Active Particles with Soft and Curved Walls: Equation of State, Ratchets, and Instabilities

Nikolai Nikola,1 Alexandre P. Solon,2,3 Yariv Kafri,1 Mehran Kardar,3 Julien Tailleur,2 and Raphaël Voituriez4,5

1Department of Physics, Technion, Haifa 32000, Israel
2Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
3Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
4Laboratoire de Physique Théorique de la Matière Condensée, UMR 7600 CNRS /UPMC, 4 Place Jussieu, 75255 Paris Cedex, France
5Laboratoire Jean Perrin, UMR 8237 CNRS /UPMC, 4 Place Jussieu, 75255 Paris Cedex, France

(Received 17 December 2015; revised manuscript received 10 May 2016; published 22 August 2016)

We study, from first principles, the pressure exerted by an active fluid of spherical particles on general boundaries in two dimensions. We show that, despite the nonuniform pressure along curved walls, an equation of state is recovered upon a proper spatial averaging. This holds even in the presence of pairwise interactions between particles or when asymmetric walls induce ratchet currents, which are accompanied by spontaneous shear stresses on the walls. For flexible obstacles, the pressure inhomogeneities lead to a modulational instability as well as to the spontaneous motion of short semiflexible filaments. Finally, we relate the force exerted on objects immersed in active baths to the particle flux they generate around them.

DOI: 10.1103/PhysRevLett.117.098001

Active forces have recently attracted much interest in many different contexts [1]. In biology, they play crucial roles on scales ranging from the microscopic, where they control cell shape and motion [2], to the macroscopic, where they play a dominant role in tissue dynamics [3,4]. More generally, active systems offer novel engineering perspectives, beyond those of equilibrium systems. In particular, boundaries have been shown to be efficient tools for manipulating active particles. Examples range from the rectification of bacterial densities [5,6] and optimal delivery of passive cargoes [7] to the powering of microscopic gears [8,9]. Further progress, however, requires a predictive theoretical framework which is currently lacking for active systems. To this end, simple settings have been at the core of recent active matter research.

Understanding the effect of boundaries on active matter starts with the mechanical pressure exerted by an active fluid on its containing vessel. This question has been recently studied extensively for dry systems [10–17], revealing a surprisingly complex physics. For generic active fluids, the mechanical pressure is not a state variable [13]. The lack of an equation of state, through a dependence on the wall details, questions the role of the mechanical pressure in any possible thermodynamic description of active systems [18,19]; it also leads to a richer phenomenology than in passive systems by allowing more general mechanical interplays between fluids and their containers.

Interestingly, for the canonical model of self-propelled spheres with constant propelling forces, on which neither walls nor other particles exert torques, the pressure acting on a solid flat wall has been shown to admit an equation of state [11,12,19]. While the physics of this model does not clearly differ from other active systems, showing, for instance, wall accumulation [20] and motility-induced phase separation [21–23], the mechanical pressure exerted on a flat wall satisfies an equation of state even in the presence of pairwise interactions [11,12,19]. One might thus hope that the intuition built on the rheology of equilibrium fluids extends to this case. Derived in a particular setting, the robustness of this equation of state, however, remains an open question. For instance, the physics of active fluids near curved and flat boundaries is very different [10,14,15,24,25]. Specifically, particles accumulate nonevenly depending on the curvature of confining walls, generating a spatially varying pressure [24,25]. Furthermore, the interplay between active particles and flexible objects, such as polymers and membranes, shows a rich nonequilibrium phenomenology [26–34]. Characterizing the role and properties of active forces in these contexts is thus an open and challenging question.

In this Letter, we study, from first principles, the confinement of torque-free active particles beyond the case of solid flat walls. We first show analytically that, while the pressure on curved walls is inhomogeneous, one recovers an equation of state for the average force normal to the wall, even in the presence of pairwise interactions. This surprising result also holds for asymmetric walls which act as ratchets and, as we show, generate currents and forces tangential to the wall. Contrary to the average normal force, these shear stresses depend on the details of the potential used to model the wall and therefore do not admit an equation of state. Moreover, we show that the pressure inhomogeneities trigger interesting new physics. For flexible partitions, we show how a finite-wavelength modulational instability sets in, followed by a long-time coarsening. Interestingly, this also explains the atypical folding and self-propulsion of semiflexible filaments immersed in active baths [28,30]. Finally, we give a simple...
relation between the force exerted on an asymmetric object in an active bath and the current of active particles it generates around it.

We start by considering noninteracting active particles, of positions \(\mathbf{r}_i = (x_i, y_i) \) and headings \(\mathbf{e}_{\theta_i} = (\cos \theta_i, \sin \theta_i) \), which follow the Langevin equations

\[
\dot{\mathbf{r}}_i = \nu \mathbf{e}_{\theta_i} - \mu \nabla V + \sqrt{2D_r \eta_i(t)},
\]

\[
\dot{\theta}_i = \sqrt{2D_\theta \eta'_i(t)}
\]

in addition to randomly changing orientation (tumbling) with rate \(\alpha \). Here \(\nu \) is the propulsion speed, \(\mu \) is the translational mobility \([35] \), \(D_r \) and \(D_\theta \) are the translational and rotational diffusivities, respectively, \(V(\mathbf{r}) \) is a static potential which defines the confining walls, and the \(\eta'_i \)'s are unit-variance Gaussian white noises. This model encompasses the well-studied run-and-tumble (RTP) dynamics and active Brownian particles (ABPs), with pure rotational diffusion. The persistence length of the particle, or run length, is given by \(\nu/(D_r + \alpha) \).

We first consider a system with periodic boundary conditions along the \(\hat{y} \) direction and structured walls along the \(\hat{x} \) direction. The wall potential starts, say, along the right edge of the system, at \(x_w(y) = x_0 + A \sin(2\pi y/L_p) \), and takes the form \(V(\mathbf{r}) = 1/2A[x - x_w(y)]^2 \) for \(x > x_w \), with a mirrored opposing wall at \(-x_w(y) \). The system height in the \(\hat{y} \) direction is taken to be an integer times \(L_p \). Equations of state, in or out of equilibrium, exist only in the thermodynamic limit, and we always take the distance between the walls much larger than any correlation length. The bulk is then uniform, isotropic, and independent of what happens in the boundary layers close to the walls; we thus consider only one edge of the system.

Let us first consider hard walls, with \(\lambda \) large enough that particles are arrested by the wall potential on a scale orders of magnitude smaller than any other relevant length scales. Examples of numerically measured steady-state particle and current densities are shown in Figs. 1(a) and 1(b). As expected \([14,24,25] \), the density along and close to the wall is nonuniform and, in general, unequal at points of equal potential (as opposed to what happens at thermal equilibrium). Remarkably, in addition to the thin layer close to the wall where particles accumulate, complex potential-dependent steady-state densities and currents are found in the whole wall region. There is a depletion of particles in the outer concave region of the wall, where particles stream towards the outer apices, and a density increase close to the inner convex apices, due to the recirculation of particles along the walls. Most importantly, the local pressure varies considerably along the wall \([36] \) [see Fig. 1(d)]. For hard walls, the force is always normal to the wall surface, and the local pressure can be evaluated as \(P(y) = \int_{r_s}^{r_b} \rho(\mathbf{r}) \nabla V \cdot d\mathbf{r} \), where the integral is taken in the direction normal to the wall, \(r_s \) is inside the bulk of the system, and \(\rho(\mathbf{r}) \) is the density of particles. Somewhat counterintuitively, the pressure is highest close to the depleted region, at the outer apices, because the depletion is compensated by a stronger accumulation at the wall, where the potential is nonzero [see Fig. 1(c)].

Similarly, it is lowest at regions where there is an accumulation of particles near the wall. Finally, we find, numerically, that the ratio between the maximal and minimal pressures (at the outer and inner apices, respectively) is a function of the dimensionless parameter \(\nu/(D_r \lambda) \) [Fig. 2(b)], where \(\lambda = L_p^2/(4\pi^2 A) \) is the radius of curvature at the apices.

Naively, these results suggest that the equation of state obtained in Ref. \([13] \) for this model is valid only for flat walls. However, Fig. 2 shows that the pressure, despite its nonuniformity, satisfies the same equation of state as in the case of flat walls \([13] \) once averaged over a period of the wall. More precisely, the force per unit length acting on a period of the potential, defined as

\[
\langle P_x \rangle = \frac{1}{L_p} \int_0^{L_p} P_x(y)dy, \quad P_x(y) = \int_{x_s}^{x_\ast} \rho(\mathbf{r}) \partial_x V dx
\]

with \(P_x(y) \) the force per unit length exerted by active particles on the wall along the \(\hat{x} \) direction \([37] \), obeys an equation of state. (By symmetry, for the potentials considered so far, the mean force along the \(\hat{y} \) direction is zero.) The averaged pressure is thus independent of the wall potential, whether hard or soft, a result which persists for any \(V(\mathbf{r}) \) despite the fact that the local pressure depends on the exact form of the wall potential \([38] \). It would be interesting to see if this can be related to the applicability of the virial theorem to the systems we consider here \([11,12,16,17,39] \).

To prove this result, consider the dynamics of the probability density to find a particle at \(\mathbf{r} \) with orientation \(\theta \):
The spontaneous shear stress exerted by an active fluid on an asymmetric surface is impossible in equilibrium systems. It can be quantified as (see Fig. 3)

$$\bar{P}_{y}^{\text{tot}}(x) = \int_{0}^{L_{p}} dy \bar{P}_{y}(\rho) \partial_{y} V(r).$$

This explains the spontaneous rotation of microscopic gears [8,9] and relates to the ratchet current through

$$\int_{x_{c}}^{x_{c}} dx \bar{P}_{y}^{\text{tot}} = \frac{1}{\mu_{s}} \int_{x_{c}}^{x_{c}} dx \bar{J}_{y}^{\text{tot}}.$$

Here \(\bar{J}_{y}^{\text{tot}}(x) = \int_{0}^{L_{p}} dy \bar{J}_{y}(x, y) \) is the total current in the \(\hat{y} \) direction (see Ref. [38] and Fig. 3), and Eq. (9) is the total force exerted by the active fluid on one period of the wall in the \(\hat{y} \) direction. Note that \(\langle P_{x} \rangle \), despite all these complications, still satisfies the same equation of state as for symmetric walls.

As shown above, although the averaged pressure satisfies an equation of state, the details of the interaction with the wall, e.g., the local pressure, are quite unlike an equilibrium system. Specifically, we note that, for hard surfaces, the highest pressure is always at the concave apex of the wall surface, while the lowest pressure is at the convex apex. We now show that for flexible objects this leads to a generic modulational instability.

The origin of the instability can be understood by considering a flexible interface (a filament in 2D), characterized by stretching and bending rigidities and anchored at the top and bottom of a container holding the active particles (see Fig. 4). The results above imply that, once induced by a fluctuation, a local deformation will have a finite pressure difference on the two sides of its apices, which will tend to further increase the deformation. Within linear stability analysis, the fate of a fluctuation of wave number \(q \) can be understood as follows: The unstabilizing contribution of the active pressure scales as the curvature of the interface (see Fig. 2 and Ref. [38]) and, hence, as \(q^2 \). It competes with the stabilizing effects of the tension and the
Typical snapshots for increasing filament lengths flexible filaments which are not pinned at their extremities. As undergoes small fluctuations around its mean position. Simulations (videos provided in Ref. [38]), in which a prevents the active particles from crossing the flexible particles via a stiff repulsive harmonic potential which springs, unstable below a certain wave number This implies that, for large enough activity, the interface is for a chain initially under tension), and unstable fluctuations is not compensated anymores, and initial microscopic fluctuations evolve into larger-scale, wavelike features whose initial wavelength is shown for clarity. The stretching constant controls the threshold for noninteracting active gas of ABPs. The filament is modeled as a chain of semiflexible filament with fixed ends is immersed in an active bath. To see this, integrate Eq.(5) over a surface containing an isolated object. This leads to

\[\mathbf{F}_\text{tot} = -\mathbf{J}/\mu_t, \]

where \(\mathbf{F}_\text{tot} \equiv \int d^3r \rho \nabla V \) is the total force exerted on the object and \(\mathbf{J} \equiv \int d^3r \mathbf{J}(r) \) the total current of active particles [38]. In the limit of slow, quasistatic motion of the object, Eq. (11) relates in a simple formula the ability of an asymmetric object to act as a ratchet to its self-propulsion by an active bath.

Conclusions.—In summary, we have shown, both analytically and numerically, that, while the forces exerted by an active fluid on a structured wall are, in general, inhomogeneous, an equation of state is recovered upon a proper spatial averaging. This result holds for noninteracting active particles as well as in the presence of pairwise interactions. Walls lacking an “up-down” symmetry act as ratchets and generate transverse fluxes. While the mean force normal to the wall axis still satisfies an equation of state, there is now a wall-dependent shear stress. The numerics shown in this Letter for ABPs are complemented in Ref. [38] by similar
results for RTPs which highlight their generality. For flexible boundaries, we have shown how the fluctuations of the wall shape can be enhanced by pressure inhomogeneities which trigger a modulational instability. For freely moving objects and filaments, this instability sheds new light on a host of phenomena which have been observed numerically, such as the atypical looping and swelling of polymers in active baths [26–30], as well as predicts new behaviors.

This work paves the way to new interesting questions in the engineering and control of active fluids. It would be interesting, for example, to determine how the shear stress generated by walls with asymmetric roughness can be optimized, or whether the dependence of the active motility generated by walls with asymmetric roughness can be interesting, for example, to determine how the shear stress generated by walls with asymmetric roughness can be optimized, or whether the dependence of the active motility on their size can be used as a sorting mechanism.

J. T. was supported by ANR project Bactterns, N. N. and Y. K. are supported by an I-CORE Program of the Planning and Budgeting Committee of the Israel Science Foundation and an Israel Science Foundation grant. A. P. S. acknowledges funding through a PLS fellowship from the Gordon and Betty Moore foundation. M. K. is supported by NSF Grant No. DMR-12-06323.

[35] In all the numerics, $\mu = 1$.
[36] This holds for noninteracting active particles with macroscopic wall modulations; its origin lies in the activity of the particles and has no way to do with the nonuniformity of pressure seen at the microscopic scale for equilibrium interacting particle systems. See J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids (Elsevier, New York, 1990).
[37] $P_{\eta}(r)$ is the component of the normal force per unit area in the x direction, which for simplicity we denote as “pressure.”