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The ability to confine light is important both scientifically and technologically. Many light

confinement methods exist, but they all achieve confinement with materials or systems that

forbid outgoing waves. Such systems can be implemented by metallic mirrors, by photonic

band-gap materials1, by highly disordered media (Anderson localization2) and, for a subset of

outgoing waves, by translational symmetry (total internal reflection1) or rotation/reflection

symmetry3, 4. Exceptions to these examples exist only in theoretical proposals5–8. Here we

predict and experimentally demonstrate that light can be perfectly confined in a patterned

dielectric slab, even though outgoing waves are allowed in the surrounding medium. Techni-

cally, this is an observation of an “embedded eigenvalue”9—namely a bound state in a contin-

uum of radiation modes—that is not due to symmetry incompatibility5–8, 10–16. Such a bound
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state can exist stably in a general class of geometries where all of its radiation amplitudes

vanish simultaneously due to destructive interference. This method to trap electromagnetic

waves is also applicable to electronic12 and mechanical waves14, 15.

The propagation of waves can be easily understood from the wave equation, but the local-

ization of waves (creation of bound states) is more complex. Typically, wave localization can only

be achieved when suitable outgoing waves either do not exist or are forbidden due to symmetry

incompatibility. For electromagnetic waves, this is commonly implemented with metals, photonic

bandgaps, or total internal reflections; for electron waves, this is commonly achieved with potential

barriers. In 1929, von Neumann and Wigner proposed the first counterexample10, in which they

designed a quantum potential to trap an electron whose energy would normally allow coupling to

outgoing waves. However, such artificially designed potential does not exist in reality. Further-

more, the trapping is destroyed by any generic perturbation to the potential. More recently, other

counterexamples have been proposed theoretically in quantum systems11–13, photonics5–8, acoustic

and water waves14, 15, and mathematics16; the proposed systems in refs. 6 and 14 are most closely

related to what is demonstrated here. While no general explanation exists, some cases have been

interpreted as two interfering resonances that leaves one resonance with zero width6, 11, 12. Among

these many proposals, most cannot be readily realized due to their inherent fragility. A differ-

ent form of embedded eigenvalue has been realized in symmetry-protected systems3, 4, where no

outgoing wave exists for modes of a particular symmetry.

To show that an optical bound state is feasible even when it is surrounded by symmetry-

compatible radiation modes, we consider a practical structure: a dielectric slab with a square array

2



of cylindrical holes (Fig. 1a), an example of photonic crystal (PhC) slab1. The periodic geometry

leads to photonic band structures, analogous to how a periodic potential in solids gives rise to

electron band structures. The PhC slab supports guided resonances whose frequencies lie within

the continuum of radiation modes in free space (Fig. 1b); these resonances generally have finite

lifetimes because they can couple to the free-space modes. However, using finite-difference time-

domain (FDTD) simulations17 and along with the analytical proof below, we find that the lifetime

of the resonance goes to infinity at discrete k points on certain bands; here we focus on the lowest

TM-like band in the continuum (referred to as TM1 hereafter), with its lifetime shown in Fig. 1c,

d. At these seemingly unremarkable k points, light becomes perfectly confined in the slab, as

is evident both from the divergent lifetime and from the field profile (Fig. 1e). These states are

no longer leaky resonances; they are eigenmodes that do not decay. In the functional analysis

literature, eigenvalues like this, which exist within the continuous spectrum of radiation modes,

are called embedded eigenvalues9. Here, embedded eigenvalues occur at five k points over the first

Brillouin zone. The one at � arises because symmetry forbids coupling to any outgoing wave4;

the other four (which are equivalent under 90� rotations) deserve further analysis since, intuitively,

they should not be confined.

To understand this unexpected disappearance of leakage, we examine the outgoing planewaves.

Using Bloch’s theorem1, we let the electric and magnetic fields of the resonance be Ek(⇢, z) =

e

ik·⇢uk(⇢, z) and Hk(⇢, z) = e

ik·⇢vk(⇢, z) where k = (k

x

, k

y

, 0), and uk, vk are periodic func-

tions in ⇢ = (x, y). Outside of the slab, these fields are composed of planewaves that propagate

energy and evanescent waves that decay exponentially. For frequencies below the diffraction limit,
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the only propagating-wave amplitudes are the zeroth-order Fourier coefficients, given by

c

s

(k) = hˆek · uki, c

p

(k) = hˆek · vki (1)

for s and p polarizations respectively, where ˆek = (k

y

,�k

x

, 0)/|k| is the polarization direction of

the in-plane fields, and the brackets denote spatial average on some x-y plane outside of the slab.

The outgoing power from the resonance is proportional to (|c
s

|2 + |c
p

|2) cos ✓, with ✓ being the

angle of propagation. In general, c
s

and c

p

are two non-zero complex numbers, with a total of four

degrees of freedom: therefore the outgoing power is unlikely to be zero when only two parameters

(k
x

and k

y

) are varied.

However, for a certain class of geometries, the degrees of freedom can be reduced. If the

structure has time-reversal symmetry ✏(r) = ✏

⇤
(r) and inversion symmetry ✏(r) = ✏(�r), then

the periodic part of the fields can be chosen to satisfy uk(r) = u⇤
k(�r) and vk(r) = v⇤

k(�r)

(ref. 18). If the structure also has a mirror symmetry in z direction, then the fields must transform

as ±1 under mirror flips in z (ref. 1), so the plane-parallel components must satisfy u
k
k(x, y, z) =

±u
k
k(x, y,�z) and v

k
k(x, y, z) = ⌥v

k
k(x, y,�z). Following these two properties, the amplitudes

c

s

and c

p

must be purely real or purely imaginary numbers on every k point. With only two

degrees of freedom left, it may be possible that the two amplitudes cross zero simultaneously as

two parameters k
x

and k

y

are scanned. A simultaneous crossing at zero means no outgoing power,

and therefore, a perfectly confined state. We note that such an “accidental” crossing is distinct from

those where leakage is forbidden due to symmetry incompatibility between the confined mode and

the radiation modes3, 4.

This disappearance of leakage may also be understood as the destructive interference be-
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tween several leakage channels. The field profile inside the PhC slab can be written as a superposi-

tion of waves with different propagation constants �
z

in z direction. At the slab-medium interface,

each wave partially reflects back into the slab, and partially transmits into the medium to become an

outgoing planewave. The transmitted waves from different �
z

channels interfere, and at appropri-

ate k points they may cancel each other. One can make this argument quantitative by writing down

the corresponding equations, yet because this argument ignores the existence of evanescent waves,

it is intrinsically an approximation that works best for slabs much thicker than the wavelength14.

Nonetheless, this argument provides an intuitive physical picture that supplements the exact (yet

less intuitive) mathematical proof given above.

With FDTD simulations, we confirm that both Fourier amplitudes are zero at the k points

where the special trapped state is observed (Fig. 1f, g). The zeros of c

s

on the two axes and

the zeros of c
p

on the diagonal lines arise from symmetry mismatch, but the zeros of c
p

along the

roughly circular contour are “accidental” crossings that would not be meaningful if c
p

had both real

and imaginary parts. We have checked that a frequency-domain eigenmode solver18 also predicts

planewave amplitudes that cross zero at these k points. The trapped state is robust, because small

variations of the system parameters (such as cylinder diameter) only move the crossing to a differ-

ent value of k
x

. This robustness is crucial for our experimental realization of such states. In fact,

the trapped state persists even when the C4 rotational symmetry of the structure is broken (Supple-

mentary Fig. 1). However, perturbations that break inversion or mirror symmetry will introduce

additional degrees of freedom in the Fourier amplitudes, thus reducing the infinite-lifetime bound

state into a long-lived leaky resonance (Supplementary Fig. 2) unless additional tuning parameters
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are used.

To experimentally confirm the existence of this trapped state, we use interference lithography

to fabricate a macroscopic Si3N4 PhC slab (n = 2.02, thickness 180 nm) with a square array of

cylindrical holes (periodicity 336 nm, hole diameter 160 nm), separated from the lossy silicon

substrate with 6 µm of silica (Fig. 2a). Scanning electron microscope (SEM) images of the sample

are shown in Fig. 2b, c. The material Si3N4 provides low absorption and enough index contrast

with the silica layer (n = 1.46). To create an optically symmetric environment needed to reduce the

degrees of freedom in the outgoing-wave amplitudes, we etch the holes through the entire Si3N4

layer, and immerse the sample in an optical liquid that is index-matched to silica. We perform

angle-resolved reflectivity measurements (schematic setup shown in Fig. 2d) to characterize the

PhC sample.

Light incident on the PhC slab excites the guided resonances, creating sharp Fano features

in the reflectivity spectrum19. In comparison, a perfect bound state has no Fano feature, because it

is decoupled from far-field radiation. In the measured reflectivity spectrum (Fig. 3a), we indeed

observe that the Fano feature of the TM1 band disappears near 35�. The measurements agree well

with the theory prediction, shown in Fig. 3b, with the resonance wavelengths between the two

differing by less than 2 nm. The measured Fano features are slightly broader than predicted, due

to inhomogeneous broadening (since the measured data are averaged over many unit cells) and

scattering loss introduced by disorders.

We extract the resonance lifetimes from the Fano features. By describing the guided reso-

nances with temporal coupled-mode theory (CMT)1, we find the reflectivity of the PhC slab to be
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the thin-film reflectivity with the Fano features described by

f(!) =

Q

�1
r

2i(1� !/!0) +Q

�1
r +Q

�1
nr

(rslab � tslab) , (2)

where !0 is the resonance frequency, Qr is the normalized radiative lifetime due to leakage into

the free space, Qnr is the normalized non-radiative lifetime, and rslab, tslab are the reflection and

transmission coefficients of a homogeneous slab. The CMT setup is schematically illustrated in

Fig. 3c, and a complete derivation is given in the Supplementary Information. The only unknowns

in the CMT reflectivity expression are the resonance frequency and the lifetimes, which we ob-

tain by fitting to the measured reflectivity spectrum. The fitted curves are shown in the bottom

panel of Fig. 3c, and the obtained radiative Qr is shown in Fig. 4a. At around 35�, Qr reaches

1,000,000, near the instrument limit imposed by the resolution and signal-to-noise ratio, and in a

good agreement with the values calculated from FDTD. We note that, the finite width and non-zero

divergence of the excitation beam give rise to a spread of k points, leading to an upper bound of

10

10 for the measured radiative Qr (see Supplementary Information); in this experiment, this is not

the limiting factor for the measured Qr. In comparison, the non-radiative Qnr is limited to about

10

4 which is due to loss from material absorption, disorder scattering, in-plane lateral leakage, and

inhomogeneous broadening. Lastly, for validation, we repeated the same fitting procedure for the

simulated reflectivity spectrum, and confirmed that consistent theoretical estimates of Qr are ob-

tained (Fig. 4b). These evidences quantitatively verify that we have observed the predicted bound

state of light.

We have observed an optical state that remains perfectly confined even though there exist

symmetry-compatible radiation modes in its close vicinity; this realizes the long sought-after idea
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of trapping waves within the radiation continuum, without symmetry incompatibility5–8, 10–16. The

state has a high quality factor (implying low loss and large field enhancement), large area, and

strong confinement near the surface, making it potentially useful for chemical/biological sensing,

organic light emitting devices, and large-area laser applications. It also has wavevector and wave-

length selectivity, making it suitable for optical filters, modulators, and waveguides. Furthermore,

the ability to tune the maximal radiative Qr from infinite to finite (Supplementary Fig. 2) is another

unique property that may be exploited. Lastly, the fundamental principles of this state hold for any

linear wave phenomenon, not just optics.

METHODS SUMMARY

Sample fabrication. The Si3N4 layer was grown by LPCVD on top of 6 µm thermally grown

SiO2 on a silicon wafer (LioniX), and subsequently coated with antireflection coating, a SiO2

intermediate layer, and negative photoresist. The periodic PhC pattern was created with Mach-

Zehnder interference lithography using a 325 nm He/Cd laser. Two orthogonal exposures defined

the two-dimensional pattern. The interference angle was chosen for periodicity 336 nm, and the

exposure time chosen for hole diameter 160 nm. After exposures, the sample was developed, and

the pattern was transferred from photoresist to Si3N4 by reactive-ion etching; CHF3/O2 gas was

used to etch SiO2 and Si3N4, and He/O2 gas was used to etch the antireflection coating.

Reflectivity measurement. The source was a supercontinuum laser (SuperK Compact, NKT Pho-

tonics) with divergence angle 6 ⇥ 10

�4 radian and beam-spot width 2 mm on the PhC sample at

normal incidence. A polarizer selected p-polarized light, which coupled with the TM1 band. To

create �

z

symmetry, the sample was immersed in a colorless liquid with index n = 1.454 at 740
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nm (Cargille Labs). The sample was mounted on two perpendicular motorized rotation stages: one

oriented the PhC to the �-X direction, while the other scanned the incident angle ✓. The reflected

beam was split into two and collected by two spectrometers, each with a resolution of 0.05 nm

(HR4000, Ocean optics). Measurements were made every 0.5� from normal incidence to 60�.

1. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding

the Flow of Light (Princeton University Press, 2008), 2 edn.

2. Lagendijk, A., van Tiggelen, B. & Wiersma, D. S. Fifty years of anderson localization. Phys.

Today 62, 24–29 (2009).

3. Plotnik, Y. et al. Experimental observation of optical bound states in the continuum. Phys.

Rev. Lett. 107, 183901 (2011).

4. Lee, J. et al. Observation and differentiation of unique high-q optical resonances near zero

wave vector in macroscopic photonic crystal slabs. Phys. Rev. Lett. 109, 067401 (2012).

5. Watts, M. R., Johnson, S. G., Haus, H. A. & Joannopoulos, J. D. Electromagnetic cavity

with arbitrary q and small modal volume without a complete photonic bandgap. Opt. Lett. 27,

1785–1787 (2002).

6. Marinica, D. C., Borisov, A. G. & Shabanov, S. V. Bound states in the continuum in photonics.

Phys. Rev. Lett. 100, 183902 (2008).

7. Molina, M. I., Miroshnichenko, A. E. & Kivshar, Y. S. Surface bound states in the continuum.

Phys. Rev. Lett. 108, 070401 (2012).

9



8. Hsu, C. W. et al. Bloch surface eigenstates within the radiation continuum. Light: Science &

Applications 2, e84 (2013). doi:10.1038/lsa.2013.40.

9. Hislop, P. D. & Sigal, I. M. Introduction to Spectral Theory: with Applications to Schrödinger

Operators (Springer Verlag, 1996).
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Figure 1: Theory predictions. a, Schematic of the photonic crystal (PhC) slab. b, Calculated

band structure. Yellow shaded area indicates light cone of the surrounding medium, where there

is a continuum of radiation modes in free space. The trapped state is marked with a red circle, and

the TM1 band is marked with a green line. Inset shows the first Brillouin zone. c, d, Normalized

radiative lifetime Qr of the TM1 band calculated from FDTD, with values along the �-X direction

shown in d. Below the light cone there is no radiation mode to couple to (i.e. total internal

reflection), so Qr is infinite. But at discrete points inside the light cone, Qr also goes to infinity. e,

Electric-field profile E

z

of the trapped state, plotted on the y = 0 slice. f, g, Amplitudes of the s-

and p-polarized outgoing planewaves for the TM1 band, with c

p

along the �-X direction shown in

g. Black circles in f indicate k points where both c

s

and c

p

are zero.
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Figure 2: Fabricated PhC slab and the measurement setup. a Schematic layout of the fabricated

structure. The device is immersed in a liquid, index-matched to silica at 740 nm wavelength. b, c,

SEM images of the structure in top view and side view. Inset of b shows an image of the whole

PhC. d, Schematic of the setup for reflectivity measurements. BS, beamsplitter; SP, spectrometer.
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Figure 3: Detection of resonances from reflectivity data. a, Experimentally measured specular

reflectivity for p-polarized light along �-X. The crucial feature of interest is the resonance, which

shows up as a thin faint line (emphasized by white arrows) extending from the top-left corner of

the top panel to the bottom-right corner. Disappearance of the resonance feature near 35� indicates

a trapped state with no leakage. Bottom panel shows slices at three representative angles, with

close-ups near the resonance features. b, Calculated p-polarized specular reflectivity using the

rigorous coupled-wave analysis (RCWA) method20 with known refractive indices and measured

layer thickness. c, Top: schematic for the scattering process in temporal coupled-mode theory

(CMT), which treats the resonance A and the incoming/outgoing planewaves s
m± as separate en-

tities weakly coupled to each other. Bottom: reflectivity given by the analytical CMT expression;

the resonance frequency and lifetimes, which are the only unknowns in the CMT expression, are

fitted from the experimental data in a.
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SUPPLEMENTARY EQUATIONS

Coupled-mode theory and fitting. In temporal coupled-mode theory (CMT), the field A of
the resonance and fields sm± of the incoming/outgoing planewaves are considered separate
entities that are weakly coupled to each other through their spatial overlaps1,21. A schematic
illustration is given in Fig. 3c of the main text. The resonance decays with a radiative-decay
lifetime ⌧r from leakage into the outgoing planewaves, and a non-radiative-decay lifetime ⌧nr
from material absorption and disorder scattering. As we will see, the effect of ⌧nr is to broaden
the resonance feature in the reflectivity spectrum; therefore it also heuristically accounts for the
inhomogeneous broadening in the measured reflectivity data. Incoming planewaves excite the
resonance with coupling coefficients denoted by 1 and 2. Thus we have

dA

dt
=

✓
�i!0 �

1

⌧r
� 1

⌧nr

◆
A+ 1s1+ + 2s2+. (1)

The planewaves on the two sides of the slab couple to each other through a direct scattering
process, with transmission and reflection coefficients tslab and rslab. The resonance decays into
the outgoing planewaves, with coupling coefficients denoted by d1 and d2. Therefore,

s1� = rslabs1+ + tslabs2+ + d1A, (2)

s2� = tslabs1+ + rslabs2+ + d2A. (3)

Lastly, the reflection at the silica-silicon interface (with coefficient r23) and the propagation
inside the silica layer impose that

s2+ = e2i�h2r23s2� (4)

where � =
q
n2
SiO2

!2/c2 � |k|2 is the propagation constant in the silica layer, and h2 is the
layer’s thickness. The normalization of the field amplitudes is chosen such that |A|2 is the
energy stored in the resonance, and |sm±|2 is the power carried by the incoming or outgoing
planewaves.

Now, assume e�i!t time dependence for the resonance amplitude A. Solving equations
(1–4) as a system of linear equations, we obtain

s1�
s1+

= rslab +
d11

i(!0 � !) + ⌧�1
r + ⌧�1

nr

+


tslab +

d12

i(!0�!)+⌧�1
r +⌧�1

nr

� 
tslab +

d21

i(!0�!)+⌧�1
r +⌧�1

nr

�

e�2i�h2r�1
23 � rslab � d22

i(!0�!)+⌧�1
r +⌧�1

nr

(5)
which gives us the overall reflectivity. This expression can be simplified, as follows. First, �z

mirror-flip symmetry of the PhC slab requires fields of the resonance to be either even or odd in
z, and so d2 = ±d1. Secondly, energy conservation requires that in the absence of input power
(s1+ = s2+ = 0), the energy dissipated through radiative decay must be carried away by s1� and
s2�; this leads to |d1|2 = 1/⌧r. Thirdly, inversion symmetry I and �z mirror symmetry yields



I�z = C2 rotational symmetry about the plane normal, and a combination of time reversal
symmetry and C2 symmetry leads to rslabd⇤1 + tslabd⇤2 + d1 = 0 (refs. 8, 22). A combination of
these facts yields

d21 = � 1

⌧r
(rslab ± tslab). (6)

Lastly, the coupling coefficients for the incoming and for the outgoing waves are actually the
same under energy conservation and time reversal requirements1,21,22, i.e. d1 = 1 and d2 = 2.
With these known properties, we can write the overall reflectivity as

R =

�����
s1�
s1+

�����

2

=

�����rslab � f(!) +
[tslab ⌥ f(!)]2

e�2i�h2r�1
23 � rslab + f(!)

�����

2

(7)

with
f(!) =

Q�1
r

2i(1� !/!0) +Q�1
r +Q�1

nr

(rslab ± tslab) , (8)

where Qr = !0⌧r/2 and Qnr = !0⌧nr/2 are the normalized lifetimes. We fit the experimentally
measured reflectivity spectrum with this expression to extract the lifetime of the resonances.

We note that, the only unknowns in this reflectivity expression are the resonance frequency
and the lifetimes: r23 is given by the Fresnel equations, and rslab, tslab can be approximated as
the reflection and transmission coefficients of a homogeneous slab whose permittivity is equal
to the spatial average of the PhC slab19,22.

In the absence of f(!), equation (7) reduces to the expression for multi-layer thin-film re-
flectivity. Therefore the Fano features are completely captured by f(!). From equation (8),
we see that the width of the Fano feature is proportional to Q�1

r + Q�1
nr , while the height of

the feature grows with Q�1
r . This confirms our intuitive understanding that, when the reso-

nance becomes a bound state (Qr = 1), it decouples from the far field, and the Fano feature
disappears.

It is straightforward to generalize this CMT expression to include multiple resonances in
the spectrum; same derivation shows that we can simply replace f(!) in equation (7) with a
summation

P
j f

(j)(!) for different resonances labeled by j. Each resonance has its resonant
frequency and lifetimes that are to be determined from the fitting. Lastly, we note that the ±
signs relate to how the resonance fields transform under mirror flips in z. When the electric
field is used to determine the phase of A and sm±, we should read the upper signs for TE-like
modes, lower signs for TM-like modes.



SUPPLEMENTARY DISCUSSION

Effects of non-perfect excitation beam Our analysis so far assumes excitation with a per-
fect planewave. However, some care must be taken with the Gaussian beam from the super-
continuum source. First, the beam spot has a diameter of 2 mm at normal incidence, so the
excited mode has a finite lateral size of L ⇡ 2 mm. This finite-sized mode consists of a
spread of k points, with �kmode ⇡ 2⇡/L ⇡ (2 ⇥ 10�4)(2⇡/a). Second, the beam has a di-
vergence angle of �✓ ⇡ 6 ⇥ 10�4 radian, so the source also has a spread of k points, with
�ksource ⇡ (2⇡/�)�✓ ⇡ (3 ⇥ 10�4)(2⇡/a). The measured radiative loss will be the averaged
value within this spread of k points.

The outgoing-wave amplitude goes through zero linearly (see Fig. 1g of the main text), so
the outgoing power goes as (�k)2 near the embedded bound states, where �k = |k � k0| is
distance from the special k point, k0. Specifically, FDTD simulations show that near the special
trapped state studied in this paper, Qr ⇡ 100/(�ka/2⇡)2. In a circular area with diameter �k,
the effective Qr will be 800/(�ka/2⇡)2, which is around 1010 for the k-point spread due to the
beam. This sets the upper limit on the Qr we can obtain with our source.
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SUPPLEMENTARY FIGURES
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Supplementary Figure 1: Existence of infinite-Qr state in a rhombic-lattice photonic crys-
tal slab. a, The lattice viewed from above, with the unit cell framed in red. b, Lifetime of the
TM1 band. Compared to the square-lattice case (Fig. 1c in main text), the special trapped states
simply shift to different k points. Blue lines indicate the boundary of the first Brillouin zone
and the irreducible Brillouin zone. On a rhombic lattice, C4 rotational symmetry is broken, but
the structure still has inversion symmetry and C2 rotational symmetry.
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Supplementary Figure 2: Dependence of the TM1 band lifetime on perturbations that
break inversion symmetry I or mirror-flip symmetry �z. a, Square-lattice photonic crystal
slab with cylindrical holes that are not etched through the entire slab. Both I and �z are broken.
b, Slab with tilted cylindrical holes. �z is broken but I is intact. c, Slab with cylindrical holes
that are bent in the middle. I is broken but �z is intact.


