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We propose a two-dimensional plasmonic platform—periodically patterned monolayer graphene—
which hosts topological one-way edge states operable up to infrared frequencies. We classify the band
topology of this plasmonic system under time-reversal-symmetry breaking induced by a static magnetic
field. At finite doping, the system supports topologically nontrivial band gaps with mid-gap frequencies up
to tens of terahertz. By the bulk-edge correspondence, these band gaps host topologically protected one-
way edge plasmons, which are immune to backscattering from structural defects and subject only to
intrinsic material and radiation loss. Our findings reveal a promising approach to engineer topologically
robust chiral plasmonic devices and demonstrate a realistic example of high-frequency topological edge
states.
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Time-reversal-symmetry ðT Þ breaking, a necessary
condition for achieving quantum Hall phases [1,2], has
now been successfully implemented in several bosonic
systems, as illustrated by the experimental observation of
topologically protected one-way edge transport of photons
[3,4] and phonons [5]. More generally, two-dimensional
(2D) T broken topological bosonic phases have been
proposed in a range of bosonic phases, spanning photons
[6], phonons [7,8], magnons [9], excitons [10], and polar-
itons [11]. The operating frequency of these systems is
typically small, however—far below terahertz—limited by
the spectral range of the T -breaking mechanism. For
example, the gyromagnetic effect employed in topological
photonic crystals is limited by the Larmor frequency of the
underlying ferrimagnetic resonance, on the order of tens of
gigahertz [3]. In phononic realizations, the attainable
gyrational frequencies limit operation further still, to the
range of kilohertz [12]. Towards optical frequencies,
proposals of dynamic index modulation [13] and optome-
chanical coupling [14] are promising but experimentally
challenging to scale to multiple coupled elements [15–17].
Recently, Jin et al. [18] pointed out that the well-known

magnetoplasmons of uniform 2D electron gases [19,20]
constitute an example of a topologically nontrivial bosonic
phase hosting unidirectional edge states. However, as the
topological gap exists only below the cyclotron frequency
ωc, the spectral operation remains limited to low frequen-
cies. In this Letter, we show that by suitably engineering the
plasmonic band structure of a periodically nanostructured
2D monolayer graphene, see Fig. 1(a), the operation
frequency of topological plasmons [21] can be raised
dramatically, to tens of terahertz, while maintaining large-
gap–midgap ratios even under modest B fields. Bridging
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FIG. 1. Two-dimensional topological plasmonic crystal under
magnetically induced T breaking. (a) Schematic of triangular
antidot lattice in graphene. Under an external magnetic field
B ¼ Bẑ, a finite lattice supports topologically protected one-way
edge plasmons. (b) Band-folded plasmon dispersion in uniform
graphene at B ≠ 0; characteristic frequencies ωK and ωc in-
dicated. The symmetry-induced Dirac cone is gapped for d ≠ 0.
(c) Characteristic frequencies’ dependence on the crystal period
a, magnetic field B, and Fermi level EF.
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ultrafast electronics and infrared topological photonics, the
proposed platform can be integrated with CMOS technol-
ogy, allowing dynamically gate-tunable topological states
across a broad spectral range.
Graphene distinguishes itself as an ideal platform for

topological plasmonics in three key aspects: first, it sup-
ports large, tunable carrier densities n ∼ 1011–1014 cm−2

[27–29], or equivalently, large, tunable Fermi energies
EF ¼ ℏvF

ffiffiffiffiffiffi
πn

p
(Fermi velocity, vF ≈ 9.1 × 107 cm s−1

[30]); second, it exhibits an ultrasmall, tunable Drude
mass m$ ≡ EF=v2F (e.g., at EF ¼ 0.2 eV, m$=me ≈ 4%),
allowing ultrahigh cyclotron frequencies ωc ≡ eB=cm$ ¼
eBv2F=cEF up to the terahertz range [32–34]; and third,
high-quality graphene can exhibit exceptionally long
intrinsic relaxation times 1=γ, extending into the pico-
second range [35,36]. These properties enable topological
plasmons of unprecedentedly high frequency, short wave-
length, long propagation, and large topological band gaps.
The plasmonic properties of a general graphene domain

r ∈ Ω ⊆ R2 under an external magnetic field B ¼ Bẑ is
described by a linear eigenvalue problem with three field
components: the scalar potential Φ and the surface electric
current density J≡ Jxx̂þ Jyŷ [18]. For an eigenstate
indexed by ν and frequency ων, this eigenproblem is
specified by [37]

ĤUν ¼ ωνUν; ð1aÞ

withUν≡
"
ωFΦ
J

#
and Ĥ≡

"
0 ωFV̂p̂T

αp̂ ωcσ2

#
: ð1bÞ

Here, p̂≡ −i∇ is the in-plane momentum operator,
V̂½f'ðrÞ≡ R

Ω fðr0Þ=jr − r0j d2r0 the Coulomb operator,

σ2 ≡ ð0 −i
i 0 Þ a Pauli matrix, ωF ≡ EF=ℏ the Fermi

“frequency,” and α≡ e2=πℏ a prefactor of graphene’s
intraband conductivity iαωFω−1. Conceptually, Eqs. (1)
comprise the Coulomb, continuity, and constitutive equa-
tions. The no-spill boundary condition J · n̂ ¼ 0 applies
along the perimeter ofΩ (edge normal, n̂). Under a suitable
inner product Eq. (1a) is Hermitian (see Supplemental
Material [38]).
We explore the band topology of 2D plasmons in

periodically structured graphene under magnetic-field
induced T breaking. Figure 1(a) illustrates our design: a
triangular antidot lattice of periodicity a and antidot
diameter d is etched into a suspended sheet of graphene.
The domain Ω in Eqs. (1) is then the torus defined by the
rhombic unit cell of Fig. 2(a). Band folding splits the
eigenindex ν into a band index n ¼ 1; 2;… and a crystal
wave vector k restricted to the hexagonal Brillouin zone
(BZ) of Fig. 2(b). Accordingly, the eigenvectors assume
the Bloch form UnkðrÞ ¼ unkðrÞeik·r, with periodic com-
ponent unk ≡ ðωFϕ; jÞTnk.
First, we consider the simple but instructive d ¼ 0

scenario, i.e., the uniform sheet, see Fig. 1(b). This “empty
lattice” captures the essential impact of band folding:
by folding the uniform sheet plasmon dispersion, ωðkÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2παωFkþ ω2

c

p
, over the hexagonal BZ, threefold Dirac-

like point degeneracies arise between the n ¼ 1; 2, and 3
bands at the K (and K0) point. For B ¼ 0, the lattice’s C6v
symmetry guarantees that twofold-degenerate Dirac points
remain between the n ¼ 1 and 2 bands even when d ≠ 0.
The uniform-sheet Dirac point plasmon frequency, ωK ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω0

KÞ2 þ ω2
c

p
with ω0

K ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2παωFjKj

p
and jKj ¼ 4π=3a,

along with the cyclotron frequency ωc, then define the

(a)

(d)

(b) (c)

FIG. 2. Bulk properties. (a) Unit cell. (b) Brillouin zone. (c) Bulk dispersion along the high-symmetry directions of the irreducible BZ
for B ¼ 0, 1, 4, and 8 T. Chern numbers are indicated in orange labels; composite Chern numbers are highlighted by a dashed periphery.
(d) Splitting of Γ and K point degeneracies and opening of low- and high-frequency topological band gaps with increasing
magnetic field.
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characteristic frequencies of the problem and are indicated
in Fig. 1(b). By applying a finite B field to the d ≠ 0
system, the Dirac point degeneracy is split, inducing a gap
linearly proportional to ωc. As a result, topological plas-
mons with both high frequency and sufficient topological
gap require simultaneously large ω0

K and ωc.
The parameter space involved in simultaneously maxi-

mizing ω0
K and ωc is illustrated in Fig. 1(c). The monotonic

EF-dependence of the two characteristic frequencies is
opposite, highlighting an inherent trade-off between the
operating frequency and the gap size. In addition, the
accessible parameter space is restricted by several con-
straints, indicated by gray regions in Fig. 1(c): first,
intrinsic Drude loss estimated at γ=2π ∼ 1 THz smears
out the gap region, necessitating ωc ≳ γ; second, interband
dispersion is non-negligible when ωK ≳ ωF [52,53], even-
tually introducing significant loss through Landau damp-
ing; and third, Landau quantization of the charge carriers
ultimately invalidates a semiclassical description [54,55]
when EF ≲ EL ≡ vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏeB=c

p
(the first Landau level), or

equivalently, when ℏωc ≲ 1
2EL, see Supplemental Material

[38]. Overall, we find that an experimentally favorable
region exists for Fermi energies EF ∼ 0.2–0.3 eV, perio-
dicities a ∼ 100–600 nm, and magnetic fields B ∼ 2–8 T.
Next, we turn to the nanostructured system, settling on a

periodicity a ¼ 400 nm, antidot diameter d ¼ 200 nm, see
Fig. 2(a), and a Fermi level EF ¼ 0.2 eV (equivalent, at
B ¼ 0, to a carrier density n ≈ 3 × 1012 cm−2). Antidot
lattices like these are well within experimental capabilities
[56–60]. The eigenvalue problem, Eqs. (1), is solved
numerically by discretizing in an unstructured triangular
mesh, employing linear nodal functions, and with the
lattice-specific Coulomb interaction evaluated by Ewald
summation (see Supplemental Material [38]). Figure 2(c)
depicts the calculated plasmon dispersion ωnðkÞ along the
boundary of the irreducible BZ for increasing magnetic
field strength B ¼ 0; 1; 4, and 8 T.
In the nonmagnetic scenario, B ¼ 0, the lattice disperses

like the uniform sheet under the substitution k → ζnðkÞ=a,
i.e., as ω0

nðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2παωFζðkÞ=a

p
, with modal parameter

ζnðkÞ solely dependent on a=d and the relative location of
k in the BZ [61]; e.g., at a=d ¼ 2 we find ζ1;2ðKÞ ≈ 2.535.
Near the Γ point ζ1ðkÞ ∝

e
jkj, yielding the conventional

long-wavelength 2D plasmon dispersion ω ∝
e

ffiffiffi
k

p
. Particle-

hole symmetry (C) of Eqs. (1) entails the existence of a
corresponding set fn ¼ −1;−2;…g of negative energy
states, ω−nðkÞ ¼ −ωnð−kÞ (and a zero-frequency band,
n ¼ 0) [18]: accordingly, besides the Dirac point degen-
eracy at K between the n ¼ 1 and 2 bands, an implicit
degeneracy exists at Γ between the n ¼ (1 (and n ¼ 0)
bands. By applying a magnetic field, the bands are linearly
perturbed from ω0

nðkÞ to ωnðkÞ≃ ω0
nðkÞ þ ξnðkÞωc þ

Oðω2
cÞ (see Supplemental Material [38]); the modal per-

turbation parameter ξnðkÞ is obtained numerically at the
degeneracy points as ξ1ðΓÞ ≈ 0.63 and ξ1;2ðKÞ ≈ ∓ 0.27

at a=d ¼ 2 [62]. This is illustrated in Fig. 2(d): the
degeneracies at Γ and K are linearly and evenly gapped
when B ≠ 0. As we explain shortly, the low-frequency gap
opened at Γ supports a topological edge state entirely
analogous to its uniform sheet counterpart. The high-
frequency (≈15 THz) gap opening at K, however, intro-
duces a new, qualitatively distinct topological edge state.
Next, we describe the topological properties of the plas-

monic lattice as quantified by the bandChern number,CðnÞ ≡
ð2πiÞ−1

H
∂BZhunkj∇kjunki dk (evaluated numerically from

the computed eigenvectors [64]). Figure 2(b) depicts the
evolution ofCðnÞ acrossB ¼ 0, 1, 4, and 8 T. AtB ¼ 0 T, the
Berry flux is identically zero, cf. time-reversal and parity
symmetry; the band structure is topologically trivial. For
B ≠ 0, T is broken, allowing nonzero Berry flux and
nontrivial topology: the first and second bands are gapped
for all B and have Cð1Þ ¼ Cð2Þ ¼ 0. Conversely, the
higher order bands, n ¼ 3; 4;…, display Chern numbers
covering a broader range, up to(2. A few bands exhibit point
degeneracies within numerical accuracy and are assigned a
composite Chern number Cðn⊕nþ1Þ. As the B field is
increased, there is an exchange of Chern numbers between
then ¼ 4, 5, and6bands as gaps close and reopen, illustrating
the mechanism of Berry flux monopole exchange. For even
stronger B fields (see Supplemental Material [38]), all six
bands eventually separate completely, leaving Cð1Þ ¼
Cð2Þ ¼ 0, Cð3Þ ¼ −2, and Cð4Þ ¼ Cð5Þ ¼ Cð6Þ ¼ þ1.
By the bulk-edge correspondence, the existence of

topologically protected edge states is intimately linked
with the bulk topology, i.e., with CðnÞ. As recently pointed
out in Ref. [18], the presence of C symmetry, and the
concomitant existence of a set of negative-frequency states
fn ¼ −1;−2;…g, necessitates a global perspective of the
band topology for the definition of associated gap Chern
numbers. Specifically, the total Chern number of positive
(þ) and negative (−) frequency bands isC( ≡P∞

n¼1 C
ð(nÞ.

In uniform graphene C( ¼ (sgnB [18]. Since Chern
numbers can be annihilated or created (pairwise) only
under band closings, this result holds in nanostructured
graphene as well; cf. the finite band gap separating positive
and negative bands. With this in mind, we define the nth
gap Chern number C̄n associated with the gap immediately
below the nth band as

C̄ðnÞ ≡
Xn−1

n0¼−∞
Cðn0Þ ¼ −sgnBþ

Xn−1

n0¼1

Cðn0Þ; ð2Þ

specializing to positive-frequency gaps at the last equality.
For lattice terminations adjacent to vacuum, bulk-edge
correspondence then requires that the number of left minus
right propagating topological edge states equal C̄ðnÞ [65].
These considerations predict the existence of single-

mode one-way edge states in the first and second gaps
when B ≠ 0 and multimode one-way edge states in the
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gap between the n ¼ 3, and 4 bands at B ¼ 4 and 8 T,
cf. Fig. 2(c). We confirm these predictions in Fig. 3 by
numerically calculating the edge states supported by a
broad ribbon (20 unit cells wide) extended along x with
the particular edge termination of Fig. 3(a). The bulk states
are folded into the projected 1D BZ, kx ∈ ð−π=a; π=aÞ,
see Fig. 3(b), due to breaking of Bloch periodicity along y.
Additionally, edge states emerge: they are identified and
postselected from the ribbon spectrum by their edge
confinement and bulk-gap habitation (in emulating sin-
gle-boundary physics, edge states localized on the bottom
ribbon edge are omitted). The resulting edge dispersion is
shown in Fig. 3(c) for B ¼ 0, 4 and 8 T. At B ¼ 0, all edge
states are nontopological; states at (k travel in opposite
directions and edge connections between bulk bands are
trivial. For B ≠ 0, topological one-way edge states appear
in the band gaps, consistent with the obtained gap Chern
numbers. They connect upper and lower bulk bands,
occasionally by circling the 1D BZ, separated by nontrivial
C̄ðnÞ ≠ 0 gaps. The edge states propagate to the right,
consistent with the sign (chirality) of C̄ðnÞ ≠ 0. They are
topologically protected from backscattering only in the
complete band gap: above it, any defect may scatter them to
either bulk or counterpropagating edge states. The low-
frequency C̄ð1Þ ¼ −1 gap hosts edge states entirely analo-
gous to the edge magnetoplasmons of the uniform sheet—an
edge-state parallel of the bulk dispersion-agreement (∝

e

ffiffiffi
k

p
)

between the n ¼ 1 band and the uniform sheet. In contrast,
the high-frequency (≈15 THz) edge state in the C̄ð2Þ ¼ −1
gap results directly from band engineering, and is a
qualitatively new type of edge magnetoplasmon. Finally, a
multimode triple of edge states appears in the C̄ð4Þ ¼ −3
gap. Though the gap is comparatively small, it can be
widened by tuning a=d. Figure 3(d) illustrates the sharp
spatial Bloch mode confinement of the edge states, jϕnkxðrÞj,
for a few select n and kx at B ¼ 8 T. The degree of

confinement correlates positively with the size of the
topological band gap, i.e., implicitly with B, paralleling
the uniform 2D electron gas [20].
The edge states can be efficiently excited by nearby point

sources, as demonstrated in Fig. 4: a y-polarized dipole
near the edge, emitting in the gap center (14.6 THz) of the
n ¼ 1 and 2 bands, excites the edge plasmon at kx ¼ 0
(for computational details, see Supplemental Material
[38]). In the absence of intrinsic material loss, the edge
state propagates unidirectionally to the right with constant
amplitude as seen in Figs. 4(b)–4(d). Topological protec-
tion ensures that even structural defects, such as the sharp
trench in Fig. 4(d), are traversed without backscattering.
The increased edge confinement with mounting magnetic
field is exemplified by Figs. 4(b)–4(c).
The edge state’s topological nature does not shield it from

intrinsic material or radiation loss. While the latter is
negligible, owing to the strongly confined and electrostatic
nature of graphene plasmons [cf. the nearly vertical light
cone in Fig. 2(c)], the former can be appreciable, as in all
plasmonic systems. Finite relaxation γ is readily incorpo-
rated in Eqs. (1) by the substitution ων → ων þ iγ. This
introduces an imaginary spectral component, Imων ≃
− 1

2 γð1þ ξνωc=Reω0
νÞ for γ ≪ Reω0

ν. This impacts the
propagation of edge states in two aspects: first, it blurs
the gap region, allowing small but finite loss-induced
coupling between edge and bulk states (see Supplemental
Material [38]); second, states exhibit a finite lifetime, or,
equivalently, finite propagation length ∝

e
1=γ, as illustrated

in Fig 4(e). Strategies to reduce the relative impact of
intrinsic loss include reducing the lattice constant a, increas-
ing EF, or maximizing the edge state group velocity by
structural design (see Supplemental Material [38]).
In conclusion, we have demonstrated the band topology

of 2D plasmons in periodically patterned graphene under a
T -breaking magnetic field. Multiple sets of topologically

(a)

(b)

(c) (d)

FIG. 3. Plasmonic one-way edge states at lattice terminations. (a) Edge termination of the 2D crystal. (b) Projected 1D BZ and its high
symmetry points. (c) Projected bulk bands (blue) and topologically protected one-way plasmonic edge states (red) along kx for B ¼ 0, 4,
and 8 T, with associated gap Chern numbers C̄ðnÞ (green). (d) Typical mode profiles of edge states in real space at B ¼ 8 T; band
association is indicated by colored markers in (c).
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protected one-way edge plasmons corresponding to non-
trivial gap Chern numbers are discovered. Their operating
frequencies can be as high as tens of terahertz, i.e., in the
far-infrared regime. They can be experimentally verified by
terahertz near-field imaging [66,67] and Fourier transform
infrared spectroscopy [60]. Our findings suggests a new
direction in the synthesis of high-frequency T broken
topological bosonic phases, and can be directly extended to
nonmagnetic schemes based on valley polarization [68,69].
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I. NUMERICAL METHOD

We here outline the essential features of the numerical method employed in the Letter and implemented in
an in-house code. The method is a generalization of that discussed in Ref. S1, extended to treat anisotropic
response and 1D and 2D periodicity. We also discuss certain technical aspects of the calculations in Fig. 4.

A. Formulation of a scalar eigenvalue problem

We first briefly describe how the problem considered in Eqs. (1) of the main text, can be recast as a
scalar eigenvalue problem, suitable for numerical discretization. The continuity, constitutive and Coulomb
equations form the ingredients of Eqs. (1); expressed in terms of the potential � and surface charge density
⇢ they read (frequency-dependence of field quantities suppressed):

⇢(r) =
1
i!
r · J(r) =

�1
i!
r·⇥�(!)r�(r)

⇤
, �(r) = �ext(r) +

Z

⌦

⇢(r0)
|r � r

0| d
2
r

0. (S1)

with coordinates and nabla operators restricted to a two-dimensional domain ⌦ ✓ R2. Here, �(!) ⌘� �xx �xy
��xy �xx

�
(!) denotes a general anisotropic surface conductivity. The equations can be nondimensionalized

by switching to dimensionless variables r! Lr, r ! L�1r, and ⌦! L⌦ normalized by a characteristic
length L of the domain (this nondimensionalization is implicitly adopted throughout Section I):

⇢(r) =
�1

i!L2r·
⇥
�(!)r�(r)

⇤
, �(r) = �ext(r) + L

Z

⌦

⇢(r0)
|r � r

0| d
2
r

0. (S2)

For the sake of brevity and clarity, these equations are recast in operator form as

|⇢i = �1
i!L2 [�xx(!)Di + �xy(!)Da]|�i, |�i = |�exti + LV|⇢i, (S3)

with operators D

i and D

a representing the isotropic and anisotropic1 contributions to the continuity equation
and V the Coulomb interaction, such that:2

hr|Di|�i ⌘ r·⇥r�(r)
⇤
, hr|Da|�i ⌘ r·⇥� 0 1

�1 0
�r�(r)

⇤
, hr|V|⇢i ⌘

Z

⌦

⇢(r0)
|r � r

0| d
2
r

0. (S4)

In the absence of anisotropy, �xy = 0, and external potentials, �ext = 0, these equations produce a
simple linear eigenproblem ⇣⌫|⇢⌫i = �(2⇡)�1

D

i

V|⇢⌫i with frequency- and scale-dependent eigenvalues
⇣⌫ ⌘ i!⌫L/2⇡�xx(!⌫) [S2]. In contrast, for a general nonzero anisotropy the governing equations yield

1 The operator D

a is evidently equal to the commutator [@x, @y]�(r); we emphasize that this commutator is nonzero only when a
boundary @⌦ delimits the domain ⌦ (i.e. not when ⌦ = R2), in which case a boundary condition on J breaks commutativity.

2 Sub- or superstrates of dielectric function "± can be incorporated by rescaling the Coulomb interaction V! 2("� + "+)�1
V.
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a nonlinear matrix equation i!⌫L|⇢⌫i = ��xx(!⌫)Di

V|⇢⌫i � �xy(!⌫)Da

V|⇢⌫i in the eigenfrequency !⌫.
Fortunately, for the semiclassical intraband description of graphene’s magnetoconductivity,3 this general
matrix equation reduces to a cubic eigenvalue problem, reading—for � = 0, it reads:4

h
�3
⌫1 � �⌫

⇣
1 � 1

2⇡⇣c
D

i

V

⌘
� i

2⇡⇣c
D

a

V

i
|⇢⌫i = 0, (S5)

with eigenvalues �⌫ ⌘ !⌫/!c and setup-dependent scalar ⇣c ⌘ i!cL/2⇡�xx(!c) = ~2!2
c L/2e2EF.

This polynomial eigenvalue problem can be rewritten as a linear eigenvalue problem by enlarg-
ing the problem’s dimensionality. Specifically, a general mth order polynomial eigenvalue problemPm

m0=0 �
m0

Am0 |xi = 0 spanned by operators Am0 with N ⇥ N representations has an equivalent linearized
mN ⇥mN representation. This representation follows by introducing m0 = 1, . . . ,m� 1 auxiliary unknowns
|x(m0+1)i ⌘ �|x(m0)i = �m0

⌫ |xi with |x(1)i ⌘ |xi [S5; S6]. The cubic eigenvalue problem in Eq. (S5) is particu-
larly simple, having the monic form (�3 + �A1 + A0)|xi = 0; its linearized representation is Ã|x̃i = �|x̃i,
with Ã ⌘

✓
0 1 0

0 0 1

�A0 �A1 0

◆
with |x̃i ⌘ �|x(1)i, |x(2)i, |x(3)i�T . The price paid for this linearization is a three-fold

increase in representation dimensionality; for a discretized representation of Eq. (S5) this translates to a
33-fold increase in computational complexity compared to the isotropic (i.e. B = 0) eigenvalue problem.

B. Discretization in an unstructured triangular mesh

In our computational implementation, we discretize the operators in Eq. (S4) on an unstructured triangular
mesh by expanding field quantities ⇢ and � in linear elements. Specifically, the domain ⌦ is decomposed
into j 2 1, . . . , J triangular elements ⌦ j such that ⌦ =

L
j⌦ j; the elements are specified by connections

among k = 1, . . . ,K vertex points rk 2 ⌦; and field quantities are linearly interpolated from their associated
vertex values. The operators’ discretization then follow the usual finite-element scheme, as described in
Ref. S1. Here, we focus on the aspects which are unique to the current problem, namely the specification
of the weak form of D

i,a and the evaluation of elements of the kernel V.

1. Continuity equation, D

i,a

To evaluate the operators D

i,a consistent with the boundary condition n̂ · J(r 2 @⌦) = 0 (edge normal, n̂),
Eq. (S2) is reduced to its weak form by the usual scheme; specifically, multiplying the continuity equation
by a test function v(r)⇤ and integrating over ⌦, one finds:

Z

⌦

v(r)⇤⇢(r) d2
r = � 1

i!L2

Z

⌦

v(r)⇤r · J(r) d2
r = � 1

i!L2

" I

@⌦
v(r)⇤ n̂ · J(r)|  {z  }

= 0

dr �
Z

⌦

rv(r)⇤ · J(r) d2
r

#

=
1

i!L2

"
�xx(!)

Z

⌦

rv(r)⇤ · r�(r) d2
r + �xy(!)

Z

⌦

rv(r)⇤ ·
⇣

0 1
�1 0

⌘
r�(r) d2

r

#

, hv|Dl|⇢i =
1

i!L2

"
�xx(!)hv|Di

r|�i + �xy(!)hv|Da

r |�i
#
. (S6)

Comparing Eq. (S3) and (S6), the operators’ weak forms are identified as D

i = �D

�1
l D

i

r and D

a =
�D

�1
l D

a

r . Their linear element discretization is sparse, of size K ⇥ K, and readily derivable in barycentric
coordinates [S1].

For periodic systems, the operators retain the weak formulation of Eq. (S6) on the unit cell ⌦uc under the
substitution r ! r + ik. The periodic boundary condition over ⌦uc poses a minor technical complication
as it is of a so-called essential type [S7]; accordingly, it must be guaranteed at the basis level such that the
meshing of ⌦uc explicitly reflects this periodicity, i.e. the mesh is a torus in 2D and a cylinder in 1D.

3 The semiclassical magnetoconductivity of graphene: �xx(!) = ie2EF
⇡~2

!+i�
(!+i�)2�!2

c
and �xy(!) = e2EF

⇡~2
!c

(!+i�)2�!2
c

[S3; S4].
4 Equation (S5) generalizes to

�
�3
⌫1 + �

2
⌫2i�c1 � �⌫

⇥�
1 + �2

c
�
1 � 1

2⇡⇣c D

i

V

⇤ � i
2⇡⇣c

�
D

a � �cD

i

�
V

 |⇢⌫i = 0 for nonzero �c ⌘ �/!c.
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2. Coulomb interaction, V

Constructing the discretized Coulomb operator (which is dense and of size K ⇥ K) requires evaluation of
integrals of the kind

Vj(r) =
Z

⌦ j

V(r, r0)⇢(r0) d2
r

0, (S7)

where r 2 rk is a vertex point, V(r, r0) is the real-space form of the Coulomb interaction, and ⇢(r0) a linear,
vertex-specified function5 on ⌦ j. In Ref. S1, integrals of this type were evaluated by a 16-point numerical
quadrature rule.6 However, in the absence of periodicity [i.e. when V(r, r0) = |r � r

0|�1] Eq. (S7) can
actually be evaluated analytically [S8], yielding improved convergence; the calculations in Fig. 4 involve
tens of thousands of vertices—this analytical evaluation of Coulomb elements permits a slightly coarser
mesh and a concomitant lowering of the still very appreciable memory requirements.

In the general periodic case, the real-space Coulomb interaction is periodic over the unit cell ⌦uc and
depends explicitly on Bloch wave vector k, taking the form of a sum over the direct lattice7

V
k

(r, r0) =
X

{R}

e�ik·(r�r

0�R)

|r � r

0 � R| , (S8)

where R = nR1 + mR2 denotes the direct lattice vectors (n,m 2 Z). The lattice-summed Coulomb interac-
tion is very slowly convergent, generally requiring thousands of terms (worse, it is formally divergent for
k = 0). This issue can be resolved by the techniques of Ewald summation, see e.g. Ref. S9, by smoothly
splitting the sum into a short-range part V (2)

k

(r, r0), summed in the direct lattice R, and a long-range part
V (1)

k

(r, r0), summed in the reciprocal lattice G. Here, we adopt a splitting which exploits the error function
erf and its complement erfc, which allow a natural splitting since erf x + erfc x = 1. Below, we briefly
outline the resulting expressions, which depend on the dimensionality of the periodicity.

Two-dimensional periodicity — The result in 2D is well-known, see e.g. Ref. S10. The result is (with
x ⌘ r � r

0 for brevity):

V
k

(x) ⌘ V (1)
k

(x)
|{z}

long range

+ V (2)
k

(x)
|{z}

short range

,

with V (1)
k

(x) ⌘
X

{R}

e�ik·(x�R)

|x � R| erf(|x � R|E) =
2⇡
|⌦uc|

X

{G}

e�iG·x

|k �G| erfc
 |k �G|

2E

!
, (S9a)

and V (2)
k

(x) ⌘
X

{R}

e�ik·(x�R)

|x � R| erfc(|x � R|E), (S9b)

where |⌦uc| denotes the unit cell area and E is the Ewald splitting parameter, chosen as E =
p
⇡/|⌦uc|. The

convergence of V (1)
k

(x) and V (2)
k

(x) is exponential in |k�G| and |x�R|, respectively. Typically, convergence
to machine precision is reached in less than ten-by-ten direct or reciprocal vectors.

Besides vastly improved convergence, the Ewald scheme has the benefit of indicating the appropriate
k = 0 limit clearly, despite its formal divergence. Concretely, if k = � with |�| ⌧ 1, the G = 0 term in
Eq. (S9a) diverges like 2⇡

|⌦uc |e
�i�·x erfc(|�|)/|�| ' 2⇡

|⌦uc |/|�|. Crucially, this divergence is independent of x,
and, consequently does not contribute to the response, as can be proven by invoking charge conservation.
Hence, for k = 0, the relevant (and convergent) part of V (1)

k

(x) excludes the G = 0 term [V (2)
k

(x) requires no
special consideration].

5 In a set of local barycentric coordinates (⌘ 2 [0, 1], ⇠ 2 [0, 1 � ⌘]) of the jth triangular element ⇢(r0) =
P3

k=1 fk(⌘, ⇠)⇢k where ⇢1,2,3
denotes the local vertex-values of the charge density on ⌦ j.

6 Ref. S1 erroneously indicated that a 1-point quadrature rule is su�cient to obtain a convergent method; this is not the case. In
actuality, a 16-point quadrature rule was implemented and none of the results reported were a↵ected by this misrepresentation.

7 A numerical quadrature scheme is necessary to evaluate the mesh-integrals V
k, j(r) of V

k

(r, r0); we adopt a 16-point scheme.
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One-dimensional periodicity — The 1D Ewald sum associated with the present problem is, to the best of
our knowledge, less well-known that its 2D counterpart. Regardless, its derivation follows the conventional
approach. Although the long-range part is numerically less convenient than in Eqs. (S9), it can still be
expressed in terms of known special functions. We consider a ribbon-geometry periodic in the primitive
lattice vector R1. Adopting once again an (erf, erfc) splitting, the short-range term V (2)

k

(x) mirrors Eq. (S9b)
(albeit restricted to a 1D lattice R = nR1 with n 2 Z), while the long-range term reduces to a sum in the
reciprocal lattice G = nG1 (with G1 ⌘ 2⇡R1/|R1| in 1D):

V (1)
k

(x) =
1
|R1|

X

{G}
K0

 
[(k +G) · R1]2

4E2 , x2
?E2

!
eiG·xk , (S10)

where xk and x? are the parts of x ⌘ r � r

0 parallel and perpendicular to R1, respectively, and K0(x, y) ⌘R 1
0 s�1e�x/s�ys ds is the so-called incomplete Bessel K function of zeroth order.8

As in the 2D case, the Ewald scheme also reveals the appropriate k = 0 limit in 1D: specifically, utilizing the
(generalized exponential integral) series for K0(x, y), we find that the divergent G = 0 summand reduces to
V (1)

k,G=0(x) = |R1|�1 P1
n=1(�1)n(Ex?)2n(n!n)�1 + const1 = �|R1|�1��em + ln[(Ex?)2]+ E1[(Ex?)2]}+ const1

with const1 denoting a divergent n = 0 contribution, which is independent of x? and consequently with
vanishing contribution, cf. charge conservation (�em ⇡ 0.5772156649 is the Euler–Mascheroni constant).

C. Technical comments

1. Spurious modes

A well-known issue in discretization by linear finite elements of weak form operators is the occurrence of
spurious modes [S11]. In the absence of a magnetic field, the method described here is free of spurious
modes. At finite magnetic field, however, a dense band of spurious modes exists for �!c < ! < !c.
The origin of these spurious modes can be traced to numerically-induced hybridization between the
trivial solutions at ! = 0 and ! = ±!c.9 Fortunately, these spurious modes are largely independent of
k, i.e. dispersionless, and so can be readily identified and discarded manually. Their hybridization with
non-spurious modes is weak, and decreasing with increasing mesh density: to fully eliminate any potential
influence, we modelled their hybridization with the lowest non-spurious mode by a 2 ⇥ 2 interaction
matrix, allowing us to rigorously invert and subtract spurious numerical hybridization.

2. Dipole-excited one-way edge plasmons computed in finite structures

The calculations presented in Fig. 4 are carried out in a finite structure, see Fig. S1. The domain is
discretized into ⇠110.000 triangular elements, distributed over ⇠61.000 vertex points, with increased
mesh-density along the domain periphery. To ensure that the one-way edge state is adequately attenuated
over a single round-trip propagation, our “lossless” calculations in fact adopt a very small relaxation rate,
~� = 0.15 meV.

8 While erf and erfc are available in most special function libraries, K0(x, y) is generally not. We exploit the structure of Eq. (S10)
and re-express K0(x, y) as K0(x, y) =

P1
n=0(�y)nEn+1(x)/n! in terms of the generalized exponential integrals En(x) [obtained by

Taylor expanding the integrand s of K0(x, y) around zero]. Evaluation of En(x) are computationally expensive but are independent
of the coordinates xk,?; thus, they are needed only at x = [(k +G) · R1/2E]2.
We choose a splitting parameter E = [2|R1 |(max x? �min x?)]�1 to e↵ectively shift summation terms onto the short-range part, in
recognizing the computational cost involved in evaluating En(x). With this choice, reaching machine precision typically requires
at most 5 reciprocal lattice vectors and n = 0, . . . , 10 (but up to several hundred direct lattice vectors in V (2)

k

for wide ribbons).
9 Numerically, we find that the spurious modes respect the no-spill boundary condition globally, i.e. are charge neutral. However,

they do not respect it locally. This issue is common to many finite-element approaches, since the weak form implementation of
the boundary condition only guarantees it in the integral sense, rather than the point-wise sense. A point-wise guarantee can be
insured by adopting basis elements (such as RWG elements [S12]) which explicitly incorporate the boundary condition.
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FIG. S1 Full computational geometry employed in the dipole calculations of Fig. 4. Dipole position and polarization
is indicated in green. In lieu of a perfectly matched layer termination, we implement a (very) poor-man’s absorber, by
including an vertical branch in the structure, forcing additional decay upon the one-way propagating mode.

II. HERMICITY OF THE MAGNETOPLASMONIC EQUATIONS

Equations (1) of our Letter are, as noted briefly there, Hermitian under an appropriate inner product. In
fact, the problem can be recast in a manifestly Hermitian form. In this section, we demonstrate these
aspects explicitly.

A. Generalized Hermitian eigenvalue problem

In the notation of Eqs. (1), the magnetoplasmonic eigenproblem is ĤU = !U (eigenindex suppressed)
with U ⌘

⇣
!f�

J

⌘
⌘

⇣
�̃
J

⌘
and Ĥ ⌘

⇣
0 !fV̂p̂

T

↵p !c�2

⌘
; here, !f ⌘ EF/~, ↵ ⌘ e2/⇡~, �2 ⌘

� 0 �i
i 0

�
, and the Coulomb

(V̂) and momentum (p̂) operators are positive-symmetric and Hermitian, respectively. Nevertheless, the
compound operator Ĥ is not Hermitian under the standard inner product.

However, it is straightforward to recast this problem as a generalized eigenproblem with strictly Hermitian
matrices. Specifically, Ĥ can be written as a product Ĥ = B̂�1Â of a positive-symmetric operator
B̂�1 ⌘

⇣
!f↵�1V̂ 0

0 1

⌘
and a Hermitian operator Â ⌘

⇣
0 ↵p̂

T

↵p̂ !c�2

⌘
. Thus, there exists an equivalent formulation as

a generalized eigenvalue problem

ÂU = !B̂U, with B̂ =
 
↵!�1

f V̂�1 0
0 1

!
, (S11)

where B is positive-symmetric (the inverse of a symmetric operator is symmetric). Thus, Eq. (S11)
is a generalized Hermitian eigenproblem with Hermitian definite pencil {Â, B̂} [S13]: accordingly, its
eigenvalues are real and its states are orthogonal under the inner product10 hU⌫|U⌫0 i ⌘

R
U

†
⌫(r)B̂U⌫0 (r) d2

r /
�⌫⌫0 . Under this inner product, the states of Eqs. (1), which are equivalent to those of Eq. (S11), have well-
defined Chern numbers. Similarly, the original “Hamiltonian” Ĥ is Hermitian under this inner product. In
fact, as we show in the following, the problem can be equivalently cast in a manifestly Hermitian form.

B. Manifestly Hermitian eigenvalue problem

A generalized Hermitian eigenproblem can be cast in manifestly Hermitian form if the square root of
either of the operators is well-defined. Specifically, for a positive-definite symmetric operator, such as V̂
(and hence B̂), its square root is well-defined and unique: thus, there exists a factorization V̂ ⌘ L̂L̂†. In

10 The inverse Coulomb operation V̂�1 acting onto the total potential � simply produces the the charge density ⇢.
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real-space coordinates, this translates to the statement that (here, anticipating that L(r, r0) is real)

V(r, r0) ⌘
Z

L(r, r00)L(r0, r00) d2
r

00. (S12)

In fact, since V(r, r0) depends strictly on |r � r

0|, this is equivalent to the convolution V(r � r

0) ⌘R
L(r� r

00)L(r00 � r

0) d2
r

00. For the Coulomb operator, V(r� r

0) = |r� r

0|�1, one can show11 that L(r� r

0) /
|r � r

0|�3/2 (i.e. it is positive-symmetric, and L̂L̂† = L̂L̂, rendering Hermitian conjugation unnecessary).

The factorization of V̂ , translates directly to a factorization of B̂, specifically, B̂ = L̂L̂ with L̂ ⌘
⇣ p
↵/!f L̂ 0

0 1

⌘
.

The generalized eigenvalue problem of Eq. (S11) can then be written as ÂU = !L̂L̂U; a manifestly
Hermitian eigenproblem follows by inserting unity in the form of L̂�1L̂ and left-multiplying by L̂�1:

Ĥ 0U0 = !U

0, with Ĥ 0 ⌘ L̂�1ÂL̂�1 and U

0 ⌘ L̂U. (S13)

In explicit terms, the manifestly Hermitian system has Hamiltonian Ĥ 0 and eigenstates U

0

Ĥ 0 =
 

0
p
↵!fL̂�1

p̂

T
p
↵!fp̂L̂�1 !c�2

!
, U

0 =

 p
↵!fL̂�

J

!
, (S14)

which is evidently Hermitian since L̂† = L̂. This new manifestly Hermitian Hamiltonian Ĥ 0 relates
with the original, non-Hermitian Hamiltonian Ĥ of Eqs. (1) by Ĥ 0 = L̂ĤL̂�1. The eigenstates U

0 are
orthogonal under the conventional inner product hU0⌫|U0⌫0 i0 ⌘

R
U

0 †
⌫ (r)U0⌫0 (r) d2

r (which, unsurprisingly, is
equivalent to the previously defined inner product for non-primed states, since U

0 †
U

0 = U

†L̂L̂U = U

†B̂U).

C. Generalization to the nonuniform case

The considerations outlined above can be generalized to the case where !f and !c are r-dependent, i.e.
with non-uniform doping. We need to first define a new set of state functions,

S ⌘
 p
!f(r)�

J/
p
!f(r)

!
, !S =

0
BBBBB@

0 1p
!f

V̂p̂

T p!f(r)
↵p
!f

p
!f(r)p̂ !c(r)�2

1
CCCCCA S, (S15)

where !f is the value of !f(r) in the uniform region. Then we have

ÂS = !B̂S, with Â =
0
BBBBB@

0 ↵p
!f

p̂

T p!f(r)
↵p
!f

p
!f(r)p̂ !c(r)�2

1
CCCCCA , B̂ =

 
↵!f(r)�1V̂�1 0

0 1

!
. (S16)

Because p̂ and !f(r) do not commute, their order appearing in Â matters. B̂ is exactly the same as
above, so similar treatment can be straightforwardly performed. With S

0 ⌘ L̂S, the manifest Hermitian
Hamiltonian looks like

Ĥ 0S0 = !S

0, with Ĥ 0 =
 

0 L̂�1
p̂

T p↵!f(r)p
↵!f(r)p̂L̂�1 !c(r)�2

!
. (S17)

Finally, the above considerations, in both uniform and non-uniform cases, generalize immediately to the
parabolic 2D electron gas of e↵ective mass m⇤ and density n0 under the substitutions !f ! ~⇡n0/m⇤ and
!c ! eB/cm⇤.

11 The explicit expression for L(r� r

0) can be obtained by exploiting the convolution theorem. In Fourier space (i.e. momentum space,
q), the convolution is a product V(q) = L(q)L(q). Conversely, the Coulomb interaction in 2D momentum space is V(q) = 2⇡/q,
thus fixing L(q) =

p
2⇡/q. Accordingly, the real-space form L(r � r

0) can be evaluated by an inverse Fourier transform [S14]

L(r � r

0) =
Z

U(q)eiq·(r�r

0) d2
q

(2⇡)2 =
s�1

|r � r

0 |3/2 ,

where s = 5.2441 . . . is the Lemniscate constant (alternatively, s ⌘ �(1/4)2/
p

2⇡ in terms of the Gamma function).
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III. ADDITIONAL BAND STRUCTURE RESULTS

In order to clearly visualize the Dirac cones, point degeneracies, and band gaps of the full band structures,
we computed the energy dispersion ~!n(k) over the entire 2D Brillouin zone (BZ). Figure S2 illustrates
the resulting band structure for a = 400 nm, d = 200 nm, and B = 0, 4, and 8 T. All the extrema of the
bands are observed to lie on the boundary of the irreducible BZ.
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FIG. S2 Plasmonic bulk dispersion ~!n(k) of the first six bands over the entire BZ (indicated) for the triangular
antidot lattice considered in Fig. 2 (a = 400 nm, d = 200 nm, and EF = 0.2 eV), across varying magnetic field strengths
B. For nonzero B, the associated cyclotron frequency is indicated by a gray plane.
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FIG. S3 Plasmonic bulk dispersion along the boundary of the irreducible BZ of a triangular lattice. Setup parameters
mirror those of Fig. 2 but at quarter scale, i.e. with period a = 100 nm and antidot diameter d = 50 nm.

To illustrate the impact of reducing the overall scale of the triangular lattice, we depict in Fig. S3 the result
of a calculation at one quarter the scale of those in the main text, i.e. at a = 100 nm and d = 50 nm. In the
absence of a magnetic field, the one-quarter scale reduction simply results in a doubling of all resonance
frequencies, consistent with the ~!n /

p
1/a intraband scaling law. For nonzero B, the scaling law is

strictly speaking broken—qualitatively, however, the changes are few; amounting mainly to a reduction in
gap-midgap ratio, since the gap width mainly depends on the amplitude of T breaking (magnitude ⇠!c).
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FIG. S4 Evolution of plasmonic bulk dispersion (blue) and Chern numbers (orange numbers) with increasing magnetic
field B for the crystal considered in Fig. 2 (a = 400 nm, d = 200 nm, and EF = 0.2 eV). Composite Chern numbers are
indicated by a dashed periphery.

IV. CHERN NUMBER EVOLUTION WITH MAGNETIC FIELD

If the nth band is well-separated (i.e. everywhere non-degenerate) from all other bands, it can be assigned
a (first) Chern number

C(n) ⌘ 1
2⇡i

I

@BZ

hunk

|r
k

|unk

i dk, (S18)

where |unk

i is the normalized eigenstate of momentum k in the nth band. The inner product defined with
weighting B̂ as discussed in Section II, and can be performed in coordinate-space over a single unit cell.
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For s bands with shared degeneracies, we calculate the composite (first) Chern number as [S15]

C(n�n+1�···�n+s�1) ⌘ det Mµ⌫ ⌘
1

2⇡i
det
✓ I

@BZ

huµk|rk

|u⌫ki dk

◆
, (µ, ⌫ = n, n + 1, . . . , n + s � 1). (S19)

The composite Chern number is the determinant of an s ⇥ s matrix with elements Mµ⌫, i.e. includes
cross-terms between distinct bands. With these definitions, the (composite) Chern numbers are evaluated
numerically following the standard k-discretization scheme by Fukui et al. [S16].

The calculation of C(1) requires special care due to since the !1(k) dispersion exhibits a square-root
non-di↵erentiable singularity at the � point. This singularity originates from the infinitely ranged Coulomb
interaction and produces a divergent Berry curvature at the � point. To remedy this (unphysical) issue, we
substitute a screened (Yukawa) interaction for the bare Coulomb interaction, thereby introducing a finite
(but large) range l to the electrostatic interaction: specifically, 1/r ! e�r/l/r with l � a. This treatment
yields the correct Chern number C(1) = 0, reflecting the cancellation between +1 and �1 monopoles of
Berry flux at the � and K points, respectively. We emphasize that the the first band’s vanishing Chern
number, C(1) = 0, still implies nontrivial topology at the gaps above and below the first band, cf. Eq. (2).

Lastly, we observe that both the energy dispersion and Chern numbers of the plasmonic crystal exhibit
an interesting evolution as the applied magnetic field is gradually increased; of special interest is band
openings and closings, where the topological band classification may change. This is illustrated in Fig. S4
for the crystal considered in Fig. 2 of our Letter: the band dispersion and Chern number evolution is
recorded as the magnetic field is varied from B = 0 to 10 T in steps of 0.5 T, producing several changes to
the topological band indices via the exchange of monopoles of Berry flux at band openings and closings.

V. INTERBAND DISPERSION AND LANDAU DAMPING

Besides plasmons, the elementary excitations of graphene include intra- and interband electron-hole
pair (EHP) excitations. In regions where both co-exist, plasmons decay into EHPs in the process known
as Landau damping. In graphene, the plasmon branch enters the continuum of interband EHPs at high
energies and momenta, and undergoes rapid damping. Clearly, this poses an important restriction on the
relevant energy-momentum range for both topological and non-topological graphene plasmons. Here, we
briefly discuss this restriction and show that our system is far from regions of Landau damping.

Interband EHPs in extended graphene — We first indicate the energy-momentum interrelation required for
the excitation of interband EHPs by graphene plasmons. For an electron-doped sheet, EF > 0, an electron
can make a transition from the negative- to positive-frequency band, i.e. from (k0,!0 < 0) to (k00,!00 > 0),
provided it complies with the Pauli exclusion principle and the electron band dispersion E(k) = ~vF|k|.
This requires a frequency transfer !(q) = !00 � !0 > EF/~ � !0 and a momentum transfer q = k

00 � k

0.
Depending on the initial state’s frequency and the alignment between k

0 and k

00, a range of (q,!) are
consistent with these requirements: jointly, they form a region where interband EHPs can be excited, as
illustrated in Fig. S5(a).

Supposing the necessary momentum and energy transfer is provided by a plasmon, further restrictions
are imposed by the momentum-energy dispersion !(q) of the plasmon. Specifically, a plasmon-induced
transition is possible if !(q) = vF(|k00| + |k00 � q|). If k

0 and q align, i.e. if |k0| = |k00 � q| = |k00| � |q|, we
obtain the minimal necessary momentum transfer as !(q) = vF(2|k00| � |q|). The Pauli principle requires
|k00| > EF/~vF, thus indicating the minimum-momentum-transfer condition for interband plasmon damping:

~!(q) + ~vF|q| > 2EF. (S20)

To approximately ascertain this region’s extent, we exploit our knowledge of the low-frequency (i.e. intra-
band approximation) of graphene’s plasmon dispersion ~!(q) '

p
2e2EF|q| to eliminate EF in Eq. (S20),

allowing identification of an approximate (q,!) region wherein plasmons decay into interband EHPs:

! + vF|q| >
~!2

e2|q| . (S21)

By adopting a representative plasmon momentum |q| ! 4⇡/3a (corresponding to the K point in the
Brillouin zone of a triangular lattice of period a) Fig. 1(c) employs this result to approximately delineate
the parameter-region where interband dispersion significantly impacts our intraband treatment.
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FIG. S5 The plasmonic dispersion of the graphene antidot lattice considered in Fig. 2, unfolded onto continuum wave
vectors, via an inverse application of the empty-lattice approximation. (a) Unfolded dispersion of the antidot lattice
in multicolored patches (delimited by the dispersion over the irreducible BZ) along the dispersion of the extended
sheet (dashed blue) in the intra- and interband EHP landscape of extended graphene. (b) Zoom-in on the energy range
considered in Fig. 2. (c) Folded dispersion of the antidot lattice over the irreducible BZ.

Unfolded band-dispersion — Because of band-folding, the plasmonic excitations of antidot lattices cannot
be rigorously mapped to the excitations of the extended graphene sheet. Specifically, in the former (lattices)
plasmonic states are indexed by the band index n and the reduced wave vector k̃ 2 BZ, whereas in the latter
(pristine graphene) the unrestricted wave vector k 2 R2 su�ces. The preceding discussion of interband
transitions evidently adopts the latter perspective, and so, strictly speaking, does not apply to lattices.
Indeed, a lattice plasmon is composed of a range of momenta {k +G}, spanned by the reciprocal lattice
vectors {G}. Nevertheless, the empty-lattice approximation suggests that each state is predominately in
a specific momentum state: specifically, turning the empty-lattice approximation on its head, we can
approximately map a lattice state (n, k̃) to an extended state k ⇠ k̃ +Gn with Gn denoting the nth sorted
reciprocal lattice vector (in the sense |k̃ +G1| < |k̃ +G2| < |k̃ +G3| < . . .). This allows us to gauge the
lattice plasmons’ distance from regions of severe Landau damping.

Figure S5 depicts the result of such a procedure: each folded band !n(k̃) is approximately “unfolded”
onto the continuum wave vector and compared with the extended sheet’s dispersion. The validity of the
procedure is well-illustrated by the overlap between the two. Further, the lattice bands evidently lie far
from the regime of interband EHP production in the relevant energy range: this demonstrates that our
intraband treatment is fully su�cient in the considered parameter space.

VI. NONCLASSICAL REGIME OF LANDAU QUANTIZATION

Under a perpendicular magnetic field B, the Dirac electrons of graphene undergo Landau quantization [S17]

El(⌫) ⌘ ~!l(⌫) = ±vF

r
2~eB

c
p
⌫, ⌫ = 0, 1, 2, . . . (S22)

We consider positive Fermi energy, and hence restrict ourselves to the positive-energy levels. Each such
level contains a large degeneracy g proportional to the magnetic flux � over the sample:

g = 4
�

�0
= 4

BS
�0
, (S23)

where the factor of 4 sums the spin and valley degeneracies, S is the sample area, and �0 = 2⇡~c/e is the
flux quantum.

At a specified B field, the Fermi level EF may coincide with a level or lie in a gap between levels. Depending
on the impurity concentration and the temperature, in the static limit, the system may exhibit classical
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or quantum Hall e↵ect. At finite frequencies, transitions among di↵erent Landau levels can occur and a
quantum treatment is appropriate [S3]. However, under the following condition, a semiclassical description
su�ces to describe the dynamic response [S3; S4]:

EF > ~!l(⌫ = 1) = vF

r
2~eB

c
, (S24)

Under this condition, the response is well-described by the semiclassical treatment adopted in our Letter,
i.e. by the cyclotron motion at frequency12 !c = eBv2

F/cEF. Equation (S24) can be recast as an equivalent
restricting condition on the magnitude of !c:

!c <
vF

~

r
~eB
2c
= 1

2!l(⌫ = 1). (S25)

Thus, the semiclassical framework is representative of the full quantum mechanical response provided the
cyclotron energy is less than one half of the first Landau level. In turn, this requires that EF is not too small
and B is not too large. The region where this condition is violated is indicated in Fig. 1(c) of our Letter as
the region of Landau quantization.

Finally, we note the existence of a distinct class of magnetoplasmons, theoretically predicted in un-
doped (or very weakly doped; ⇠ 1 filled Landau levels) pristine graphene under very large magnetic
fields [S18; S19]. This class of magnetoplasmons involve a few interacting electron-hole pairs, discretized
into well-separated Landau levels, oscillating around the Dirac point. We emphasize that this class of
magnetoplasmons, which exist in the extreme quantum Hall regime EF ⌧ ~!c, is starkly di↵erent from
the class considered in this Letter [S19]—the latter class is well-described by a semiclassical treatment
and are of a magnetohydrodynamic character; the conventional plasmon “dressed” by the magnetic
field. Microscopically, they are composed of a large number of interacting electron-hole pairs excited
around high-lying, densely spaced Landau levels such that EF � ~!c. In contrast, the large-B, small-EF

magnetoplasmons studied in Ref. S18 reside in the opposite domain and have no B! 0 analogue [S19].

VII. INFLUENCE OF FINITE LOSS

The influence of finite intrinsic loss, due to a Drude relaxation rate �, was discussed in our Letter and
quantified in Fig. 4(e). Here, we elaborate on these aspects, obtaining along the way universal scaling laws
which hold implications also for the lossless scenario.

A. Scaling laws and perturbative considerations

Absence of magnetic field — As discussed in Section I.A, the resonances of a 2D nanostructure ⌦ with an
isotropic conductivity �(!) and of characteristic length L are dictated by a set of dimensionless eigenvalues
⇣⌫ ⌘ i!⌫L/2⇡�(!⌫) which depend solely on the shape of ⌦ and the modal index ⌫. Within an intraband
treatment of graphene, �(!) = i↵!f

!+i� =
ie2EF
⇡~2(!+i�) , the resonant frequencies can be obtained explicitly as:

!⌫ =
q

(!0
⌫)2 + 1

4�
2 � i

2�, with !0
⌫ =
p

2⇡↵!f⇣⌫/L, (S26)

simplifying to !⌫ ' !0
⌫ � i�/2 for !0

⌫ � �. Thus, within the isotropic (B = 0) intraband description,
every plasmonic state, whether bulk-like, edge-like, or localized, has an imaginary spectral component
Im!⌫ = ��/2. On the other hand, the real component Re!⌫ ' !0

⌫ depends on modal index ⌫, geometric
length scale L, and Fermi level !f [in the plasmonic lattices considered here ⌫ = (n,k 2 BZ) and L = a].

12 The semiclassical cyclotron description can be slightly improved by substituting the cyclotron frequency !c for the energy-gap
across the Fermi energy !l(⌫f + 1) �!l(⌫f) with ⌫f denoting the highest filled Landau level [S4]. In the limit ⌫f � 1 the cyclotron
frequency is recovered. This sophistication (which we do not include in our calculations) amounts to a small rescaling of the
cyclotron frequency, on the order of 1.5% for B = 8 T and EF = 0.2 eV.
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FIG. S7 Spectral shifting under the application of a finite B-field in the triangular antidot lattice considered in Fig. 2
(assuming zero loss). The plasmonic frequencies ~!n(k) are plotted as a function of applied B-field at wave vectors
corresponding to the K, �, and M points. The associated modal coe�cients ⇠n(k) are indicated. The n = 3 and 4 bands
at � undergo a band-closing and are consequently not well-described by Eq. (S27).

Perturbative impact of a finite magnetic field — The application of a finite magnetic field breaks the simple
scaling law in Eq. (S26). Nevertheless, for small magnetic fields, !c ⌧ !⌫, the problem can be treated
perturbatively. We leave out the details and simply state the end-result: the B = 0 eigenspectrum !⌫ is
shifted to the B , 0 spectrum !⌫ + �!⌫ + O(!2

c/!
2
⌫) with the first-order correction

�!⌫ = ⇠⌫
!c!⌫
!⌫ + i�/2

' ⇠⌫
�
1 � i�/2!0

⌫

�
!c, (S27)

assuming small loss at the second equality. ⇠⌫ is a dimensionless modal parameter analogous to ⇣⌫,
depending solely on the shape of ⌦ and the modal index ⌫; it can be computed either from the eigenstates
of the non-perturbed problem, or, more pragmatically and simply, by fitting to explicit calculations.

Adopting the fitting-approach, we illustrate these perturbation results in Figs. S6 and S7 and compare with
full calculations for finite magnetic fields. Fig. S6 considers the (real and imaginary) splitting of the co-
and counter-rotating dipole modes of a simple disk, while Fig. S7 considers the (real) spectral shifts of the
triangular antidot lattice at the K, �, and M points. Both clearly illustrate that the B , 0 induced shifts are
well-described by the linear result in Eq. (S27), even for moderately large magnetic fields. Evidently, the
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plasmonic loss rate is not significantly altered from its B = 0 value even at B , 0 since !c ⌧ !0
⌫ .

B. Ribbon spectrum under finite loss: spectral density from numerical calculations

To complement the preceding analytical considerations, we also performed fully numerical calculations of
the complex eigenspectrum !n(kx) in 1D periodic antidot lattices (i.e. ribbons) under finite relaxation. A
ribbon extended along x and finite along y (20 unit cells) is considered, see Fig. S8(a); this system, in a
lossless configuration, also underlies the semi-infinite sheet’ edge dispersion discussed in Fig. 3 of our
Letter (with half the edge states). To simultaneously depict the mode-broadening and the band dispersion,
i.e. both real and imaginary parts of !n(kx), we consider the spectral function

A(kx,!) ⌘ �1
⇡

X

n

1
! � !n(kx)

, (S28)

which defines the spectral density of states Im A(kx,!) depicted in Figs. S8(b–d). The resulting intensity
maps depict both bulk and edge modes (propagating on either side of the ribbon, in opposite directions);
the bulk modes are discretized into a finite number of bands, reflecting the finite extent of the ribbon. Edge
modes exist in the gaps between bulk regions. Finite relaxation rates, considered here in the range ~� = 0.5,
2, and 6 meV, broadens the spectral features of bulk and edge states, as expected from the discussion in the
preceding section. At high loss, the band gaps are severely blurred indicating its e↵ective removal. Thus,
large intrinsic relaxation necessitates correspondingly large B-fields to maintain well-defined bandgaps.
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C. Dipole-excited one-way propagation under finite loss

To complement the results of Fig. 4(e), we present in Fig. S9 additional results on the impact of intrinsic
loss on propagation of the C̄(1) gap edge plasmons, for lattice constants a = 400 and 100 nm and ~� = 1, 2,
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and 4 nm. These results demonstrate that the e↵ective propagation length l/a can be dramatically enhanced
at smaller lattice constants. This reveals the existence of a trade-o↵ between gap–midgap ratio (/⇠ !c/

p
a,

i.e. preferring large a) and e↵ective propagation length (preferring small a). Since the gap–midgap ratio
is less important in plasmonic applications than in e.g. photonic crystal applications (where bandwidth
is central figure of merit), this trade-o↵ allows additional design-flexibility. A similar trade-o↵ may be
feasible by increasing EF, though at a steeper cost to the gap–midgap ratio.

Figures 4(e) and S9 also demonstrate that the e↵ective propagation length improves with increasing
magnetic field B. This B-dependence is chiefly due to an increased edge plasmon group velocity, which
is roughly proportional to the gap magnitude. More generally, by maximizing the edge plasmon group
velocity the e↵ective propagation length can be enhanced. This can achieved by separately optimizing the
lattice termination (on which the edge plasmon dispersion depends sensitively) and even the underlying
bulk lattice (e.g. antidot shape, antidot size a/d, and lattice type).
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FIG. S9 Propagation attenuation (quantified by the y-integrated potential) of the C̄(1) = �1 gap edge plasmon, for
varying decay rate ~�, lattice constant a, and magnetic field B. By lowering a or increasing B the e↵ective propagation
length l/a can be increased dramatically. Edge plasmons are dipole-excited at the C̄(1) = �1 gap-center (14.6 and
29.2 THz at a = 400 and 100 nm, respectively). Setup parameters and (relative) dipole position as in Fig. 4(a);
computational geometry as in Fig. S1. Matching time-domain calculations are included as Supplemental Movies.

To accompany the frequency-domain calculations in Figs. 4(e) and S9 we have also performed time-
domain calculations.13 The results (setup as in Fig. S9) are included as Supplemental Movies 1 and 2 and
depict the induced potential due to a spectrally narrow (temporally broad) dipole pulse centered at the
C̄(1) = �1 gap-center.

D. Effective Dirac Hamiltonian at the K point

Finally, we discuss briefly the spectral behavior of the n = 1 and 2 band near the K point, where the
plasmonic bands exhibit Dirac dispersion. In the absence of T breaking perturbations (a magnetic field or
intrinsic loss), the influence of small momentum deviations �k from the K point can be well-described
by a 2-component e↵ective Dirac Hamiltonian �Ĥ, which gives the spectral shifts away from the Dirac
point [i.e. the total e↵ective Hamiltonian includes a diagonal term !0

K

⌘ !1(K) = !2(K)]. In the chiral
representation, �Ĥ takes the form

�Ĥ =
 

0 v(�kx � i�ky)
v(�kx + i�ky) 0

!
= v

�
�kx�1 + �ky�2

�
. (S29)

Here, v is a linear phase velocity depending on EF, a, and d. The two basis wavefunctions in this subspace
are linear combinations of the original plane-wave states of �̃, Jx, and Jy sampled over the wave vectors

13 The time-domain formulation follows directly from the frequency-domain considerations in Section I, requiring only the
substitution �i!! @t; this leads to a third order ordinary di↵erential equation [driven, for nonzero �ext(r, t)] which we propagate
in time using an adaptive Runge–Kutta method.
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{K +G}. They form the time-reversal counterpart of each other in the chiral representation.

If we next apply a finite magnetic field and finite loss, i.e. break T , the linear degeneracy at �k = 0 is
lifted. To leading order, the e↵ective Hamiltonian generalizes to

�Ĥ =
 
� i

2� + ↵!c v(�kx � i�ky)
v(�kx + i�ky) � i

2� � ↵!c

!
= � i

2��0 + v�kx�1 + v�ky�2 + ↵!c�3, (S30)

with ↵ ⌘ ⇠(1 � i�/2!0
K

) introduced for brevity, cf. Eq. (S27), with ⇠ depending on the ratio a/d. The
e↵ective Hamiltonian produces the gapped Dirac spectrum �! = � i

2� ±
p
↵2!2

c + v2|�k|2, with �!
denoting the spectral shift from degenerate Dirac point !0

K

. Evidently, ↵!c plays the role of a finite
(complex) mass term in the Dirac equation.
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