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White-light solitons
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Optical spatial solitons made from incoherent white light were experimentally observed in 1997 by Mitchell
and Segev [Nature (London) 387, 880 (1997)]. We present what is believed to be the first theory describing
these solitons and find the characteristic features of their spatiotemporal coherence properties and their
temporal power spectrum. © 2003 Optical Society of America
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The phenomenon of spatial solitons can be understood
as a dynamic balance between two opposing tenden-
cies, namely, the tendency for the beam to expand as
a result of diffraction and the tendency for the beam
to contract because of self-focusing.1 This remark-
able phenomenon has been studied in the context of
nonlinear optics for a number of years. However,
before the experiment of Mitchell et al.,2 optical
solitons were believed to be solely coherent entities.
The experiment reported in Ref. 2 demonstrated
solitons made from partially spatially incoherent
yet quasi-monochromatic (temporally coherent) light;
the light source was laser light passed through a
rotating diffuser. One year later, Mitchell and Segev
demonstrated solitons made from both spatially and
temporally incoherent light; the light source was
an incandescent light bulb.3 These experimental
results initiated a series of theoretical studies of
incoherent solitons.4 – 9 However, all these theories
have considered only solitons made from spatially
incoherent yet temporally coherent (quasi-monochro-
matic) light, like those observed in the study reported
in Ref. 2. Hence, these theories cannot describe
solitons made from incoherent white light (such as
those reported in Ref. 3) and cannot describe their
spatiotemporal coherence properties and features of
their temporal spectral density.

Here we present what is believed to be the f irst
theoretical (numerical) study of solitons made from
temporally and spatially incoherent light, that is,
white-light solitons. The evolution dynamics reveals
that the spatiotemporal coherence properties of the in-
put light beam change in a characteristic fashion and
self-adjust to form a soliton. We identify the charac-
teristic features of the temporal power spectrum and
the spatiotemporal coherence properties of white-light
solitons. Specifically, the spatial intensity profile of
light within the bandwidth �v, v 1 dv� is wider (less
localized) at lower frequencies and narrower at higher
frequencies. Furthermore, the spatial correlation
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distance (across the soliton) is always larger for lower
frequencies and shorter for higher frequencies. We
study white-light solitons in two generic types of
nonlinearity, the saturable nonlinearity3 and the
Kerr nonlinearity,10 when both have a noninstaneous
response.

The light source used to construct white-light
solitons generates spatially and temporally incoher-
ent continuous-wave (CW) light.3 Because of the
noninstantaneous nature of the medium, the induced
nonlinear index of refraction is unable to follow fast
phase f luctuations of incoherent light but responds
only to the time-averaged intensity, I , which is inde-
pendent of time, ≠I�≠t � 0; the time average is taken
over the response time of material. The dynamic
equation(s) describe the evolution of time-averaged
intensity, and the coherence properties of light, along
the propagation axes. One theoretical approach to
this problem is through the evolution equation derived
from the coherent density theory,4 extended to include
temporal incoherence11:
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Here fv�x, z, u� represents the coherent density for
each frequency constituent of a beam; kv � n0v�c,
and u represents an angle with respect to the z
axes.4 The spatiotemporal coherence properties of
light can be described in terms of the mutual spec-
tral density evaluated at a given transverse plane
of the beam11,12: Bv�x1, x2, z� �

R
`

2` duexp�ikv�x1 2

x2��fv�x1, z, u�fv�x2, z, u��. Equation (1) is derived
to be equivalent13 to the evolution of mutual spectral
density formulated in Ref. 11. In deriving Eq. (1)
we assume that the medium is dispersionless. Since
the coupling term dn�I� is independent of time,
≠dn�I��≠t � 0, dispersion can be included by substi-
tution of n0 with n0�v�. In this Letter we focus on
© 2003 Optical Society of America
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the collective self-focusing effect of the white-light
beam and neglect the effect of dispersion. Since the
light is CW �≠I�≠t � 0�, dispersion is negligible if
n0�v� does not vary significantly over the frequen-
cy span.

First, we seek white-light solitons in saturable self-
focusing media, dn�I� �2a�1 1 I �21, where I �x, z� �R`

0 dv
R`

2` duj fv�x, z, u�j2 denotes the time-averaged
intensity expressed in units of the dark irradiance
of the crystal.4 For the photorefractive screening
nonlinearity a �20.5n0

3r33V�D.14 In our numeri-
cal experiments, we have taken realistic parame-
ter values from Ref. 3; n0 � 2.3 is the extraordinary
refractive index, r33 � 1022 pm V21 is the electro-optic
coeff icient, V � 550 V is the voltage applied on the
crystal between electrodes separated by D � 6 mm.
To find white-light solitons for the photorefrac-
tive screening nonlinearity we launch a beam with
fv�x, z � 0, u� �

p
r̂v0

21D21 exp�2u2��2u0
2�� 3

exp�2x2��2w2��, where r̂ � 3.32 (r̂ determines
the ratio between the peak intensity of the soli-
ton and the dark irradiance), u0 � 0.55±, and
w � 7.74 mm. The spectral density is rect-
angular within the interval �vmin, vmax� �
�v0�1 2 D�2�, v0�1 1 D�2��, where the average
frequency v0 � 3.86 3 1015 Hz and the frequency
bandwidth is D � 20%.

The propagation of the total-intensity profile of this
beam is shown in Fig. 1(a) for �38 diffraction lengths.
(The diffraction length, d � 0.78 mm, is calculated
numerically; the nonlinearity is turned off, and d is
the distance at which the width of the input Gauss-
ian beam increases by a factor of

p
2.) During the

formulation of the white-light soliton, the spatiotem-
poral coherence properties acquire characteristic
properties. We observe the evolution of the spa-
tial intensity profile, Iv�x, z� �

R
`

2` duj fv�x, z, u�j2,
and the complex coherence factor mv�x1, x2, z� �
Bv�x1, x2, z���Bv�x1, x1, z�Bv�x2, x2, z��1�2 at a par-
ticular frequency v. The quantity Iv�x, z� provides
information on the temporal spectral density, and
mv�x1, x2, z� describes the spatial coherence properties
of each frequency constituent of a beam.12 By observ-
ing the quantities I �x, z�, Iv�x, z�, and mv�x1, x2, z�
during propagation, we find that they self-adjust
after a propagation distance of �10d and remain
unchanged afterward. We conclude that the input
has converged into a white-light soliton, a beam whose
intensity profile and spatiotemporal properties exhibit
stationary propagation in z. The quantities Iv�x� and
mv�x, 0� that are characteristic of a white-light soliton
are shown in Figs. 2(a) and 2(b) at three representa-
tive frequencies, vmin, v0, and vmax; the functions are
calculated at z � 38d. We observe that the spatial
correlation distance is larger for lower frequencies
and smaller for higher frequencies, as can be seen
from the width of mv�x, 0�; the plot of Iv�x� shows
that the spatial intensity profile is slightly wider (less
localized) at lower frequencies, and narrower, with a
higher peak, at higher frequencies [see the insert in
Fig. 2(b)]. The same feature is observed in the Kerr
medium but is much more pronounced, as is discussed
below.
The simulations of the evolution of white-light soli-
tons in a Kerr medium are based on the modal theory,5
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Here, um
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v denotes the time-averaged modal weights5; Eq. (2)
is equivalent to the evolution of mutual spectral den-
sity.11,13 The Kerr medium responds as 2n0dn�I� �
n2I , where I �x, z� �
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We seek a white-light soliton by launching an op-
tical field with the following parameters: The total-
intensity profile of the input beam is I0 sech2�x�w�,
with a characteristic width w � 9.51 mm and
height defined by n2I0 � 4 3 1024. The spectral
density is rectangular within the same interval
�vmin, vmax� as for the saturable nonlinearity. At
z � 0, we set u1

v �
p
I0v0

21D21 sech2�x�w�, u2
v �p

I0v0
21D21 sech�x�w�tanh�x�w�, l1

v � l2
v � 1.

These parameters are chosen such that in the limit
D ! 0 this input converges to the two-mode spatially
incoherent, quasi-monochromatic soliton.10 However,
since the power spectrum is broad, this input evolves,
and we observe whether it self-traps. Figure 1(b)

Fig. 1. Evolution of the intensity structure of white-light
solitons in (a) saturable and (b) Kerr nonlinearity. The
propagation distance, z, is expressed in diffraction length
units, and spatial coordinate x is in characteristic width
units. In the saturable case, the parameters are taken
from Ref. 3.

Fig. 2. Complex coherence factor mv�x, 0� and the inten-
sity profile Iv�x� of a white-light soliton at three represen-
tative frequencies: vmin (solid curve), v0 (dotted–dashed
curve), and vmax (dotted curve).
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displays the evolution of the total-intensity profile of
the beam from z � 0 to z � 24 d of propagation; in
this case, the diffraction length is d � 1.1 mm. The
total-intensity profile changes only slightly through-
out propagation. Because of the small oscillation
of the peak of the beam [see Fig. 1(b)], we refer to
this self-trapped and stable beam as a white-light
quasi-soliton. The power is not radiated from this
beam during propagation.

Although the total intensity profile is practically
unchanged during evolution, the spatiotemporal sta-
tistical properties change more signif icantly again
in a characteristic fashion. Our choice for the input
beam corresponds to having identical Iv�x, z � 0�
and mv�x1, x2, z � 0� for all frequencies. However,
these quantities evolve differently for different fre-
quencies, and we observe a shift of higher (lower)
frequency constituents toward the peak (tails) of the
self-trapped beam. Similarly to the saturable case,
after a few diffraction lengths the spatiotemporal
coherence properties have self-adjusted and do not
change signif icantly afterward. Figures 2(c) and 2(d)
show the complex coherence factor mv�x, 0� and the
intensity profile Iv�x� at the frequencies vmin, v0, and
vmax; the functions are calculated at z � 24d. We ob-
serve that the spatial intensity profile is narrower at
higher frequencies. The spatial correlation distance
is shorter for higher frequencies, as can be seen from
the width of mv�x, 0�.

For numerical simulations, the coordinates x, u,
and v are represented on uniform grids consist-
ing of 2048, 256, and 41 points, respectively;
the points are uniformly spaced in the intervals
��230w, 30w�, �22.5u0, 2.5u0�, and �vmin, vmax�,
respectively. For the integration, we use the stan-
dard split-step Fourier technique. To check the
consistency of numerical simulation, we check the
conservation of total power, the conservation of power
within each frequency constituent of the beam, and
the conservation of transverse momentum.4,15

The results of our simulations for both the Kerr and
the saturable cases can be interpreted as follows: The
white-light incoherent soliton is fundamentally a col-
lective phenomenon, as all frequencies contribute to
its formation. That is, the total intensity of the beam
induces (via the nonlinearity) a multimode waveguide
(induced potential) that, at the same time, guides the
light at the various frequencies by populating the
modes (bound states) of the waveguide. The char-
acteristic width of the soliton is, say, w. However,
every frequency constituent sees this width in terms
of its own characteristic length scale–the wavelength.
Hence, the induced waveguide is effectively broader
(has a larger numerical aperture) at the higher
frequencies (shorter wavelengths). Consequently, a
larger amount of intensity at higher frequencies is
guided inside the waveguide, i.e., closer to the soliton
peak, whereas the intensity at smaller frequencies
has a smaller conf inement factor, i.e., spreads more
away from the center of the waveguide. These results
explain the behavior of Iv�x�. Let us now explain the
behavior of the complex coherence factor. A spatially
incoherent soliton occurs when incoherent diffraction
(diffusion) is balanced by nonlinearity.9 White-light
solitons are made up of many wavelengths; however,
they are all trapped within the same waveguide and
have approximately the same incoherent diffraction
angle, u0 ~ l�ls�l�, where ls�l� is the spatial correla-
tion distance at wavelength l. From this argument,
we immediately obtain ls�l� ~ l; i.e., the spatial cor-
relation distance in a white-light soliton is generally
shorter for shorter wavelengths (higher frequencies).

In conclusion, we have theoretically identified inco-
herent white-light solitons in a noninstantaneous non-
linear medium and characterized their main features.
We find that the spatial intensity profiles at different
(temporal) frequencies of the soliton are wider (less lo-
calized) at lower frequencies and narrower at higher
frequencies. At the same time, the spatial correlation
distance is larger at lower frequencies and shorter at
higher frequencies.
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