definition 1 guarantees that she can credibly argue that, granting that the attacker indeed broke
into her or her correspondent’s account, his allegation inherently lacks credibility because he must
have had the ability to forge emails with content of his choice (by virtue of having access to one
of their email accounts). Definition 2 gives the yet stronger guarantee that anyone can forge past
emails: so the allegation is even less credible and the email accounts may not even have been
compromised. Note that the two definitions are incomparable: neither is strictly stronger.

Definition 1 (Recipient non-attributability). An email protocol E is non-attributable for recipient
servers if there is a PPT simulator S such that for any sender S and recipient R, for any email
message m and metadata µ,

Es(S,R,m, µ, t) ≈c S(R,S,m, µ) ,

where s is the internal state of S, t is the time at which S is invoked, and R denotes the internal
state of the recipient R’s email server.

E is furthermore non-attributable for recipients if there is a PPT simulator S such that for any
sender S and recipient R, for any email message m and metadata µ,

Es(S,R,m, µ, t) ≈c SR(S,m, µ) ,

where the superscript R denotes that S has the capability of sending outgoing mail as R through
R’s email server.

Observe that non-attributability for recipients is a stronger than (i.e., implies) non-attributability
for recipient servers. KeyForge achieves non-attributability for recipients, whereas TimeForge
achieves non-attributability for recipient servers. See Remark 3 for further discussion of the differ-
ences between the two variants of recipient non-attributability.

Definition 2 (∆-universal non-attributability). For ∆ ∈ N, an email protocol E is ∆-strongly
non-attributable if there is a PPT simulator S such that for any sender S (with internal state s)
and recipient R, for any email message m, metadata µ, and timestamp t, the following holds at
any time ≥ t+ ∆:

Es(S,R,m, µ, t) ≈c S(S,R,m, µ, t) .

The two indistinguishability requirements defined above serve to ensure that no attacker can
credibly claim to a third party5 that he is providing her with the true content of an email account:
the third party is in the role of distinguisher.

Definition 2 is inviable if ∆ < ∆̂. Otherwise, the spam- and spoofing-resistance provided
by DKIM would be undermined, since any outsider could use the simulator in real time to send
spam email indistinguishable to the recipient from email actually sent by an honest party. This
means that the simulator can only begin to generate an indistinguishable distribution after ∆̂ delay.
Recall that as time elapses, new information may become available to the simulator, as discussed
in Section 3.1.

5E.g., the general public (if the allegedly stolen emails are released publicly) or a specific interested party (such
as a potential buyer or disseminator of the information).

10

Relation to the threat models. ∆-universal non-attributability (Definition 2) achieves non-
attributability against after-the-fact attacks (Threat Model 1) for all emails sent and received at
least ∆ before the server is compromised.

The combination of recipient non-attributability and ∆̂-universal non-attributability (Defini-
tions 1 and 2) yields effective non-attributability for all emails against real-time attacks (Threat
Model 2). A real-time attacker with ongoing access to an email server can easily make the fact of his
access evident by immediately publishing all emails he sees (in particular, within time ∆̂ of receipt),
but will nonetheless be unable to convince a third party of any particular emails since the fact of
his access to the email server allows him to forge emails in real time, under Definition 1. With re-
spect to allegedly compromised emails from more than ∆̂ ago, an attacker’s credibility is even more
diminished, since for such past timestamps anyone with internet access can generate seemingly
validly signed emails, even without breaking into any email server at all, under Definition 2.

Limitations of our model. A practical consequence of recipient non-attributability is that
a recipient R’s email server can, unknown to R, create fraudulent messages that appear to be
legitimate emails from any sender to R, and deliver them to R. As discussed Section 3.2, the
level of client-server trust necessitated by the current email system is very high. In this context,
recipient non-attributability does not meaningfully increase the trust a client places in her email
server. For example, email servers in the current system could (and often do) omit DKIM headers
when delivering emails to clients: this effectively implies the ability to deliver fake messages to their
clients.

A trivial and uninteresting way to achieve Definitions 1 and 2 is not to sign emails at all. Of
course, this is undesirable as it would undermine the spam- and spoofing-resistance for which DKIM
was designed. The concurrent requirement of spam- and spoofing-resistance is implicit throughout
this paper. It follows that any simulator S satisfying Definition 1 must use the recipient R’s
secret state r: that is, in order to prevent spam, real-time forgery must be limited to messages
whose recipient is the forger herself. This suggests that recipient non-attributability would not
be meaningful in an extreme situation where every single use of r can be monitored and attested
to, since then an attacker could prove that S was never invoked on r. This might be plausible
assuming secure hardware, e.g., by generating and monitoring all uses of r within a secure enclave
(as suggested in [28]) — but even then, such an attack would likely only be feasible by the unlikely
attacker who has designed her recipient email server with this unlikely configuration from its very
setup. We consider such attacks to be outside our threat model.

Finally, we note that our definitions allow for attackers to convince others of the fact that
they have access to a particular email account. Our guarantee is that even so, they cannot make
credible claims about the content of the emails, since they gain the ability to falsify emails by
the very fact of their access. That attackers can prove access is unavoidable given that universal
forgeability is not compatible with spam resistance for too small ∆: e.g., consider a real-time
attacker that obtains a secure timestamp (via an outside timestamping service) for all incoming
emails immediately on arrival. Under Definition 1, this does not prove authenticity of the email
content, but just demonstrates access to the recipient’s account. In general, we treat such attacks
as being outside our threat model.

11

4 Forward-Forgeable Signatures

4.1 Definition

Definition 3 formalizes forward-forgeable signatures (FFS). They are a new primitive that this paper
introduces, and are an essential building block of our main protocol KeyForge. Informally, FFS
are signature schemes equipped with a method to selectively “expire” past signatures by releasing
expiry information that makes them forgeable. More precisely: in an FFS, each signature is made
with respect to a tag τ , which can be an arbitrary string. Expiry information can be released with
respect to any tag or set of tags.

In our context of wishing to make past signatures forgeable after a time delay, the tag can be
thought to be a timestamp: for example, each email is signed with respect to the current time τ ,
and at some later time τ + ∆, the signer may publish expiry information for τ .

The correctness requirement of FFS is the same as that of standard signatures. The unforgeabil-
ity requirement is modified to include an expiry oracle: that is, unforgeability of signatures w.r.t.
non-expired tags must hold even in the presence arbitrary, adversarially chosen expirations. The
forgeability on expiry requirement is a feature of FFS that has no analogue in standard signatures:

Definition 3 (FFS). A forward-forgeable signature scheme (FFS) Σ is implicitly parametrized by
message space M and tag space T , and consists of five algorithms

Σ = (KeyGen,Sign,Verify,Expire,Forge)

satisfying the following syntax and requirements.

Syntax:
• KeyGen(1κ) takes as input a security parameter6 1κ and outputs a key pair (vk, sk).

• Sign(sk, τ,m) takes as input a signing key sk, a tag τ ∈ T , and a message m ∈ M, and
outputs a signature σ.

• Verify(vk, τ,m, σ) takes as input a verification key vk, a tag τ ∈ T , a message m ∈M, and
a signature σ, and outputs a single bit indicating whether or not σ is a valid signature with
respect to vk, m, and τ .

• Expire(sk, T) takes as input a signing key sk and a tag set T ⊆ T , and outputs expiry info
η.

• Forge(η, τ,m) takes as input expiry info η, a tag τ ∈ T , and a message m ∈M, and outputs
signature σ.

Required properties:
1. Correctness: For all m ∈M, τ ∈ T , there is a negligible function ε such that for all κ,

Pr

[
(vk, sk)← KeyGen(1κ)
σ ← Sign(sk, τ,m)
b← Verify (vk, τ,m, σ)

: b = 1

]
≥ 1− ε(κ) .

6Technically, all five algorithms take 1κ as an input, and M and T may be parametrized by κ. For brevity, we
leave this implicit except in KeyGen.

12

2. Unforgeability: For any PPT A, there is a negligible function ε such that for all κ ∈ N,

Pr

 (vk, sk)← KeyGen(1κ)
(τ,m, σ)← ASsk,Esk (vk)
b← Verify (vk, τ,m, σ)
b′ = τ /∈ Q′E ∧ (τ,m) /∈ QS

: b = b′ = 1

≤ ε(κ) ,

where Ssk and Esk respectively denote oracles Sign(sk, ·, ·) and Expire(sk, ·), QS and QE

denote the sets of queries made by A to the respective oracles, and Q′E =
⋃
T∈QE

T .

3. Forgeability on expiry: For all m ∈M, T ⊆ T , for any τ ∈ T , there is a negligible function
ε such that for all κ,

Pr

 (vk, sk)← KeyGen(1κ)
η ← Expire(sk, T)
σ ← Forge(η, τ,m)
b← Verify (vk, τ,m, σ)

: b = 1

 ≥ 1− ε(κ) .

Generalized expiry policies Definition 3 allows for more complex expiry policies than simply
expiring a sequence of timestamps in order. For example, it may be desirable to expire certain
types of email more quickly than others (say, email internal to an organization which is likely to be
delivered faster, or email with particularly sensitive content). Alternatively, it may be desirable to
expire email not only according to its timestamp but also based on other metadata (say, a recipient
whose email server is revealed to have been compromised). Our FFS definition would support
expiry on the basis of any attribute which is recorded in the tag: for example, tags might be of the
form τ = (t, δ) where t is a timestamp and δ is the delay until expiration, or alternatively, τ = (t, R)
where R is the recipient. Moreover, even when tags have the form τ = (t, ·), our construction still
allows for efficiently expiring based solely on timestamp: that is, expiring “all tags that begin with
t.”

FFS in the publicly verifiable timekeeper model Recall the publicly verifiable timekeeper
(PVTK) model, in which a reliable timekeeper periodically issues timestamps whose authenticity is
publicly verifiable (e.g., because the authority signs each timestamp). We show that in this model,
expiration of signatures may occur “automatically” over time: that is, it is not necessary for the
signer to publish any additional expiry information in order for the signature to become forgeable
after a delay. In this case, the algorithm Expire is unnecessary, and Forge need not take η as input.
Our construction of FFS in the PVTK model is given in Section 5.2.

Difference with forward-secure signatures Both FFS and FSS yield a system of short-lived
secret keys all corresponding to one long-lived public key. However, the definitions differ in two
main ways, described below and depicted in Figure 2.

1. Forward-secure signatures require that past keys cannot be computed from future keys,
whereas forward-forgeable signatures require that future keys cannot be computed from
past keys.

2. Forward-secure signatures are specifically designed to protect against compromise of all
secret key material, so the each key must be derivable based solely on the previous short-
lived key. Forward-forgeable signatures, in contrast, may have persistent “master secret
key” material that is used to generate each short-lived key.

13

sk1 sk2 sk3 sk4 . . .Forward-secure:

sk1 sk2 sk3 sk4msk . . .Forward-forgeable:

Figure 2: Forward-secure vs. forward-forgeable signatures

4.2 Succinctness

Next, we define succinctness of FFS, a measure of the efficiency of disclosure in terms of the
size of expiry info per tag expired. KeyForge uses a construction of FFS based on hierarchical
identity-based signatures (Section 4.3), which achieves logarithmic succinctness.

Definition 4. Let z : N→ N. Let S ⊂ P(T) be a set of sets of tags. A forward-forgeable signature
scheme Σ is (S, z)-succinct if for any T ∈ S, there is a negligible function ε such that for all κ,

Pr
(vk,sk)←KeyGen(1κ)

[∣∣Expire(sk, T)
∣∣ ≤ z(|T |)] ≥ 1− ε(κ) .

Remark 1. Definition 4 is a worst-case definition: it guarantees the size of expiry information with
overwhelming probability. In certain applications, an average-case definition may be appropri-
ate instead, i.e., defining succinctness by bounding the size on expectation. We use a worst-case
definition since it is stronger than an average-case definition, and our construction achieves it.

4.3 FFS Construction from (Hierachical) IBS

We first outline a simple FFS construction BasicFFS based on identity-based signatures (IBS) [45],
as a stepping stone to our main construction from hierarchical IBS (HIBS). The next paragraph
assumes familiarity with standard IBS terminology; readers unfamiliar with IBS may skip to the
main construction which is explained formally with explicit syntax definitions.

Let tags in the FFS correspond to identities in the IBS. BasicFFS.KeyGen outputs IBS master
keys. The BasicFFS signing and verification algorithms for tag τ respectively invoke the IBS signing
and verification algorithms for identity τ . BasicFFS.Expire outputs the secret key for each input tag
τ ∈ T , and BasicFFS.Forge uses the appropriate secret key from the expiry information to invoke
the IBS signing algorithm. The simple solution has linear succinctness. By leveraging hierarchical
IBS (HIBS), our main construction achieves logarithmic succinctness, as described next.

Definition 5. A hierarchical identity-based signature scheme HIBS is implicitly parametrized by
message space M and identity space I = {I`}`∈N, and consists of four algorithms

HIBS = (Setup,KeyGen,Sign,Verify)

with the following syntax.
• Setup(1κ) takes as input a security parameter7 and outputs a master key pair (mvk,msk).

7Technically, all four algorithms take 1κ as an input, and M and I may be parametrized by κ. For brevity, we
leave this implicit except in Setup.

14

• KeyGen(sk~id, id) takes as input a secret key sk~id for a tuple of identities ~id = (id1, . . . , id`) ∈
I1 × · · · × I` and an additional identity id ∈ I`+1 and outputs a signing key sk ~id′ where
~id′ = (id1, . . . , id`, id). The tuple may be empty (i.e., ` = 0): in this case, sk() = msk.

• Sign(sk~id,m) takes as input a signing key sk~id and a message m ∈ M, and outputs a
signature σ.

• Verify(mvk, ~id,m, σ) takes as input master verification key mvk, tuple of identities ~id, mes-
sage m ∈ M, and signature σ, and outputs a single bit indicating whether or not σ is a
valid signature with respect to mvk, ~id, and m.

A depth-L HIBS is a HIBS where the maximum length of identity tuples is L, i.e., the identity
space is I = {I`}`∈[L].

Definition 6. For an identity space I = {I`}`∈N, we say ~id is a level-` identity if ~id ∈ I1×· · ·×I`.
For any `′ > `, let ~id is a level-` identity and ~id′ is a level-`′ identity. We say that ~id′ is a sub-
identity of ~id if ~id is a prefix of ~id′. If moreover `′ = `+ 1, we say ~id′ is a immediate sub-identity
of ~id.

Deriving subkeys Observe that given a master secret key of a HIBS, it is possible to derive
secret keys corresponding to level-` identities for any `, by running KeyGen ` times. By a similar
procedure, given any secret key corresponding to a level-` identity ~id, it is possible to derive any
“subkeys” thereof, i.e., secret keys for sub-identities of ~id. For our construction, it is useful to
name this procedure and refer to it directly: we define HIBS.KeyGen? in Algorithm 1. We write the
randomness ρ1, . . . , ρ` of HIBS.KeyGen? explicitly.

Algorithm 1 HIBS.KeyGen?

Input: sk, `, ~id = (id1, . . . , id`′) . Require: ` ≤ `′
Randomness: ρ1, . . . , ρ`′

for j = `+ 1, . . . , `′ do
sk ← HIBS.KeyGen(sk, idj ; ρj)

end for
return sk

HIBS security requirements Due to space constraints, Definition 5 gives only the syntax and
not the security guarantees of a HIBS. Informally, an HIBS must satisfy the following security
guarantees. For a formal security definition, see, e.g., [25].

• Correctness: For any identity tuple ~id, an honestly produced signature w.r.t ~id must verify
as valid w.r.t. ~id.

• Unforgeability: For any PPT adversary A that has access to a KeyGen(msk, ·, ·) oracle, the

probability that A outputs a valid signature w.r.t. an identity ~id /∈ Q must be negligible,
where Q is the set of all sub-identities of identities A has queried to the oracle.

Succinctly representing expiry information Given any set T of tuples of identities, the simplest
way to make signatures with respect to T forgeable would be release the secret key corresponding
to each ~id ∈ T , much as in BasicFFS:

η =
{
sk~id = HIBS.KeyGen?(msk, 0, ~id)

}
~id∈T

. (1)

15

Algorithm 2 Compress

Input: I = {I`}`∈[L], T ⊆ I1 × · · · × I`
// Remove redundant sub-identities
for all τ ∈ T do

if ∃τ ′ ∈ T s.t. τ ′ is a prefix of τ then
T = T \ {τ}

end if
end for
// Replace identities with prefix identities where possible
for ` = L− 1, . . . , 1 do

for all ~τ = (τ1, . . . , τ`) ∈ I1 × · · · × I` do
// X represents all level-(`+ 1) sub-identities of ~τ
X = {(τ1, . . . , τ`, τ

′)}τ ′∈I`+1

if X ⊆ T then
T = T \X
T = T ∪ {(τ1, . . . , τ`)}

end if
end for

end for
return sk

However, leveraging the hierarchical nature of HIBS, η can often be represented more succinctly
than (1). Based on the fact that Algorithm 1 allows the derivation of any subkey, we make two

optimizations. First, before computing (1), we can delete from T any ~id ∈ T that is a sub-identity

of some ~id′ ∈ T . Secondly, if there is any ~id′ = (id1, . . . , id`) ∈ I1 × · · · × I` such that every

immediate subkey of ~id′ is in T , i.e.,

∀id`+1 ∈ I`+1, (id1, . . . , id`, id`+1) ∈ T ,

then all sub-identities of id′ can be removed from T and replaced by id′ before computing (1). Such
replacement is permissible only when every possible subkey of id′ is derivable from T : otherwise,
adding id′ to T would implicate additional subkeys beyond those originally in T .

These two optimizations lead us to an algorithm Compress, which takes as input the identity
space of a HIBS and a set of identity tuples T , and outputs a (weakly) smaller set of identity tuples
T ′ such that knowledge of the secret keys corresponding to T ′ suffices to produce valid signatures
with respect to exactly the identity tuples in T . Next, we describe the operation of Compress using
a tree-based representation of identity tuples.

Tree representation It is convenient to think of identity tuples represented graphically in a tree.
A node at depth ` represents a tuple of ` identities (considering the root node to be at depth 0).
The set of all depth-` nodes corresponds to the set of all `-tuples of identities. The branching factor
at level ` is |I`+1|. Given a secret key for a particular node (i.e., identity tuple), the secret keys of
all its descendant nodes are easily computable using HIBS.KeyGen?. (The secret key for the root
node is the master secret key.) In this language, Compress simply takes a set T of nodes and returns
the smallest set T ′ of nodes such that (1) all nodes in T are descendants of some node in T ′ and (2)
no node not in T is a descendant of any node in T ′. Figure 3 gives an illustration of the Compress
algorithm on a small example tree.

16

Compress7−−−−−→

Figure 3: Example application of Compress

Our construction of FFS based on HIBS follows. It makes use of Algorithms 1 and 2, which
were just defined.

Construction 1. Let HIBS be a depth-L HIBS8 with message space M and identity space I =
{I`}`∈[L]. Let O be a random oracle,9 and for any tuple ~τ = (τ1, . . . , τ`), let ~O(~τ) = (O(τ1), . . . ,O(τ`)).
For ` ∈ [L], define T` = I1 × · · · × I`. We construct a FFS Σ with message space M and tag space
T =

⋃
`∈[L] T`, as follows.

• Σ.KeyGen(1κ): output (vk, sk)← HIBS.Setup(1κ).

• Σ.Sign(sk, ~τ = (τ1, . . . , τ`),m): let

sk~τ = HIBS.KeyGen?(sk, 0, ~τ ; ~O(~τ))

and output σ ← HIBS.Sign(sk~τ ,m).

• Σ.Verify(vk, ~τ ,m, σ): output b← HIBS.Verify(vk, ~τ ,m, σ).

• Σ.Expire(sk, T): let T ′ = Compress(I, T); output

η =
{

(~τ , sk~τ) : sk~τ = HIBS.KeyGen?(sk, 0, ~τ ; ~O(~τ))
}
τ∈T ′

.

• Σ.Forge(η, τ,m): if there exists skτ ′ such that (τ ′, skτ ′) ∈ η and τ ′ is a prefix of τ , let ` be
the length of τ ′, let

sk~τ = HIBS.KeyGen?(skτ ′ , `, ~τ ; ~O(~τ))

and output σ ← HIBS.Sign(sk~τ ,m); otherwise, output ⊥.

Theorem 1. If HIBS is a secure HIBS, Construction 1 instantiated with HIBS is a forward-forgeable
signature scheme.

Proof. Correctness and unforgeability of Construction 1 follow directly from correctness and un-
forgeability of the underlying HIBS. The FFS requirement of forgeability on expiry moreover fol-
lows from the correctness requirement of the HIBS: the Forge algorithm of Construction 1 invokes
HIBS.Sign using a secret key sk~τ which is guaranteed (by construction of HIBS.KeyGen?) to be the
secret key corresponding to identity tuple τ . The validity of HIBS.Sign invoked on a valid secret
key corresponding to identity tuple τ is guaranteed by the correctness of the HIBS.

Construction 1 achieves logarithmic succinctness, as stated next.

8The depth need not be finite, but we consider finite L for simplicity.
9The construction is presented in the random oracle model for simplicity, but does not require a random oracle:

the random oracle can be replaced straightforwardly by a pseudorandom function (PRF) where the PRF key is made
part of the HIBS secret key.

17

Lemma 1 (Logarithmic succinctness). Let HIBS be a depth-L HIBS with message space M and
identity space I = {I`}`∈[L]. For each ` ∈ L, let �` be a total order on I`. Let TL = I1 × · · · × IL.
For i ∈ |TL|, let τi denote the ith element of TL in the lexicographic order induced by {�`}`∈L.
Construction 1 instantiated with HIBS is (S, 2z)-succinct and also (S1, z)-succinct, where

S =
{
{τi}j′≤i≤j : j, j′ ∈ [|TL|]

}
and S1 =

{
{τi}1≤i≤j : j ∈ [|TL|]

}
.

and z(·) = B · logB(·) where B = max`∈L{|I`|}. We assume B is constant.

Proof. Fix any j, j′ ∈ [|TL|] and any set T = {τi}j≤i≤j′ . By the definition of succinctness, it suffices
to show that the output of Compress on T , is a set of nodes of size at most 2B · log(|T |).

For any identity tuple ι ∈ I, let Subι be the set of all level-L identities of which ι is a prefix.
We say that T covers ι if Subι ⊆ T . Let CoverT be the set of all identities covered by T . We say T
subsumes an identity ι if ι is a descendant of some ι′ ∈ CoverT such that ι′ 6= ι. By construction of
Algorithm 2 (Compress), any identity subsumed by T will not be in the output set of Compress(T)
(specifically, it will be removed in the innermost for-loop of Algorithm 2).

For any ` ∈ [L], consider any consecutive sequence of s level-` identities covered by T . By
definition of lexicographic ordering, there are fewer than 2B level-` identities in the sequence that
are not subsumed by T (these identities will be at the beginning and/or end of the sequence).
Moreover, if the sequence begins at the smallest level-` identity in the lexicographic order, then
there are fewer than B identities in the sequence that are not subsumed by T (these identities will
be at the end of the sequence).

It follows that for each ` ∈ [L], there are fewer than 2B level-` identities in the output set of
Compress(T). The number of levels is L ≤ logB(|TL|) ≤ logB(T). Therefore, the size of the output
set is at most 2B logB(T). Moreover, if T ∈ S1, then the output set size is at most B logB(T).

5 Our Protocol Proposals

Sections 5.1 and 5.2 respectively describe our two proposed systems KeyForge and TimeForge.

5.1 KeyForge

KeyForge consists of three components:
1. Replace the digital signature scheme used in DKIM (currently, RSA) with a succinct

forward-forgeable signature scheme. Details are in Section 5.1.1.

2. Email servers periodically publish expiry information. Details are in Section 5.1.2.

3. A forge-on-request protocol. Details are in Section 5.1.3.
Note that the first two components already achieve delayed universal forgeability (discussed in

Section 1.2).

5.1.1 FFS configuration for KeyForge

KeyForge uses the succinct FFS given by Construction 1 instantiated with a HIBS. Our imple-
mentation uses the proposed by Gentry and Silverberg [25] which is based on their “BasicHIDE”
hierarchical identity-based encryption scheme, hereafter denoted by FFS. This [25] construction
has the advantages of simplicity and low computation costs over many other schemes, and allows
us to vary the height of the tree post-implementation.

18

KeyForge is based on an L-level tag structure, corresponding to identity space I = {I`}`∈[L]

where the level-L identities represent 15-minute time chunks spanning a 2-year period. We use the
following intuitive 4-level configuration for the purpose of exposition, but as discussed Section 6, it
is preferable for efficiency purposes to keep |I`| equal for all ` ∈ [L].

I1 = {1, 2} representing a 2-year time span

I2 = {1, . . . , 12} representing months in a year

I3 = {1, . . . , 31} representing days in a month

I4 = {1, . . . , 92} representing 15-minute chunks of a day

A tag τ = (y,m, d, c) ∈ I1×I2×I3×I4 thus corresponds to a particular 15-minute chunk of time.
The 15-minute chunks are contiguous, consecutive, and disjoint, so that any given timestamp is
contained in exactly one chunk. For a timestamp t, we write τ(t) to denote the unique 4-tuple tag
(y,m, d, c) that represents a 15-minute chunk of time containing t. We write t @ τ if τ represents
a chunk of time containing timestamp t.

KeyForge requires each DKIM signature at time t to be produced with respect to a tag repre-
senting timestamp t+ ∆̂ (except when DKIM signatures are produced within the forge-on-request
protocol, as discussed in Section 5.1.3). The tag is sent alongside the email, and is used for verifi-
cation at the receiving server. The signing and verification algorithms are specified more precisely
in Algorithms 3–4.

Algorithm 3 KeyForge.Sign

Input: sk,m,∆
t = CurrentTime()
return FFS.Sign(sk, τ(t+ ∆),m)

Algorithm 4 KeyForge.Verify

Input: vk, τ,m, σ
t = CurrentTime()
return t @ τ AND FFS.Verify(vk, τ,m, σ)

Why 15-minute chunks? The time period that a leaf node represents — i.e., a “chunk” —
corresponds to the maximum granularity at which expiry information can be released, as also
discussed in Section 5.1.2. ∆̂ is a practical lower bound on the chunk size: since ∆̂ represents the
time for an email to be delivered, publishing expiry information more than once per ∆̂ time does
not make sense. 15 minutes is a conservative estimate of ∆̂.

Why a 2-year period? Rotating signing keys is good practice; the Messaging, Malware, and
Mobile Anti-Abuse Working Group (M3AAWG) recommends rotation every 6 months [34]. Having
signing keys that explicitly correspond to time periods, as in KeyForge, has the convenient side
effect of encouraging regular key rotation.

For an FFS, rotation means generating a fresh master key pair. Thus, the leaves corresponding
to any master key need not exceed the rotation time span. Recognizing that realistically, key
rotation times often exceed 6 months, we run our evaluation assuming a 2-year period.

19

How many levels? We evaluate performance for different hierarchy depths; our evaluation is
discussed in Section 6. We find that the best value of L depends on a tradeoff between computation
time and succinctness of expiry information; the optimal value may thus depend on the specific
application.

5.1.2 Publishing expiry information

KeyForge requires email servers to publish expiry information at regular intervals. A natural
option is to publish expiry information every 15 minutes: that is, to publish the expiry information
corresponding to each chunk c at the end of the time period that c represents.

Publishing every 15 minutes yields the finest granularity of expiry possible under the basic four-
level tag structure. Based on an email server’s preference, it could release information at longer
intervals (e.g., days). In case of an attack, an adversary would be able to convince third parties
of the authenticity of all emails in the current interval (e.g., the current day), so the risk-averse
approach is to prefer shorter intervals. If an email server prefers to use intervals even shorter than
15 minutes, the basic tag structure could easily be adapted for this.

Flexible expiry policies The basic tag structures described above can be augmented easily. For
example, an additional level I` might represent the “sensitivity” of an email: this would allow expiry
information to be released with respect to highly sensitive emails more quickly. Alternatively, it may
be desirable that certain emails expire more slowly or not at all (e.g., an email clearing an employee
for a certain privilege for a year, or emails in the course of an important contract negotiation), and
that is expressible in the sensitivity paradigm too: sensitivity can be expressed as the desired delay
until expiry.

KeyForge is very configurable: beyond the first four levels, different email servers’ policies need
not be consistent. The verification algorithm refers only to the first four levels of the tag (when
checking t @ τ), so a sending server can add more levels beyond the basic four without sacrificing
compatibility, to match its desired expiry policy.

5.1.3 Forge-on-request protocol

The final component of KeyForge is a protocol by which email servers accept real-time requests
for specified email content to be sent to the requester. Any client with the capability of sending
outgoing mail can thus initiate a request.

The recipient of the requested email is required to be the requester: this is essential so the expiry
request protocol cannot be used for spoofing and spam. To enforce this, receiving servers only
respond to requests signed by the requester’s server, and address the response to the originating
client. The request content that is signed by the requester’s server includes the identity of the
originating client.10

Note that a forge-on-request protocol achieves a stronger guarantee than the use of ring sig-
natures (i.e., signing with respect to both the sending and receiving servers’ public keys). A
forge-on-request protocol enables any recipient with the ability to send mail from an email server
to forge mail from any sender to herself. The ring signature approach enables her to do this only
if she has the ability to sign fraudulent mail with the receiving server’s secret key.

10We note that a malicious server could, in principle, unauthorizedly sign requests for any client account it controls.
This is outside our threat model, and is equally possible for outgoing mail under DKIM; see “Client-server trust”
under Section 3.2 for further discussion.

20

Email Server S Requester R

Request for email (m,µ),
signed by requester’s server{

Es(S,R,m, µ, t) : t ∈ {t∗ − ∆̂, t∗}
}

Figure 4: Forge-on-request protocol
The notation Es(S,R,m, µ, t) is as defined in Section 3.3, and denotes an email (m,µ) from S to R at time

t. t∗ denotes the current timestamp when the reply is sent. Protocol messages are sent via email.

Theorem 2. KeyForge is non-attributable for recipients (Definition 1) and ∆̂-universally non-
attributable (Definition 2).

Proof. Follows directly from Lemmata 2 and 3.

Lemma 2. KeyForge is non-attributable for recipients (Definition 1).

Proof. Recall from Definition 1 that we must show that there is a PPT simulator S such that for
any sender S and recipient R, for any email message m and metadata µ,

KeyForgesk(S,R,m, µ, t) ≈c SR(S,m, µ) , (2)

where sk is the (master) secret key of S, t is the time at which S is invoked, and the superscript
R denotes that S has access to the recipient’s email server. We construct S in Algorithm 5.

Algorithm 5 Simulator S for recipient non-attributability

Input: S,m, µ
t = CurrentTime()
send forge request (m,µ) to S
receive answer {e0, e1}
parse e0, e1 as emails w.r.t. tags τ0, τ1 respectively
if τ(t) = τ0 then return e0

else if τ(t) = τ1 then return e1

end if

By definition of ∆̂, we know S received the request at some time t′ ≤ t + ∆̂. Thus, by
construction of KeyForge, the emails e, e′ must be signed with respect to the tags τ(t′ − ∆̂), τ(t′)
(say, respectively). It follows that τ(t) = τ(t′ − ∆̂) or τ(t) = τ(t′). Therefore, at least one of the
if-conditions in Algorithm 5 must be satisfied, and S always produces an output. By construction
of the if-statements and the forge-on-request protocol, the output of S is an email signed by S for a
tag corresponding to timestamp t, as required by (2). Indeed, we achieve equality of distributions,
rather than just indistinguishability.

Lemma 3. KeyForge is ∆̂-universally non-attributable (Definition 2).

Proof. Recall from Definition 2 that we must show that there is a PPT simulator S such that for
any sender S (with secret key sk) and recipient R, for any email message m, metadata µ, and
timestamp t, the following holds at any time ≥ t+ ∆̂:

KeyForgesk(S,R,m, µ, t) ≈c S(S,R,m, µ, t) . (3)

21

Let KeyForge∗sk∗ be defined as identical to KeyForgesk except that whenever KeyForgesk invokes
KeyForge.Sign(sk, ·), KeyForge∗sk∗ instead invokes HIBS.Sign(sk∗, ·). Using this notation, we con-
struct S in Algorithm 6.

Algorithm 6 Simulator S for ∆̂-strong non-attributability

Input: S,R,m, µ, t
retrieve published expiry information η for S
for all (~τ , sk~τ) ∈ η do

if t @ ~τ then
sk∗ ← HIBS.KeyGen?(sk~τ , `, τ(t); ~O(~τ))
return KeyForge∗sk∗(S,R,m, µ, t)

end if
end for

Since S is invoked at a time ≥ t+∆̂, and KeyForge prescribes publication of expiry information
at the end of each time chunk of duration ∆̂, it holds that the expiry information η retrieved by S
includes expiry information with respect to time t. Therefore, the if-condition in Algorithm 6 will
be satisfied for at least one element of η.11

Recall that KeyForge.Sign invokes FFS.Sign, which in turn invokes HIBS.Sign. By definition,
if t @ ~τ and η is expiry information with respect to sk, then sk∗ as computed in Algorithm 6 is
the same key used to invoke HIBS.Sign (within FFS.Sign, which is within KeyForge.Sign) at time t.
Therefore, the output distributions of KeyForge∗sk∗ and KeyForgesk are identical. It follows that S
satisfies (3). Again, we achieve equality of distributions, not just indistinguishability.

5.2 TimeForge

The main limitation of the KeyForge approach is that it requires signers to continuously release key
material. Once this key material has been revealed and widely distributed, any party can formulate
apparently-valid signatures. The need to widely distribute this key material can pose a practical
challenge for users, who must depend on their provider to perform this task reliably. Failures to
distribute key material may in practice limit the degree of deniability that a system can offer.

The TimeForge protocol uses a different approach, one that is designed to ensure that any
party can forge signatures after the time period ∆ has expired, even if the signer fails to release key
material. Rather than depending on key release, TimeForge employs a new service that we term a
publicly verifiable timekeeper (PVTK). This service, which can in practice be realized using various
extant Internet systems, does not share any secret key material with the signing party. Instead,
it is a global service that maintains a monotonically-increasing clock. The essential property of
a PVTK is that, at any clock time t, any party with access to the service can obtain a publicly
verifiable proof πt that the current time is at least t. Simultaneously, the system ensures that it is
infeasible for an attacker to forge such a proof at an earlier period.

Given a PVTK service, the intuition behind the TimeForge protocol is straightforward. Let M
be some email message sent at time period t. The sender first signs each message using a standard
SUF-CMA signature scheme to produce a signature σ. However, rather than using this signature

11In fact, it will be satisfied for exactly one element of η, by construction of Compress which ensures that no
timestamp is represented by more than one element.

22

directly, she instead authenticates the message using a witness indistinguishable and non-interactive
proof-of-knowledge (PoK) of the following informal statement:

I know a valid sender signature σ on M
OR

I know a valid PVTK proof πt+d, for some d ≥ ∆.

Assuming a trustworthy PVTK service, this proof authenticates the message during any time
period prior to t+ ∆. Once a PVTK proof πt+∆ becomes generally available, the knowledge proof
becomes trivial for any party to formulate. The witness indistinguishability property of the proof
system ensures that a proof formulated by the valid signer cannot be distinguished from a forgery
constructed using a revealed PVTK proof at a later time period.

Publicly verifiable timekeeping. As a building block for our main result, we define a publicly
verifiable timekeeping (PVTK) scheme.

• TK.Setup(1λ) takes an adjustable security parameter λ and outputs a set of public param-
eters params and a trapdoor sk.

• TK.Prove(sk, t) takes as input sk and the current time epoch t, and outputs a proof πt.

• TK.Verify(params, t, πt) on input params, a time period t, and the proof πt, outputs whether
πt is valid.

Correctness and Security. Correctness for a PVTK scheme is straightforward. For security, we
consider an experiment in which an adversary with access to an oracle that provides PVTK proofs
for arbitrary time periods t, must not be able to produce a valid proof for some time period tmax+∆
(except with negligible probability) where tmax is the largest value queried to the oracle during the
experiment, and ∆ > 0 is a constant chosen as an input to the experiment. If a PVTK scheme
satisfies this definition for some ∆ > 0, then we refer to it as ∆-PVTK secure.

In practice, we note that for any ∆ > 0, a ∆-PVTK scheme can be realized using an SUF-
CMA-secure signature scheme, where TK.Prove and TK.Verify are respectively implemented using
the signing and verification algorithms on message t. We leave the problem of constructing and
proving weaker schemes to future work.

Realizing a PVTK service. A simple PVTK system can be constructed using a single server
that maintains a monotonically-increasing clock, and implements the PVTK protocol by signing
the current time period using an SUF-CMA signature scheme. While this solution is conceptually
simple, practically deploying it at the required scale is likely to be quite costly. Moreover, such a
system would be highly vulnerable to denial of service and network-based attacks.

A better approach would be to construct a PVTK system from existing Internet services, which
have already been deployed at scale. Next, we outline several proposals.

OCSP servers. The Online Certificate Status Protocol in its “stapling” configuration [41] allows
TLS servers to obtain a standalone, signed certificate validity message from a Certificate Au-
thority (CA). This message is cryptographically signed by the CA, and contains a timestamp
intended to guarantee freshness of the data within a ten day expiry window. OCSP staple gen-
eration can therefore be viewed as an organic implementation of a PVTK protocol. To avoid
the need for reliance on a single CA’s infrastructure, users can define the proof πt to comprise
multiple valid staples, e.g., one each from any k out of N chosen CAs. These parameters, as
well as the CA identities, can be selected as part of the setup algorithm.

23

Centralized services: CT and randomness beacons. The Certificate Transparency protocol
consists of a centrally-managed and publicly verifiable log for recording the issuance of certifi-
cates [35]. Each CT log entry is signed by the log operator (e.g., Google). While CT is not
intended as a timestamping protocol, signed CT log entries contain timestamps and may be
re-purposed to implement a centralized PVTK service without the need to deploy new infras-
tructure. Along similar lines, NIST operates a randomness beacon [39] that also distributes
signed records containing a current timestamp. While any single centralized service may be
unreliable or subject to attack, a (fault-tolerant) combination of these extant services can be
used to construct a “composite” PVTK system.

Proof of work blockchains. A number of cryptocurrencies use proof of work blockchains to con-
struct an ordered transaction ledger [37, 51]. In these systems, generating each new block
involves substantial computational effort by a large network of computers, using parameters
tuned to produce new blocks at some chosen average rate. These ledgers can be used as a
restricted form of PVTK system, in which params comprises some initial block header Bs, and
πt comprises a list of block headers {Bs+1, . . . , Bt} drawn from the blockchain. Verification
involves checking each proof of work and the correct construction of the chain. This approach
does not produce an exact timekeeping service (due to the probabilistic nature of block intervals,
and difficulty adjustments), nor does it guarantee cryptographic unforgeability, because chains
can be forged by an attacker who controls a substantial fraction of the network’s hash power.
However, these threats are unlikely to be a significant problem over the short time intervals
used in the TimeForge scheme.12

VDFs and puzzles. Cryptographic “puzzles” are mathematical problems that require a known
(or statistically predictable) number of computational operations to solve. Typical puzzles
include cryptocurrency proof of work systems and timelock encryption schemes based on brute-
forcing cryptographic keys [43]. A related primitive, the Verifiable Delay Function [11, 42]
creates a sequential puzzle that requires a precisely-known amount of work to solve, and allows
the solver to produce a proof of the solution’s correctness. While puzzles and VDFs do not
directly allow for the creation of a PVTK system, they enable a related primitive: at time
t a sender may generate a puzzle challenge M (e.g., the contents of an email message) such
that a proof πt+∆ can be found by applying a computational process to M in expected time
approximately ∆.

A basic TimeForge signature scheme. Using the PVTK primitive above, we can now formally
describe our basic TimeForge signature scheme. This initial scheme provides only one of our main
deniability guarantees: ∆-universal non-attributability (Definition 2). That is, it allows forgery by
any party after a fixed time period. Below, we discuss how to add recipient non-attributability as
an additional feature.

The TimeForge scheme consists of three algorithms: TF.Keygen, TF.Sign and TF.Verify, as well
as a specialized forgery algorithm TF.Forge. We assume the existence of a PVTK scheme with
parameters params and an SUF-CMA signature algorithm Sig.

• TF.Keygen(1λ, params). Run Sig.Keygen(1λ) to generate (pk, sk) and output PK = (pk, params),
and SK = sk.

• TF.Sign(PK,SK,M, t,∆). Parse PK = (pk, params). On input a message M and a

12A related development, the proof-of-stake blockchain [7], employs signatures by currency holders to authenticate
new blocks. These techniques might provide an alternative to PoW blockchains for instances where ∆ is small.

24

time period t, first compute σ ← Sig.Sign(SK,M‖t‖∆) and compute the following witness-
indistinguishable (WI) non-interactive PoK:13

Π = NIPoK{(σ, s, π) : Sig.Verify(pk, σ,M‖t‖∆) = 1 ∨
(TK.Verify(params, π, s) = 1 ∧ s ≥ t+ ∆)}

Note that the prover can produce this proof using (σ,⊥,⊥) as the witness. Output σtf =
(Π, t,∆).

• TF.Verify(PK,M, σtf). Parse PK = (pk, params) and σtf = (Π, t,∆) and verify the proof
Π with respect to the public values t,∆, pk,M . If the proof verifies, output 1, else output
0.

We now describe the forgery algorithm TF.Forge. This forgery algorithm takes as input a PVTK
proof πs for some time period s ≥ t+ ∆:

• TF.Forge(PK,M, t, s,∆, πs). Parse PK = (pk, params) and compute the NIPoK Π de-
scribed in the TF.Sign algorithm, using the witness (⊥, s, πs). Output σtf = (Π, t,∆).

Defining Security. Security for TimeForge is defined according to the following experiment. This
experiment can be considered a variant of (weak) UF-CMA security definition for a signature scheme:
an attacker must attempt to forge a TimeForge proof over a message M that she has not previously
queried to a signing oracle. To assist in this, the attacker is given access to not one, but two oracles.
The first is a signing oracle for the TimeForge signature scheme, and produces valid signatures for
tuples of the form (M ′, t′,∆′). The main difference from the standard UF-CMA experiment is the
existence of a second oracle that models the PVTK service. To model this, the attacker additionally
obtains PVTK parameters params at the start of the experiment, and may repeatedly query the
PVTK oracle on chosen epoch numbers s to obtain PVTK proofs of the form πs. Let smax be the
largest time period queried to the PVTK oracle at the conclusion of the experiment. We say the
attacker wins iff she outputs a message M and valid TimeForge proof σtf = (Π, t,∆) such that
smax < t + ∆. where (M, t,∆) was not queried to the signing oracle. We say that a TimeForge
scheme is unforgeable under chosen timestamp attacks if ∀ p.p.t. attackers A, the adversary has at
most a negligible advantage in succeeding at the above experiment.

Remark 2. We note that the definition above does not prevent the attacker from constructing
forgeries that are “outside the expiration period.” Specifically, an intermediary can intercept a
message embedding (M, t,∆) where t + ∆ is in the future, and author a new message M ′, t′,∆′

where t+∆ has already been proved by the PVTK oracle. This is explicitly allowed by TimeForge;
indeed, it is a goal of the system.

Theorem 3. If the PVTK service is constructed using an SUF-CMA signature scheme; the WI proof
system is sound (extractable); and the underlying signature scheme used by TimeForge is SUF-CMA,
then the basic TimeForge scheme defined above is secure under chosen timestamp attacks.

Proof. Our proof proceeds by contradiction. Let A be an attacker that succeeds with non-negligible
advantage in the chosen timestamp experiment. We show how to construct a pair of algorithms
B1,B2 such that that one of the two algorithms (respectively) succeeds with non-negligible advan-
tage in the SUF-CMA game against (1) the signature scheme Sig, or (2) the underlying PVTK
signature scheme. We now describe the operation of each algorithm.

13Here we use Camenisch-Stadler notation, where the witness values are in parentheses () and any remaining values
are assumed to be public.

25

An attack on the signature scheme Sig. In this strategy we construct B1, which conducts the
SUF-CMA experiment for the underlying signature scheme Sig. B1 first obtains a public key pk from
the SUF-CMA challenger. It next uses the PVTK signature scheme’s key generation algorithm to
produce a keypair (params, skPVTK) for the PVTK service and sends PK = (pk, params) to A.

Each time A queries the PVTK oracle on some timestamp s, B1 implements TK.Prove by using
skPVTK to sign s and return the signature πs. Whenever A queries the TimeForge signing oracle
on some tuple (M, t,∆), B1 first queries the SUF-CMA signing oracle to obtain a signature σ on
M‖t‖∆. It then constructs a TimeForge signature by constructing the proof described in the
TF.Sign algorithm using σ as the satisfying witness, and returns σtf to A.

When A outputs a pair (M∗, σ∗tf) that satisfies the win conditions of the experiment, B1 parses
σ∗tf to obtain (Π∗, t∗,∆∗) and runs the extractor on Π∗ to obtain the witness (σ∗, s∗, π∗). (If the
extractor fails, B1 aborts.) If σ∗ is a valid signature on M∗‖t‖∆, it outputs the pair (σ∗,M∗) as
an SUF-CMA forgery.14

An attack on the PVTK scheme. In this strategy we construct B2, which conducts the SUF-CMA
experiment against the PVTK signature scheme. This algorithm proceeds as in Strategy 1, except
that here we set params to be the public key obtained from the SUF-CMA challenger, and generate
the keypair (pk, sk) = Sig.Keygen(1λ). Queries to the PVTK oracle are answered by forwarding s
to the SUF-CMA oracle and returning the resulting signature as πs, and queries to the TimeForge
oracle are answered honestly by running TF.Sign with sk as an input.

As in the previous strategy, if A succeeds in the experiment we run the extractor to obtain
σ∗, s∗, π∗. However, in this case B2 verifies that π∗ is a valid signature on s∗ and, if so, outputs
(π∗, s∗) as a forgery for the SUF-CMA experiment.

Analysis. We first observe that, in the view of A, the simulation produced by B1 and B2 are
distributed identically. Thus A must succeed with identical advantage when interacting with either
simulation. Next, we point out that if the WI knowledge extractor must fail with probability at
most negligible in the security parameter under the assumption that the WI proof system is sound.
Thus both adversaries will abort with at most negligible probability due to extraction error.

From these observations it remains only to show that at least one of the two algorithms above
must succeed with non-negligible advantage in the SUF-CMA experiment. This is shown by observ-
ing that the attacker’s output (Π∗, t∗,∆∗) and the extracted witness (σ∗, s∗, π∗) must necessarily
satisfy the conditions that (1) for all PVTK queries s made during the experiment, it holds that
s < t∗+∆∗ (by the requirements of the experiment), (2) the message M∗‖t‖∆ has not been queried
to the SUF-CMA signing oracle (by the requirements of the experiment), and (3) the following con-
ditions are true (by the soundness of the proof system):

Sig.Verify(pk, σ∗,M∗) = 1 ∨ (TK.Verify(params, π∗, s∗) = 1 ∧ s∗ ≥ t∗ + ∆∗)

If A succeeds in the TimeForge experiment with non-negligible advantage, then the extracted
witness must contain a valid signature σ∗ on a message M∗‖t‖∆ not queried to the signing oracle,
or it must contain a valid signature π∗ on some epoch s∗ which was not queried to the PVTK
oracle. By these requirements, it must be the case that one of B1 or B2 succeeds with non-negligible
advantage, which concludes our proof.

Realizing the TimeForge proof system. TimeForge can be realized using a variety of WI and
ZK proof systems, combined with efficient SUF-CMA signature schemes. For example, a number

14Note that by the restrictions on A, M∗ must represent a message that has not previously been queried to the
SUF-CMA oracle.

26

of pairing-based signature schemes [9, 16, 8] admit efficient proofs of knowledge of a signature
using simple Schnorr-style proofs [3]. More recent proving systems such as Bulletproofs [14] and
zkSNARKs (e.g., [40, 26]) admit succinct proofs of statements involving arbitrary arithmetic circuits
and discrete-log relationships. Using the latter schemes ensures short proofs, in the range of several
hundred bytes, in some cases with a small, constant verification cost. Thus, even complex PVTK
proofs such as block header sequences, can potentially be reduced to a succinct and readily-verified
TimeForge signature.

Adding recipient non-attributability. The basic TimeForge construction above does not pro-
vide recipient non-attributability (Definition 1). This property allows a message recipient to forge
a TimeForge signature prior to the time period t+ ∆. The scheme can be altered to achieve non-
attributability for recipient servers by modifying the algorithms to take as input the recipient’s
public key pkrecipient. The proof statement then becomes:

Π = NIPoK{(σ, s, π) : Sig.Verify(pk, σ,M) = 1 ∨
Sig.Verify(pkrecipient, σ,M) = 1 ∨

(TK.Verify(params, π, s) = 1 ∧ s ≥ t+ ∆)}

This new proof statement ensures that the recipient can, at any point, generate a valid TimeForge
signature for any message addressed to it, provided that it has the correct signing key.

Remark 3. KeyForge and the above-described version of TimeForge achieve different variants of
recipient non-attributability under Definition 1. The recipient non-attributability of TimeForge
is weaker than KeyForge in the following sense. In both KeyForge and TimeForge, a recipient
client can forge with the help of the recipient server (and a recipient server can forge by itself).
In KeyForge, the client needs the server’s help to sign an outgoing email from the client itself
and then to receive a reply email — these are both features routinely offered by email servers.
However, in TimeForge, the client needs the server’s help to sign an email purportedly authored by
the party whom the client designates as the sender of the forged email. Since this is not a feature
routinely offered by email servers (and to offer it naively would enable spam and spoofing), it could
be difficult for a client to forge without the collusion of a malicious server: realistically, this could
substantially undermine the goal of non-attributability. An interesting open question is whether
TimeForge’s recipient non-attributability can be strengthened.

MPK

2019

01

01

C1 Cn

. . .

. . .

.

2021

. . .

.

12

. . . 30

C1 Cn ∆ Time Chunk

Days

Months

Years

MPK

– Sent with Email

Cached in DNS

. . .

.

Figure 5: DNS / Email Cached Public Parameters

27

6 Implementation and Evaluation

We have designed and implemented a prototype of KeyForge suitable for use with common mail
(MDA/MSA) servers. The prototype is fully functional and integrates with Postfix and Sendmail.
It is designed to be straightforward to extend the system to work with other mail servers, as
well as other applications, due to the abstraction of core cryptographic services away from other
infrastructure. The entire project consists of roughly 2,000 lines of Go, C, and Python. Our
implementation is available to the community open source at https://github.com/keyforgery/

KeyForge. There are two main parts to KeyForge: a key server, and a mail filter that integrates
KeyForge with mail server software, we discuss each in detail below.

Mail Filter: The mail filter is a service that is responsible for ensuring that sent emails are
properly formatted, determining if incoming emails are verifiable, and communicating these results
the mail server. The filter works by intercepting emails that the mail server sends and receives,
adding required metadata to the sent email’s header, and requesting cryptographic operations from
the key server.

When sending an email, the filter adds the expiry time and any other information necessary to
verify the signature to the email’s header. The mail filter performs a SHA256 hash of necessary
metadata and the message’s content and forwards the hash to the key server to sign, and then adds
this signature to the header.

On receipt of a signed email, this service confirms that the message metadata exists, signature’s
hash is equivalent to the hash of the message and metadata to be verified. The filter then sends
the signature, the sending domain, and the expiry timestamp to the key server for verification. If
any step in the verification fails, the filter alerts the server software, and the message is dropped.

Key Server: The key server communicates with the mail filter via JSON RPC [2], a flexible
standard that should allow for easy integration into any other mail system. The key server expires
old keys by publishing them on a constantly updated website, though this is an implementation
detail that could be augmented in any number of ways.

We use the RELIC[5] cryptographic library’s implementation of a 12-degree Barreto-Lynn-Scott
curve with q = 2381 (BLS12-381). This configuration conservatively yields keys with a 128-bit
security level,[6] which puts our implementation on par with the standard 2048-bit RSA seen in
current DKIM implementations.15 RELIC was chosen due to its support for many pairing friendly
curves and computational overhead.

6.1 Evaluation

Bandwidth: Table 1 illustrates KeyForge’s bandwidth costs. The second row reflects that email
headers and DNS records require that keys be base64 encoded. Our amortized bandwidth per email
is 42% smaller than a DKIM RSA 2048 signature.

A difficulty with most HIBS schemes is that their signatures can be quite large. For example, in
our modified Gentry-Silverberg scheme, a signature created from a particular chunk must include
public parameters for each node on the path from that chunk to the Master Public Key. A public

15We originally considered using a 256-bit Barreto-Naehrig curve, which had a native Go implementation and was
close to becoming an IETF standard. Unfortunately, new attacks[32] lowered the curve’s security rating to below the
RSA-equivalent 128-bits.

28

https://github.com/keyforgery/KeyForge
https://github.com/keyforgery/KeyForge

Secret Keys Public Params KeyForge σ (w/ cache) DKIM RSA2048 σ

Raw Size (B) 64 97 49 + 97 = 146 256
Base64 Size (B) 88 132 201 347

Table 1: Amortized bandwidth costs of various parts of the system, as well as DKIM with RSA

(a) Size of expiry data given different tree
topologies.

(b) The time it takes to perform a Sha256
hash of particular messages in the Podesta
Email Corpus

(c) Time required to sign and verify given
whether or not the tree was allowed to pre-
cache or is calculating based off of a brand
new tree “cold.”

Figure 6: Evaluation of Bandwidth and Computation Speed

parameter in our scheme is 97 bytes, so the parameters required for a signature from a tree struc-
tured with Y/M/D/Chunk would wind up being 97 ∗ 4 = 388 bytes. The total size also includes
the signature point (49 bytes), for a total of 437 bytes.

We further decrease the bandwidth and storage costs our implementation by precomputing
the path parameters and storing them in DNS along with the Master Public Key (Figure 5). At
verification, the server performs a DNS lookup for the appropriate expiry parameters, and stores
them in a local cache. This yields a one-time amortized cost of 4kb per server per month.

Computation Costs: We created a number of microbenchmarks to determine the efficiency of our
system, as well as the impact of varying the height of the tree. In particular, evaluated the impact
of tree depth on signing and verification time. It is important to note that his is a lower bound
on throughput – all benchmarks were performed on a laptop with power lower than a common
server.16

To fully capture the best and worst case for signing and verification, we timed execution given a
tree where the public key path from the root must be recalculated each time (as would be common
in standing up a brand new server, or initially verifying messages from a new domain) and when the
tree is allowed cache such parameters; results are illustrated in Figure 6c. We find that signing is
largely unaffected by the depth of the tree with caching enabled, which would likely be the case in
the majority of settings. Further, we find that increasing the depth of the tree has a linear impact
on verification time.

Cached verification with a depth-4 tree (as in our Y/M/D/Chunk tree) takes an average of
0.031579 seconds per verification operation; one laptop alone could verify roughly 2,735,995 mes-
sages per day. Cached signing for the same tree takes 0.001388 seconds per signing operation, which
means that same computer could sign roughly 62,247,838 messages per day.

Signing and verification times are unaffected by plaintext size, since the key server performs

16For full details on compilation and machine specifics see appendix A

29

Table 2: Expiry information size

L
Expiry info size (bytes)

1 year 2 years
Avg Max Avg Max

1 1121248 2242496 1679814 4485056
2 12700 25344 16934 33792
3 3283 6464 3920 7744
4 1787 3520 2016 3968
5 1275 2496 1408 2752
6 1048 2048 1117 2176
7 859 1664 934 1792

operations only on SHA256 hashes of the message. Since hash-and-sign is the common paradigm
between DKIM and KeyForge, both incur these same costs. Figure 6b illustrates hashing time
using OpenSSL’s hashing library for different message sizes, using a corpus of real-world leaked
emails from Wikileaks’ Podesta Email Corpus [49].17 We find that the average time to hash for all
messages in the corpus is around 0.0102 seconds, indicating that I/O and hashing time are likely
as impactful, if not more, than the time it takes to sign and verify.

Optimizing for Expiration Bandwidth: Succinct expiry information may be more or less of
a priority depending on the desired application and associated cost in computation time. For
example, succinct expiry information would allow for easy publication (even in DNS) or lightweight
attachment to emails. The latter idea has the neat feature of guaranteeing that any person who
received emails from this domain possesses expiry information.

While the Y/M/D/Chunk tree configuration is easy to intuit, having an equal branching factor
across all tree levels yields a large gain in succinctness. Figure 6a illustrates the difference in size
between the naive configuration and a depth 4 tree whose branching factor is equal at every level.
Table 2 shows the average and maximum size of expiry info of various depth trees with an equal
branching factor: e.g., the average expiry size for a full 2-year period is 4.5MB, 4KB, or 1.8KB for
depths 1, 4, and 7 respectively. An administrator’s preferred trade-off between expiry size, depth
(i.e., verification time), and validity time of the tree likely depends on the application at hand.

Optimizing the expiry time: While expiry time is a configurable parameter of KeyForge (i.e.,
an administrator may select any appropriate time), there are clear benefits to keeping this time
as short as possible. Indeed, the amount of universal forgeability that a user can enjoy depends
directly on the expiry time.

Despite that most emails are received very quickly, the SMTP RFC (RFC 5321) [33] has a very
lax give-up time of 4–5 days. To get a rough idea of how quickly emails tend to be delivered,
we computed the time differences from the first Received header to the last, in the Podesta email
corpus, and found that of the 48,246 messages with parseable Received timestamps, 99% (47,349)
took less than 15 minutes to be delivered.

We believe that this time can therefore be shortened considerably using any number of tactics.
For example, delays are often caused by expected server outages on the receiving end, e.g., by

17Beyond the dramatic irony, we chose the Podesta email corpus because it was distributed intact with attachments,
and thus relatively close to a realistic user’s email distribution, among publicly available datasets.

30

an administrator using the weekend to update email servers. This could be resolved by using a
DMARC-like DNS record to signal that maintenance is happening and to hold messages until later.

Shortening the expiry time in the face of routing delays is made slightly trickier due to the
presence of potentially malicious adversaries; providing flow control similar to that of TCP would
certainly be systematically possible, but implementers must be careful to ensure that a malicious
MTA is not attempting to keep the message unforgeable for undue time. Setting a hard-cutoff
maximum here of one to two days would likely be advisable.

7 Related Work and Discussion

A number of works have considered the problem of deniability in various settings.

Deniable authentication. The cryptographic literature features many works on deniable signatures
and authentication, including (but in no way limited to) [31, 22, 44, 38, 20]. Indeed, our con-
structions can be viewed as a practical instantiation of a deniable signature scheme, with tight
systems-based requirements on the deniability properties. A much stronger primitive, deniable en-
cryption [18] considers encryption schemes that can survive the later compromise of an encrypting
device.

Messaging deniability. In the context of interactive messaging, the OTR protocol [12] uses MACs
and key agreement protocols to ensure that message transcripts can be repudiated by either party
to a conversation. Along similar lines, Unger and Grubbs considered deniable key exchanges for
new messaging systems [48]. Adida et al. proposed “lightweight email signatures” for DKIM, based
on ring signatures [3], but with more limited properties than we consider in this work. Recently,
Gunn et al. noted that trusted hardware systems can be used to circumvent deniability in many
protocols [28]. In the theoretical realm, Canetti et al.’s recent possibility result addressed a yet
stronger deniability guarantee for interactive messaging, where transcripts can be “explained” as
encrypting any plaintext of the adversary’s choice, even when both parties are coerced [17].

Message franking. Finally, a recent line of works [21, 27] considers the problem of franking in
encrypted messaging systems. These protocols consider a different problem than we address in
this work: they allow attribution of messages even after an arbitrary period, but only with the
cooperation of a centralized service provider. One such system, based on a secret HMAC key, has
been deployed by Facebook [23].

Complications from ARC. As mentioned in Section 2, ARC is experimental and widely unadopted
as a standard, but would pose some minor complications for non-attributability if adopted, because
it has third-party MTAs sign emails in transit. KeyForge, though presented as a modification of
DKIM, is conceptually straightforward to extend to accommodate ARC, by having third-party
signer MTAs to use a FFS for signing, publish expiry information, and offer a forge-on-request
protocol, just like the MSA in KeyForge.

Acknowledgements

We are grateful to Jon Callas for his in-depth review of the applicability of our scheme to DKIM,
and to Dan Boneh, Daniel J. Weitzner, John Hess, Bradley Sturt, and Stuart Babcock for their
feedback. This work was supported in part by the William and Flora Hewlett Foundation grant
2014-1601.

31

References

[1] Domain-based Message Authentication, Reporting, and Conformance (DMARC). https://

tools.ietf.org/html/rfc7489.

[2] JSON-RPC. https://www.jsonrpc.org/.

[3] Ben Adida, Susan Hohenberger, and Ronald L. Rivest. Lightweight encryption for email. In
Dina Katabi and Balachander Krishnamurthy, editors, Steps to Reducing Unwanted Traffic on
the Internet Workshop, SRUTI’05. USENIX Association, 2005.

[4] Ross Anderson. Invited lecture at the fourth annual acm conference on computer and commu-
nications security (ccs), 1997.

[5] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient LIbrary for Cryptography. https:
//github.com/relic-toolkit/relic.

[6] Diego F. Aranha, Laura Fuentes-Castaeda, Edward Knapp, Alfred Menezes, and Francisco
Rodrguez-Henrquez. Implementing pairings at the 192-bit security level. In International
Conference on Pairing-Based Cryptography, pages 177–195. Springer, 2012.

[7] Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas.
Ouroboros genesis: Composable proof-of-stake blockchains with dynamic availability. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’18, pages 913–930, New York, NY, USA, 2018. ACM.

[8] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. P-signatures and
noninteractive anonymous credentials. In TCC 2008, 2008.

[9] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. Compact E-Cash
and Simulatable VRFs Revisited. In Pairing-Based Cryptography ’09, 2009.

[10] Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme. In Michael J.
Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings, volume 1666
of Lecture Notes in Computer Science, pages 431–448. Springer, 1999.

[11] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In
Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I, pages 757–788, 2018.

[12] Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-the-record communication, or, why not
to use pgp. In Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society,
WPES ’04, pages 77–84, New York, NY, USA, 2004. ACM.

[13] Thomas Brewster. Russian ‘fancy bear’ hackers tainted their huge leaks with fake data,
May 2017. https://www.forbes.com/sites/thomasbrewster/2017/05/26/russian-dnc-

hackers-planted-leaks-with-fake-data.

[14] B. Bunz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs: Short
proofs for confidential transactions and more. In 2018 IEEE Symposium on Security and
Privacy (SP), volume 00, pages 319–338.

32

https://tools.ietf.org/html/rfc7489
https://tools.ietf.org/html/rfc7489
https://www.jsonrpc.org/
https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://www.forbes.com/sites/thomasbrewster/2017/05/26/russian-dnc-hackers-planted-leaks-with-fake-data
https://www.forbes.com/sites/thomasbrewster/2017/05/26/russian-dnc-hackers-planted-leaks-with-fake-data

[15] Jon Callas. [ietf-dkim] DKIM Key Sizes, October 2016. http://mipassoc.org/pipermail/

ietf-dkim/2016q4/017207.html [https://perma.cc/H3SR-YB44].

[16] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. In Advances in Cryptology–CRYPTO 2004, 2004.

[17] Ran Canetti, Sunoo Park, and Oxana Poburinnaya. Fully bideniable interactive encryption.
IACR Cryptology ePrint Archive, 2018:1244, 2018.

[18] Rein Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable encryption. In
Burton S. Kaliski, editor, Advances in Cryptology — CRYPTO ’97, pages 90–104, Berlin,
Heidelberg, 1997. Springer Berlin Heidelberg.

[19] D. Crocker. Internet Mail Architecture, 2009. https://tools.ietf.org/html/rfc5598.

[20] Mario Di Raimondo and Rosario Gennaro. New approaches for deniable authentication. Jour-
nal of Cryptology, 22(4):572–615, Oct 2009.

[21] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage. Fast message frank-
ing: From invisible salamanders to encryptment. In CRYPTO (1), volume 10991 of Lecture
Notes in Computer Science, pages 155–186. Springer, 2018.

[22] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. In Proceedings of
the Thirtieth Annual ACM Symposium on Theory of Computing, STOC ’98, pages 409–418,
New York, NY, USA, 1998. ACM.

[23] Facebook. Messenger Secret Conversations Technical Whitepaper. Available at https:

//fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-

1.pdf, July 2016.

[24] Center for Strategic and International Studies (CSIS). Significant cyber incidents,
2018. https://www.csis.org/programs/cybersecurity-and-governance/technology-

policy-program/other-projects-cybersecurity.

[25] Craig Gentry and Alice Silverberg. Hierarchical ID-based cryptography. In Yuliang Zheng,
editor, Proceedings of ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer Science,
pages 548–566. Springer, 2002.

[26] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and
Jean-Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016, pages 305–326,
Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[27] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Message franking via committing authen-
ticated encryption. In CRYPTO (3), volume 10403 of Lecture Notes in Computer Science,
pages 66–97. Springer, 2017.

[28] Lachlan J. Gunn, Ricardo Vieitez Parra, and N. Asokan. Circumventing cryptographic deni-
ability with remote attestation. Available at https://eprint.iacr.org/2018/424, January
2019.

33

http://mipassoc.org/pipermail/ietf-dkim/2016q4/017207.html
http://mipassoc.org/pipermail/ietf-dkim/2016q4/017207.html
https://perma.cc/H3SR-YB44
https://tools.ietf.org/html/rfc5598
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://www.csis.org/programs/cybersecurity-and-governance/technology-policy-program/other-projects-cybersecurity
https://www.csis.org/programs/cybersecurity-and-governance/technology-policy-program/other-projects-cybersecurity
https://eprint.iacr.org/2018/424

[29] HIPAA Journal. United hospital district phishing attack impacts 2,143 patients,
2019. https://www.hipaajournal.com/united-hospital-district-phishing-attack-

impacts-2143-patients/.

[30] Troy Hunt. The 773 million record ”collection #1” data breach, 2019. https://www.

troyhunt.com/the-773-million-record-collection-1-data-reach/.

[31] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated verifier proofs and their
applications. In Proceedings of the 15th Annual International Conference on Theory and Ap-
plication of Cryptographic Techniques, EUROCRYPT’96, pages 143–154, Berlin, Heidelberg,
1996. Springer-Verlag.

[32] Taechan Kim and Razvan Barbulescu. Extended tower number field sieve: A new complexity
for the medium prime case. In Annual Cryptology Conference, pages 543–571. Springer, 2016.

[33] John Klensin. RFC5321: Simple Mail Transfer Protocol, 2008.

[34] Kurt Andersen. M3aawg DKIM Key Rotation Best Common Practices | M3aawg, De-
cember 2013. https://www.m3aawg.org/documents/en/m3aawg-dkim-key-rotation-best-
common-practices.

[35] Ben Laurie, Adam Langley, and Emilia Kasper. Certificate Transparency. RFC 6962, June
2013.

[36] Mike Masnick. The Clinton Campaign Should Stop Denying That The Wikileaks
Emails Are Valid; They Are And They’re Real. TechDirt, October 2016. https:

//www.techdirt.com/articles/20161024/22533835878/clinton-campaign-should-

stop-denying-that-wikileaks-emails-are-valid-they-are-theyre-real.shtml].

[37] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009.

[38] Moni Naor. Deniable ring authentication. In Moti Yung, editor, Advances in Cryptology —
CRYPTO 2002, pages 481–498, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[39] NIST. NIST randomness beacon. https://www.nist.gov/programs-projects/nist-

randomness-beacon.

[40] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In Proceedings of the IEEE Symposium on Security and Privacy. IEEE,
May 2013. Best Paper Award.

[41] Yngve N. Pettersen. The Transport Layer Security (TLS) Multiple Certificate Status Request
Extension. RFC 6961, June 2013.

[42] Krzysztof Pietrzak. Simple verifiable delay functions. IACR Cryptology ePrint Archive,
2018:627, 2018.

[43] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release crypto.
Technical report, Cambridge, MA, USA, 1996.

[44] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In ASIACRYPT,
2001.

34

https://www.hipaajournal.com/united-hospital-district-phishing-attack-impacts-2143-patients/
https://www.hipaajournal.com/united-hospital-district-phishing-attack-impacts-2143-patients/
https://www.troyhunt.com/the-773-million-record-collection-1-data-reach/
https://www.troyhunt.com/the-773-million-record-collection-1-data-reach/
https://www.m3aawg.org/documents/en/m3aawg-dkim-key-rotation-best-common-practices
https://www.m3aawg.org/documents/en/m3aawg-dkim-key-rotation-best-common-practices
https://www.techdirt.com/articles/20161024/22533835878/clinton-campaign-should-stop-denying-that-wikileaks-emails-are-valid-they-are-theyre-real.shtml
https://www.techdirt.com/articles/20161024/22533835878/clinton-campaign-should-stop-denying-that-wikileaks-emails-are-valid-they-are-theyre-real.shtml
https://www.techdirt.com/articles/20161024/22533835878/clinton-campaign-should-stop-denying-that-wikileaks-emails-are-valid-they-are-theyre-real.shtml
https://www.nist.gov/programs-projects/nist-randomness-beacon
https://www.nist.gov/programs-projects/nist-randomness-beacon

[45] Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley and
David Chaum, editors, Proceedings of CRYPTO ’84, volume 196 of Lecture Notes in Computer
Science, pages 47–53. Springer, 1984.

[46] Jonathan Stempel and Jim Finkle. Yahoo says all three billion accounts hacked in
2013 data theft, 2017. Reuters Business News. https://www.reuters.com/article/us-

yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-

idUSKCN1C82O1.

[47] Michael Thomas. Requirements for a DomainKeys Identified Mail (DKIM) Signing Practices
Protocol. https://tools.ietf.org/html/rfc5016.

[48] Nik Unger and Ian Goldberg. Deniable key exchanges for secure messaging. In Proceedings
of the 22Nd ACM SIGSAC Conference on Computer and Communications Security, CCS ’15,
pages 1211–1223, New York, NY, USA, 2015. ACM.

[49] Wikileaks. WikiLeaks: DKIM Verification, nov 2016. https://wikileaks.org/DKIM-

Verification.html [https://perma.cc/H3SR-YB44].

[50] Wikileaks. Wikileaks: Search the DNC Database, July 2016. https://wikileaks.org/dnc-

emails/].

[51] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151:1–32, 2014.

A Compilation and Evaluation parameters

We performed all benchmarks on a 2017 MacBook Pro, 15-inch, with an Intel 4-core 3.1GHz
processor and 16GB of RAM.

Openssl was compiled with the following flags:

clang -I. -I.. -I../include -fPIC -fno-common

-DOPENSSL_PIC -DOPENSSL_THREADS -D_REENTRANT

-DDSO_DLFCN -DHAVE_DLFCN_H -arch x86_64 -O3

-DL_ENDIAN -Wall -DOPENSSL_IA32_SSE2

-DOPENSSL_BN_ASM_MONT

-DOPENSSL_BN_ASM_MONT5 -DOPENSSL_BN_ASM_GF2m

-DSHA1_ASM -DSHA256_ASM -DSHA512_ASM -DMD5_ASM

-DAES_ASM -DVPAES_ASM -DBSAES_ASM -DWHIRLPOOL_ASM

-DGHASH_ASM -DECP_NISTZ256_ASM

RELIC was compiled with the following flags:

cmake ../ -DALLOC=DYNAMIC -DFP_PRIME=381

-DARITH=gmp-sec -DWSIZE=64

-DFP_METHD="INTEG;INTEG;INTEG;MONTY;LOWER;SLIDE"

-DCOMP="-O3 -mtune=native -march=native"

-DFP_PMERS=off -DFP_QNRES=on

-DFPX_METHD="INTEG;INTEG;LAZYR"

-DEP_SUPER=off -DPP_METHD="LAZYR;OATEP"

35

https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1
https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1
https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1
https://tools.ietf.org/html/rfc5016
https://wikileaks.org/DKIM-Verification.html
https://wikileaks.org/DKIM-Verification.html
https://perma.cc/H3SR-YB44
https://wikileaks.org/dnc-emails/
https://wikileaks.org/dnc-emails/

	1 Introduction
	1.1 System Requirements
	1.2 Key Ideas
	1.3 Our Solutions
	1.4 Summary of Contributions

	2 Background on Email
	2.1 Email Routing
	2.2 Email Authentication
	2.3 Challenges for Synchronous Authentication Protocols

	3 Model and Security Definitions
	3.1 Model
	3.2 Threat models
	3.3 Defining Non-Attributability

	4 Forward-Forgeable Signatures
	4.1 Definition
	4.2 Succinctness
	4.3 FFS Construction from (Hierachical) IBS

	5 Our Protocol Proposals
	5.1 KeyForge
	5.1.1 FFS configuration for KeyForge
	5.1.2 Publishing expiry information
	5.1.3 Forge-on-request protocol

	5.2 TimeForge

	6 Implementation and Evaluation
	6.1 Evaluation

	7 Related Work and Discussion
	A Compilation and Evaluation parameters

