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We examine differences between various zero-group-velocity modes in photonic crystals, including those
that arise from Bragg diffraction, anticrossings, and band repulsion. Zero-group velocity occurs at points where
the group velocity changes sign, and therefore is conceptually related to “left-handed” media, in which the
group velocity is opposite to the phase velocity. We consider this relationship more quantitatively in terms of
the Fourier decomposition of the modes, by defining a measure of how much the “average” phase velocity is
parallel to the group velocity—an anomalous region is one in which they are mostly antiparallel. We find that
this quantity can be used to qualitatively distinguish different zero-group-velocity points. In one dimension,
such anomalous regions are found never to occur. In higher dimensions, they are exhibited around certain
zero-group-velocity points, and lead to unusual enhanced confinement behavior in microcavities.
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Photonic crystals are periodic dielectric and metallo-
dielectric media �1–3� in which the propagation of light can
exhibit behaviors quite different from those of homogeneous
media—behaviors such as photonic band gaps, supercollima-
tion, superprism effects �4�, and extraordinary or negative
refraction �5�. Most of these effects are closely associated
with an unusual feature of the dispersion relation �band
structure�, the frequency � versus wave vector k, of periodic
systems: There are extrema, or points of zero-group velocity
d� /dk. Such points do not occur in a homogeneous medium,
only in localized modes of certain waveguide structures or in
nonlocalized modes of periodic media. Since extrema in the
frequency bands are so central to the unique phenomena pos-
sible in photonic crystals, we wish to investigate them more
closely, and to ask the following question: Are there signifi-
cant qualitative differences between different band extrema,
and what relationship do these differences have to various
physical phenomena? Naturally, there are some obvious
qualitative differences: Some extrema are maxima, some are
minima, and others are saddle points. Of course, the exact
eigenmode solutions in the vicinity of the extrema provide,
in principle, complete information about their behavior. But
the latter is too much information—we would hope to have a
simpler description of the differences between extrema than
the entire field patterns—and the former is too little, as we
shall see. In particular, we will argue that there are substan-
tial differences between extrema at high-symmetry k points
�such as the center or edge of the Brillouin zone, correspond-
ing to the traditional criteria for Bragg diffraction� and ex-
trema at other k. Even among these nonsymmetric extrema,
there are distinct differences between those arising from
avoided eigenvalue crossings �anticrossings� and other band-
repulsion phenomena. As we will show these differences
arise from general properties of periodic crystals, therefore
such differences in zero-group velocity should be found in
other periodic systems, including electronic and phononic
crystals.

In order to have a quantitative measure of these differ-
ences independent of any particular physical phenomena, we
consider by analogy an important quantity of homogeneous
media that is ill-defined in periodic structures: the phase ve-
locity vp=�k / �k�2. In a homogeneous medium, the relative

direction of the phase and group velocities reveals important
information such as whether the medium is right- or left-
handed �negative index� �6� and to what degree the medium
is isotropic. In a periodic medium, the phase velocity is ill-
defined because k is not unique—it is equivalent to k+G for
any reciprocal lattice vector G �1�. Equivalently, an eigen-
mode in a periodic structure corresponds to an infinite num-
ber of Fourier components k+G, given by the Fourier-series
expansion of the Bloch envelope, each with its own “phase
velocity.” However, we can use the amplitudes of these Fou-
rier components, Hk+G, to quantify the degree to which the
solution resembles that of a homogeneous medium and the
degree to which the “average” phase velocity is parallel to
the group velocity, and we find that this average exhibits
interesting distinctions between different band extrema. In
particular, we define

�H =

�
G

vg

�vg�
·

�k + G�
�k + G�

�Hk+G�2

�
G

�Hk+G�2
�1�

as a measure of the anomalous character of a mode. As a sum
of cosines of the angle between the group velocity and the
wave vector weighted by the Fourier component amplitude,
�H is bounded between −1 and 1. A positive �negative� sign
indicates normal �anomalous� character; in fact in the homo-
geneous, right-handed medium limit �H is 1 for all modes.
The form of this function is somewhat arbitrary, e.g., one
could just as easily use the electric field instead of the mag-
netic field, but as we will see later, alternative definitions of
� yield similar qualitative results.

Consider a one-dimensional photonic crystal, such as a
multilayer film of period a with alternating �=9 �thickness
0.2a� and �=1 �thickness 0.8a�, whose band structure ��k�
�solved using a plane-wave method �7�� is shown in Fig. 1.
In such a structure, there are bands that have opposite-signed
group velocity and k, and which therefore appear “anoma-
lous,” but examining �H, Fig. 2�a�, reveals that they are not.
The first band is the only band in which �H approaches a
constant nonzero value as k vanishes, behavior due to the
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fact that vg approaches a constant nonzero value at low fre-
quencies. The second band, which looks anomalous since vg
is opposite to k in the first Brillouin zone, is shown to be
“normal” in the sense of �H: Most of its Fourier components
actually lie at negative wave vectors, aligned with vg. Since
all other bands have the behavior of one of these two bands,
it appears that all one-dimensional modes have similar, nor-
mal character.

Fourier decomposing the modes of the second band shows
the lack of any anomalous character more explicitly. In Fig.
2�b� the various Fourier components of the second band are
plotted. The Fourier component G=−2� /a is over 60% for
most of the Bloch modes between k=0 and � /a. Effectively
the mode at k acts like mostly a plane wave at k−2� /a. The
group velocity and the “average” k point in the same direc-
tion. For vanishing k, the modes begin to have an additional
mirror symmetry plane, so for every G there is a −G com-
ponent that cancels its contribution to �H ensuring that �H
goes to zero.

There is a simple argument why one-dimensional photo-
nic crystals should not exhibit sign changes of �H, and there-
fore should not exhibit negative �H for right-handed materi-
als. To begin with, for a given frequency �, the allowed
wave vectors k in a one-dimensional crystal come from the
eigenvalues exp�ika� of a 2�2 transfer matrix �8�, and thus
there can be at most two distinct real-k solutions at each �.
This precludes the possibility of having more than two ex-
trema in a given band, and by symmetry �either mirror sym-
metry or time-reversal symmetry� these two extrema must
occur at the Brillouin-zone edges. By the same symmetry,
however, �H cannot change sign at these points. The only
remaining possibility would be for �H to change sign at a
point that is not an extremum, where vg does not change
sign, but this seems unlikely and we have been unable to find
such a circumstance.

For two-dimensional periodic structures there can be
zero-group-velocity modes away from the Brillouin-zone
edge or center. For example, a square lattice �period a� of
dielectric ��=9� rods �radius r=0.2a� in air illustrates this
new type of zero-group-velocity mode at k=� where � lies
on �M �Fig. 3�, which itself can be divided into further sub-
categories. Around the M point, repulsion occurs between
the second and fourth bands that causes the second band to
develop a local minimum, where we might hope to find un-
usual behavior compared to a homogeneous right-handed
medium. The repulsion that drives the second band down-
ward originates in the shared symmetry character of the sec-
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FIG. 1. �Color online� Typical one-dimensional band structure
for a Bragg mirror with �=9 and width of high dielectric layer d
=0.2a.
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FIG. 2. �Color online� �a� �H calculated across the first and
second bands is never negative. �b� The strengths of the most im-
portant Fourier components for the second band of Fig 1. Away
from the band edges, where strong mixing occurs, the second band
behaves as a plane wave with k=k−2� /a.
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FIG. 3. �Color online� 2D band structure with dielectric profile
�inset� �=9, r=0.2a. Circled are the different types of zero-group-
velocity points; the labels indicate location in the irreducible Bril-
louin zone and band number. Strong repulsion also creates a pro-
nounced anticrossing in the fourth and fifth bands.
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ond and fourth bands under reflection about the mirror plane
that contains k along �M. Perturbative analysis of the modes
near M of the second band, by expanding them in the basis
of the eigenmodes at M, shows that the second band is in-
deed composed partly of the fourth mode at M �9�. Another
type of zero-group-velocity mode is due to the avoided
crossing along a high symmetry direction in bands four and
five. The difference between these two types of extrema,
both located away from the Brillouin-zone edge or center, is
evident in �H, shown in Fig. 4. A small region in the second
band has negative �H �which grows if we increase � to in-
crease the repulsion between the second and fourth bands�.
In contrast, the anticrossing in the fourth band does not pro-
duce a negative �H, though it is responsible for the dip in �H.
The third band shows that “negative” group velocity �oppo-
site to k in the first Brillouin zone� does not imply negative
�H.

A look at the amplitudes of the Fourier components, Fig.
5�a�, explains the behavior of the second band. Along the
second band, one pair of modes dominate for most of the
band, and even when the “positive phase velocity” Ga /2�
= �0,0� component increases in value the “negative phase
velocity” Ga /2�= �−1,−1� component initially compensates
for it. This allows the “average phase velocity” to remain
negative and hence allows �H to become negative just after
the minimum. For comparison, the third band where the
group velocity is always “negative” in this range of k has a
Fourier decomposition that is always dominated by one pair
of “negative phase velocity” components.

It should be emphasized that the sign of �H does not
determine whether there is negative or positive refraction at a
�11� interface of the structure. The direction of refraction is
not determined by the dominant Fourier decomposition, but
essentially by whether the mode has any G=0 Fourier com-
ponent that an incident wave from a homogeneous medium
can couple to at the given Bloch wave vector. Thus, “left-
handedness” is not strictly required for negative refraction.
For example, in this structure, the first two bands are nega-
tive refracting near M with a positive �H, similar to the
structure considered in Ref. �10�. As another example, the
negative-refracting modes looked at in Ref. �5�, the entire
first band is dominated by the G=0 component, yielding a
positive �H. �Of course, one can define an “effective index”
by arbitrarily choosing a phase velocity from k in the first

Brillouin zone �5,10�, but this need not coincide with the
average phase velocity determined by the Fourier decompo-
sition.� Uniform cross-section waveguides �in which phase
velocity is well defined� with group velocity opposite to
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FIG. 4. �Color online� Plot of �H for the first four bands of the
two-dimensional crystal in Fig. 3.
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FIG. 5. �Color online� �a� A plot in k space of k+G associated
with the largest Fourier components for the second band. Below is
a graph of the associated Fourier components across the same band
�b� Corresponding graphs for the third band.
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phase velocity �and hence ��0� have also been identified
�11�. However, at any given frequency in these waveguides
there are always both negative- and positive-� modes,
whereas in the crystal considered here it is possible to get
only ��0 modes in a certain frequency range by tuning the
rod radius.

To ensure that the behavior exhibited by �H is not an
artifact of some arbitrary choice in our definition, we ex-
plored other definitions and verified that the qualitative re-
sults do not change. For example, one can define �D by
simply replacing H with D, the electric displacement field, in
Eq. �1�. One can also define �̃H, the difference between the
Fourier components with k+G making acute angles with vg
and those with obtuse angles.

�̃H = �
G

�k+G�·vg	0

�Hk+G�2 − �
G

�k+G�·vg�0

�Hk+G�2. �2�

A corresponding quantity �̃D using the Fourier components
of D can also be defined. Figures 6�a� and 6�b� plot these
alternative definitions, compared with �H, for bands two and
three, and show that the qualitative behavior around the zero-
group-velocity point is preserved. The �̃ definitions do be-

come negative near �, but this is an artifact of them weight-
ing the Fourier components that are only slightly on the
“positive” side, such as Ga /2�= �1,−1� and �−1,1�, equally
with very positive Fourier components such as Ga /2�
= �1,0� or �1,1�, rather than weighting them with the dot
product vg · �k+G�. �Similarly for the fact that the third band
has nonzero �̃ at the M point.�

One manifestation of the differences between the zero-
group-velocity modes can be found in the dependence of
cavity quality factors on the cavity length. Here, we are con-
sidering the simplest one-dimensional realization of an opti-
cal cavity: A slab of some material �or crystal structure� ter-
minated by two mirrors on either end, which confines
standing wave modes that leak out slowly due the imperfect
reflectivity of the ends. Even simpler, we can omit the mir-
rors and just rely on the innate reflectivity of the interface
between the cavity material or structure and the surrounding
material �e.g., air�. The quality factor Q is a conventional
dimensionless lifetime �the number of optical periods for the
energy to decay by e−2��. Normally, the quality factor in-
creases monotonically as the size of a cavity is increased, all
other things equal, simply because a smaller portion of the
mode is exposed to the edge of the cavity where it can escape
�or equivalently because the round-trip time through the cav-
ity increases�. However, if the cavity material has a band
extremum, more unusual length dependence can occur at fre-
quencies near this extremum. Given the wave vector k of the
extremum, the component k� perpendicular to the cavity in-
terfaces introduces a length scale � /k�, and as the cavity
length changes by multiples of this length scale there are
interference effects that lead to periodic peaks in Q �12�. If
the extremum occurs in a periodic medium, however, there
are multiple length scales corresponding to the different Fou-
rier components k+G �unless one component dominates�,
and the phenomena are more complicated. Moreover, in a
periodic medium the thickness of the cavity cannot be in-
creased continuously without changing the crystal termina-
tion, and so at best one expects periodic peaks in Q at the
least common multiple of � /k� and the crystal period.

In particular, we consider structures like the one depicted
in Fig. 7: a finite number of layers of our square-lattice 2D
crystal, oriented in the diagonal �11� direction, with thickness
L in units of d=a /�2 �the distance from one layer to the next
along the diagonal direction�. This structure is periodic along

the vertical �11̄� direction, and so the modes would be char-
acterized by a k� Bloch wave vector along this direction �par-

Σ2

H
η

D
η

D
η

H
η

0

band 2

0.5
k

's

x

η

= k

1

y

0

(2

- 1

π/a)���

0 0.5
kx = k y (2 π/a)

-1

0

1

η'
s

band 3

η
H

η
D

η
H

η
D

���

FIG. 6. �Color online� �a� Plot of � �thin lines� and �̃ �thick
lines� for the second band. Color indicates the field used as the
weight: H �blue� and D �red�. �b� Same comparison but for the third
band where behavior is expected to be normal.

FIG. 7. �Color online� Photonic-crystal Fabry-Perot cavity,
formed by a finite number of layers of the crystal in the �11� direc-
tion. Here, the thickness is L=12d, where d=a /�2 is the distance
from one layer to the next. �Blue, white, red� indicate �positive/
zero/negative� Ez field of a resonant mode with Q	2000.
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allel to the cavity interfaces�, but we only consider k� =0
modes �which couple to normal-incident radiation�. Even for
k� =0, there are many resonant standing-wave modes at dif-
ferent frequencies, associated with different zero-group-
velocity band edges along the �M direction. One such mode,
at a frequency corresponding to the �2 extremum of the
second band, is depicted in Fig. 7 for L=12d.

We then compute the Q of modes associated with four
different band extrema as a function of the cavity size L, and
plot the results in Figs. 8�a�–8�c�. �Q is computed using a
filter-diagonalization analysis �13� of a finite-difference time-
domain simulation �14� implemented in a free software pack-
age �15�.� In each one of these plots, as discussed above, we

might expect to see periodic peaks in Q at intervals 
L
=� /k�, but this will be complicated by the periodicity of the
underlying structure �and the corresponding nonuniqueness
of k�. The simplest behavior occurs for the band extrema M1
and M2 at the M point ka /2�= �0.5,0.5�, for which k�

=� /d. In this case, since the primary length scale �corre-
sponding to the largest Fourier component G=0� induces a
length scale � /k�=d equal to the increment in L, the graphs
appear smooth and monotonically increasing as expected
from above. The most interesting results are shown in Fig.
8�a� corresponding to the �2 extremum �ka /2�
= �0.293,0.293��, for which Q exhibits dramatic spikes �in-
creasing by up to two orders of magnitude to Q	106� at
apparently irregular intervals. The ability of �2 modes to
exhibit extremely large Q compared to other band extrema
lies in interference between the four modes in the crystal
around such an extremum, as discussed further below. The
irregularity of the peaks lies in the fact that the induced
length scale � /k�=d /0.586 does not have a small least-
common multiple with d. In contrast, consider Fig. 8�c�,
which comes from the �4 anticrossing extremum at ka /2�
= �0.318,0.318�, which has an induced length scale � /k�

that is close to 3d /2, and hence Q displays nearly periodic
peaks with period 3d. The peaks in this case are not nearly so
large as for Fig. 8�a�, as discussed below, because the dis-
tinctness of the modes surrounding the extremum inhibits
interference effects. To further reinforce our understanding
of the Q peaks in Fig. 8�a�, verifying that they indeed stem
from an interference effect associated with k at the extre-
mum, we examined a slightly modified structure: We
tweaked the index contrast to shift the �2 extremum to
ka /2�= �0.33,0.33�. In this case, the induced length scale of
the dominant Fourier component is � /k�
3d /2, and we
expect to see periodic Q peaks at intervals of roughly 3d.
This prediction is confirmed in Fig. 9, which displays Q vs L
for this tweaked structure. �Q is still not exactly periodic
because there are multiple G components present, but the
largest peaks are separated by 
L=3d.�

The unusual behavior of the cavity Q in Fig. 8�a�, with its
many sharp peaks, lies in an interference phenomenon: as
shown in Fig. 10, near a band extremum away from the edge
of the Brillouin zone we have four modes out of which to
build a standing-wave resonance, instead of only two modes
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FIG. 8. �Color online� Resonant modes of a cavity formed from
a finite section of a photonic crystal. The unit of length is d
=a /�2 where a is the lattice constant. The dashed gray lines mark
the induced periodicity due to the k point with zero-group velocity.
For �a� k= �2� /a��0.293,0.293� at �2, �b� k= �2� /a��0.5,0.5� at
M1 and M2, and �c� k= �2� /a��0.318,0.318� at �4.
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FIG. 9. �Color online� Shifting the second band minimum to
occur at k= �2� /a��0.33,0.33� yields the same oscillatory depen-
dence on L shown in the fourth band in Fig. 8�c�.
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as for an ordinary extremum at the zone edge or center.
These four modes, or two pairs of counterpropagating
modes, can form a superposition of two standing-wave pat-
terns whose radiative fields destructively interfere, thus in-
creasing Q. This can happen for both the extremum of the
second band, where �H changes sign, and for the extremum
of the fourth band, where �H does not change sign. But as
shown in Fig. 8�a� the former have much more pronounced
peaks in Q than the latter. This difference is directly con-
nected to the change of sign in �H. As a general principle,
one expects that modes that are more similar will interfere
more readily, and hence have larger Q peaks. Perhaps coun-
terintuitively, the fact that �H changes sign, is an indication

that modes just on either side of the extremum in the second
band are more similar than the corresponding modes for the
fourth band where �H does not change sign. The reason for
this is that �H changes sign only when the Fourier decom-
position of the field pattern is similar �and hence has a simi-
lar “phase velocity”� on either side of the extremum despite
the change in sign of the group velocity. Hence, the change
in sign of �H is correlated to the higher Q peaks for the
second band.

In conclusion, it has been shown that a new measure of
anomalous behavior, �H determined by the average phase
velocity, which was motivated by homogeneous negative-
index media, can yield new information differentiating
among the zero-group-velocity modes. This characterization
of anomalous behavior appears to be independent of the ar-
bitrary choice of norm used to define “average” phase veloc-
ity. Zero-group-velocity modes away from high-symmetry
points exhibit qualitatively different behavior than zero-
group-velocity modes at the band edge, and even among
themselves have distinct behaviors depending on the sign of
�H.
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