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Topology is revolutionizing photonics, bringing with it new theoretical discoveries and a wealth of potential
applications. This field was inspired by the discovery of topological insulators, in which interfacial electrons
transport without dissipation even in the presence of impurities. Similarly, new optical mirrors of different
wave-vector space topologies have been constructed to support new states of light propagating at their inter-
faces. These novel waveguides allow light to flow around large imperfections without back-reflection. The
present review explains the underlying principles and highlights the major findings in photonic crystals, coupled
resonators, metamaterials and quasicrystals.

Frequency, wavevector, polarization and phase are degrees
of freedom that are often used to describe a photonic system.
In the last few years, topology –a property of photonic ma-
terials that relates to the global structure of their frequency
dispersions– has been emerging as another indispensable in-
gredient, opening a path forward to the discovery of funda-
mentally new states of light and possibly revolutionary appli-
cations. Possible practical applications of topological photon-
ics include photonic circuitry less dependent on isolators and
slow light insensitive to disorder.

Topological ideas in photonics branch from exciting de-
velopments in solid-state materials, along with the discovery
of new phases of matter called topological insulators [1, 2].
Topological insulators, being insulating in their bulk, con-
duct electricity on their surfaces without dissipation or back-
scattering, even in the presence of large impurities. The first
example was the integer quantum Hall effect, discovered in
1980. In quantum Hall states, two-dimensional (2D) elec-
trons in a uniform magnetic field form quantized cyclotron
orbits of discrete eigenvalues called Landau levels. When the
electron energy sits within the energy gap between the Lan-
dau levels, the measured edge conductance remains a constant
within the accuracy of about one part in a billion, regardless
of sample details like size, composition and impurity levels.
In 1988, Haldane proposed a theoretical model to achieve the
same phenomenon but in a periodic system without Landau
levels [3], the so-called quantum anomalous Hall effect.

Posted on arXiv in 2005, Haldane and Raghu transcribed
the key feature of this electronic model into photonics [4, 5].
They theoretically proposed the photonic analogue of quan-
tum (anomalous) Hall effect in photonic crystals [6], the peri-
odic variation of optical materials, molding photons the same
way as solids modulating electrons. Three years later, the idea
was confirmed by Wang et al., who provided realistic material
designs [7] and experimental observations [8]. Those studies
spurred numerous subsequent theoretical [9–13] and experi-
mental investigations [14–16].

Back-reflection in ordinary waveguides is a main obsta-
cle to large scale optical integration. The works cited above
demonstrated unidirectional edge waveguides transmit elec-
tromagnetic waves without back-reflection even in the pres-
ence of arbitrarily large disorder: this ideal transport prop-
erty is unprecedented in photonics. Topological photonics

promises to offer unique, robust designs and new device func-
tionalities to photonic systems by providing immunity to per-
formance degradation induced by fabrication imperfections or
environmental changes.

In this review, we present the key concepts, experiments,
and proposals in the field of topological photonics. Start-
ing with an introduction to the relevant topological concepts,
we introduce the 2D quantum Hall phase through the sta-
bility of Dirac cones [4, 5], followed by its realizations in
gyromagnetic photonic crystals [7, 8, 13], in coupled res-
onators [9, 10, 16] and waveguides [15], in bianisotropic
metamaterials [11] and in quasicrystals [14]. We then extend
our discussions to three dimensions, wherein we describe the
stability of line nodes and Weyl points and their associated
surface states [12]. We conclude by considering the outlook
for further theoretical and technological advances.

TOPOLOGICAL PHASE TRANSITION

Topology is the branch of mathematics that concerns quan-
tities that are preserved under continuous deformations. For
example, the six objects in Fig. 1a all have different geome-
tries; but there are only three different topologies. The yellow
sphere can be continuously deformed into the white spoon, so
they are topologically equivalent. The torus and coffee cup are
also topologically equivalent, and so too are the double torus
and tea pot. Different topologies can be mathematically char-
acterized by integers called topological invariants, quantities
that remain the same under arbitrary continuous deformations
of the system. For the above closed surfaces, the topologi-
cal invariant is the genus, and it corresponds to the number
of holes within a closed surface. Objects having the same
topological invariant are topologically equivalent: they are in
the same topological phase. Only when a hole is created or
removed in the object does the topological invariant change.
This process is a topological phase transition.

Material-systems in photonics have topologies, defined on
the dispersion bands in the reciprocal (wavevector) space. The
topological invariant of a 2D dispersion band is the Chern
number ( C in Box 1), a quantity that characterizes the quan-
tized collective behavior of the wavefunctions on the band.
Once a physical observable can be written as a topological in-
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FIG. 1. Topological phase transition. a, Six objects of differ-
ent geometries can be grouped into three pairs of topologies. Each
pair has the same topological invariant called genus. b, Illustration
of two waveguides formed by mirrors of different (right) and same
(left) topologies. c, Frequency bands of different topologies cannot
transit into each other without closing the frequency gap. A topo-
logical phase transition takes place on the right, but not on the left.
d, Interfacial states have different connectivity with the bulk bands,
depending on the band topologies of the bulk mirrors. a is the period
of the waveguide propagating along y. ∆C is the change in Chern
number between the corresponding bulk bands on the right and left
of the waveguide. The magnitude of ∆C equals the number of gap-
less interfacial modes and the sign of ∆C indicates the direction of
propagations.

variant, it only changes discretely; thus, it will not respond
to continuous small perturbations. These perturbations can be
arbitrary continuous changes in the material parameters.

Optical mirrors reflect light of a given frequency range:
light reflects due to the lack of available optical states inside
the mirror. Mirrors, that is, have frequency gaps in analogy
to the energy gaps of insulators. The sum of the Chern num-
bers of the dispersion bands below the frequency gap labels
the topology of a mirror. This can be understood as the total
number of “twists” and “un-twists” of the system up to the
gap frequency. Ordinary mirrors like air (total internal reflec-
tion), metal, or Bragg reflectors all have zero Chern numbers-
they are topologically trivial. Mirrors with non-zero Chern
numbers are instead topologically non-trivial.

The most fascinating and peculiar phenomena take place at
the interface where two mirrors having different topological
invariants join together. The edge waveguide formed by these
two topologically in-equivalent mirrors (right of Fig. 1b) is

topologically distinct from an ordinary waveguide, which is
formed between topologically equivalent mirrors (left of Fig.
1b). The distinction lies in the frequency spectra of their
edge modes inside the bulk frequency gap. On the left of
Fig. 1c, the two frequency bands both have zero Chern num-
bers, so they can directly connect across the interface without
closing the frequency gap. However, when the two mirrors
have different Chern numbers, topology does not allow them
to connect to each other directly. A topological phase tran-
sition must take place at the interface: this requires closing
the frequency gap, neutralizing the Chern numbers, and re-
opening the gap. This phase transition, illustrated on the right
of Fig. 1c, ensures gapless frequency states at the interface:
there must exist edge states at all frequencies within the gap
of the bulk mirrors. The gapless spectra of the edge states are
topologically protected, meaning their existence is guaranteed
by the difference of the topologies of the bulk materials on
the two sides. In general, the number of gapless edge modes
equals the difference of the bulk topological invariants across
the interface. This is known as the bulk-edge correspondence.

The topological protection of edge waveguides can also be
understood in the reciprocal space. Figure 1d shows the dis-
persion diagrams of both ordinary (left) and gapless (right)
waveguides. On the left, the ordinary waveguide dispersion
is disconnected from the bulk bands and can be continuously
moved out of the frequency gap, into the bulk bands. On the
right, however, the gapless waveguide dispersion connects the
bulk frequency bands above and below the frequency gap. It
cannot be moved out of the gap by changing the edge termina-
tions. Similar comparisons between the edge band diagrams
are shown in Fig. 2. The only way to alter these connectivi-
ties is through a topological phase transition, i.e. closing and
reopening the bulk frequency gap.

The unidirectionality of the protected waveguide modes can
be seen from the slopes (group velocities) of the waveguide
dispersions. The ordinary waveguide (Fig. 1d left) supports
bi-directional modes; it back-scatters at imperfections. By
contrast, the topologically-protected gapless waveguides (Fig.
1d right) are unidirectional, having only positive (negative)
group velocities. In addition, there are no counter-propagating
modes at the same frequencies as the one-way edge modes.
This enables light to flow around imperfections with perfect
transmission; except going forward, light has no other options.
The operation bandwidth of these one-way waveguides are as
large as the size of the bulk frequency gap.

FROM DIRAC CONES TO QUANTUM HALL
TOPOLOGICAL PHASE

An effective approach to find non-trivial mirrors (frequency
gaps with non zero Chern numbers) is to identify the phase
transition boundaries of the system in the topological phase
diagram, where the frequency spectrum is gapless. Then, a
correct tuning of the system parameters will immediately open
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FIG. 2. Topological phase diagram of the 2D quantum Hall
phase. A band diagram of edge states are illustrated on the top left
when the bulk dispersions form a pair of Dirac cones (gray) pro-
tected by PT symmetry. The green and blue colors represent edge
dispersions on the top and bottom edges. When either P or T are
broken, a bandgap can form in the bulk but not necessarily on the
edges. When T -breaking is dominant, the two bulk bands split from
one pair of Dirac degeneracies and acquire Chern numbers of ±1.
So there exists one gapless edge dispersion on each of the top and
bottom interfaces, assuming the bulk is interfaced with topologically
trivial mirrors. This T -breaking phase of non-zero Chern numbers
are the quantum Hall phase, plotted in red in the phase diagram.

gaps belonging to different topological phases. In 2D peri-
odic systems, these phase boundaries are point-degeneracies
in the bandstructure. The most fundamental 2D point degen-
eracy is a pair of Dirac cones of linear dispersions between
two bands [17, 18]. In 3D, the degeneracies are line nodes
and Weyl points that we will discuss later in this review.

Dirac cones are protected by PT symmetry, the product of
time-reversal symmetry (T , in Box 2) and parity (P) inversion.
Protected Dirac cones generate and annihilate in pairs [19–
22]. The effective Hamiltonian close to a Dirac point, in the
x-y plane, can be expressed by H(k) = vxkxσx +vykyσz, where
vi are the group velocities and σi are the Pauli matrices. Diag-

onalization leads to the solution ω(k) = ±

√
vx

2kx
2 + vy

2ky
2.

Both P and T map the Hamiltonian from k to −k, but they dif-
fer by a complex conjugation: so (PT )H(k)(PT )−1 = H(k)∗.
PT symmetry requires the Hamiltonian to be real and ab-

sent of σy =

(
0 −i
i 0

)
that is imaginary. A 2D Dirac point-

degeneracy can be lifted by any perturbation that is propor-
tional to σy in the Hamiltonian or, equivalently, by any pertur-
bation that breaks PT . Therefore, breaking either P or T will
open a bandgap between the two bands.

However, the bandgaps opened by breaking P [23] and
T individually are topologically inequivalent [5, 24], mean-
ing that the bulk bands in these two cases carry different
Chern numbers. The Chern number is the integration of the
Berry curvature [F (k) in Table B1] on a closed surface in the
wavevector space. F (k) is a pseudovector that is odd under T
but even under P. At the presence of both P and T , F (k) = 0.
When one of P and T is broken, the Dirac cones open and

each degeneracy-lifting contributes a Berry flux of magnitude
π to each of the bulk bands. At the presence of T (P broke),
F (k) = −F (−k). The Berry flux contributed by one pair of
Dirac points at k and −k are of opposite signs. The integration
over the whole 2D Brillouin zone always vanishes, so do the
Chern numbers. In contrast, at the presence of P (T broke),
F (k) = F (−k). The total Berry flux adds up to 2π and the
Chern number equals one. More pairs of Dirac cones can lead
to higher Chern numbers [13]. This topologically non-trivial
2D phase is colored with red in the phase diagram in Fig. 2.

REALIZATION IN GYROMAGNETIC PHOTONIC
CRYSTALS

The first experiments [8] to realize the photonic analogue
of the quantum Hall effect were by Wang et al. at microwave
frequencies. The experiment used gyromagnetic materials and
introduced a uniform magnetic field to break T . The result
is a single topologically-protected edge waveguide mode that
propagates around arbitrary disorder without reflection.

These single-mode one-way waveguides can also be real-
ized in coupled defect cavities [25], self-guide [26] in free-
standing slabs [27] and have robust local density of states [28].
They have enabled novel device designs for tunable delays
and phase shifts with unity transmission [7], reflectionless
waveguide bends and splitters [29], signal switches [30], di-
rectional filters [31, 32], broadband circulators [33] and slow-
light waveguides [34]. Very recently, multi-mode one-way
waveguides of large bulk Chern numbers (|C| = 2, 3, 4) have
been constructed by opening gaps of multiple point degenera-
cies simultaneously [13], providing even richer possibilities in
device functionalities.

The experiments in Ref. [8] were based on a 2D square
lattice photonic crystal composed of an array of gyromag-
netic ferrite rods confined vertically between two metallic
plates to mimic the 2D transverse magnetic (TM) modes.
Shown in Fig. 3a, a metal wall was added to the surround-
ing edges to prevent radiation loss into air. Without the ex-
ternal magnetic field, the second and third TM bands are con-
nected by a quadratic point-degeneracy composed of a pair of
Dirac cones [35]. Under a uniform static magnetic field (0.2
Tesla) that breaks T , anti-symmetric imaginary off-diagonal
terms develop in the magnetic permeability tensor (µ). The
quadratic degeneracy breaks and a complete bandgap forms
between the second and third bands, both having non-zero
Chern numbers. The red dispersion line in Fig. 3b is the gap-
less edge state inside the second bandgap having only positive
group velocities around 4.5 GHz. Numerical simulation re-
sults in the top of plot Fig. 3c verified that an antenna inside
the waveguide can only emit into the forward direction in the
bulk frequency gap. The experimental transmission data in
Fig. 3d shows that the backward reflection is more than five
orders of magnitude smaller than the forward transmission af-
ter propagating over only eight lattice periods. More impor-
tantly, there is no increase in the reflection amplitude even
after inserting large metallic obstacles in the experiments, as
illustrated in the lower plot of Fig. 3c. Indeed, new one-way
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FIG. 3. First experimental demonstration of the topologically-
protected one-way edge waveguide at microwave frequencies. a,
Schematic of the experimental setup for measuring the one-way edge
state between the metal wall and the gyromagnetic photonic crystal
confined between the metallic plates to mimic the 2D TM modes.
The inset is a picture of the ferrite rods that constitute the photonic
crystal of lattice period a = 4cm. b, The bandstructure of the one-
way gapless edge state between the second and third bands of non-
zero Chern numbers. c, Simulated field propagation of the one-way
mode and its topological protection against large obstacles. d, The
measured high one-way transmission data of the edge waveguide.

edge modes automatically form wherever a new interface is
created, providing a path for light to circumvent the obstacle.
This is precisely the topological protection provided by the
bulk of the photonic crystal containing non-zero Chern num-
bers.

We note there exist other types of one-way waveguides that
break T [36], but they are not protected by topology. In gen-
eral, magnetic responses are very weak in optical materials.
Therefore, realizations at optical frequencies remain a chal-
lenge.

COUPLED RESONATOR REALIZATIONS: EFFECTIVE
MAGNETIC FIELDS AND TIME-DOMAIN MODULATIONS

Photons in an array of coupled resonators are similar to
electrons in an array of atoms in solids. The photon couplings
between the resonators can be controlled to form topologi-
cally non-trivial frequency gaps with robust edge states. Re-
searchers obtained the photonic analogues of the integer quan-
tum Hall effect by constructing both static and time-harmonic

couplings that simulate the electron’s behavior in a uniform
magnetic field. When the T -breaking is implemented by accu-
rate time-harmonic modulations, unidirectional edge waveg-
uides immune to disorder can be realized at optical frequen-
cies.

In electronic systems, the first quantum Hall effect was ob-
served in a 2D electron gas subject to an out-of-plane mag-
netic field. As illustrated in Fig. 4a, the bulk electrons un-
dergo localized cyclotron motions, while the unidirectional
edge electrons have an extended wavefunction. Again, the
number of the gapless edge channels equals the Chern num-
ber of the system. Here, the physical quantity describing the
magnetic field is the vector potential, that can be written in the
form A = Byx̂. An electron accumulates Aharonov-Bohm (A-
B) phase of φ =

∮
A(r) · dl after a closed loop (also see Table

B1). An electron going against the cyclotron motion acquires
−φ phase indicated by a dotted circle in Fig. 4a, so it has a
different energy. The spin degeneracy of electrons is lifted by
Zeeman splitting.

A photon does not interact with magnetic fields, but it also
acquires a phase change after a closed loop. By carefully tun-
ing the propagation and coupling phases, Hafezi et al. de-
signed [9] a lattice of optical resonators in which the photon
acquires the same phase as the A-B phase of electrons mov-
ing in a uniform magnetic field. Different from a true quan-
tum Hall topological phase, T is not broken in their static res-
onator array. So time-reversed channels always exist at the
same frequencies allowing back-reflections. Nevertheless, in
the first set of experiments [16, 37] performed on silicon-on-
insulator platform, the authors showed that certain robustness
against disorder can still be achieved due to the topological
features of the phase arrangements. As shown in Fig. 4b, a
2D array of whispering-gallery resonators are spatially cou-
pled through waveguides in between. Every resonator has
two whispering-gallery modes propagating clockwise (green)
and counter-clockwise (red). They are time-reversed pairs and
are similar to the “spin-up” and “spin-down” degrees of free-
dom for electrons. The lengths of the coupling waveguides
are carefully designed so that the total coupling phases be-
tween resonators precisely match the A-B phase in Fig. 4a:
the vertical couplings have no phase changes, while the hori-
zontal couplings have phases linear in y. In each “spin” space,
photons of opposite circulations experience opposite “A-B”
phases (±φ), just like the electrons in Fig. 4a. These opposite
loops are also illustrated in solid and dashed red lines for the
“spin-up” photons in Fig. 4b. As a result, the photonic fre-
quency spectrum in this resonator array [38, 39] exhibits both
Landau levels and Hofstadter butterfly, which are the signa-
tures of a 2D electron in a uniform magnetic field: the integer
quantum Hall effect. However, without T breaking, the two
copies of “spin” spaces are degenerate in frequency and cou-
ple to each other. Only under the assumption that these two
“spins” completely decouple from each other, Chern numbers
of same magnitude but opposite signs can be defined and po-
tentially measured [40] in each “spin” space. (The “spin”-
polarized counter-propagating edge modes bear similarities to
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the edge currents in quantum spin Hall effect for electrons, but
they are fundamentally different in symmetry protections and
topological invariants as discussed in Box. 2 and in next sec-
tion.) These photonic gapless edge modes are robust against
disorder that does not induce “spin” flips. For example, when
a defect edge resonator has a different size and resonance fre-
quency from the bulk resonators, then the edge mode will find
another route to pass around this defect resonator. A recent
study [41, 42] suggested that the required spatially-varying
couplers along y can be made identical and periodic, achieving
otherwise the same phenomena. Unfortunately, in these recip-
rocal schemes, perturbations inducing “spin” flips are practi-
cally ubiquitous: local fabrication imperfections on the res-
onators or the couplers and even the coupling processes them-
selves can mix the “spins” and induce back-scattering.
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FIG. 4. Quantum Hall phase of electrons in a magnetic field and
of photons in coupled resonators exhibiting an effective magnetic
field. a, Illustration of the cyclotron motions of electrons in a static
magnetic field (Bẑ). The vector potential increases linearly in y. b, A
2D lattice of photonic whispering-gallery resonators coupled through
static waveguides. The horizontal coupling phases increase linearly
in y. The two “spins” of the whispering-gallery resonators are degen-
erate in the effective magnetic field. c, A 2D lattice of photonic res-
onators consisting of two types of single-mode cavities. The nearest
neighbors are coupled through time-domain modulations with hor-
izontal phases linearly increasing in y; this breaks T . d, An array
of helical photonic waveguides, breaking z symmetry, induces har-
monic modulations on photons propagating in it.

This back-scattering in the above time-reversal-invariant
systems can be eliminated by breaking T , for example us-
ing spatially-coherent time-domain modulations, as proposed
theoretically in Ref. [10]. Fang et al. placed two kinds
of single-mode resonators in the lattice shown in Fig. 4c.

When the nearest-neighbor coupling is dominant, the two res-
onators (having different resonance frequencies) can only cou-
ple through the time-harmonic modulation between them. The
vertical coupling phases are zero and the horizontal coupling
phases increase linearly along the y coordinate, producing ef-
fective A-B phases from a uniform magnetic field. [43–45]
Photons moving in opposite directions have opposite phases,
so they have different frequencies. Floquet’s theorem in the
time domain — similar to the Bloch’s theorem in the spa-
tial domain— is used to solve this lattice system of time-
periodic modulations. The resulting Floquet bandstructure has
the same gapless edge states as that of a static quantum Hall
phase.

Achieving accurate and coherent time-harmonic modula-
tions of a large number of resonators is challenging towards
optical frequencies. Rechtsman et al. [15] translated the mod-
ulation from the time domain to the spatial domain, leading
to the experimental demonstration of the photonic analogue
of the quantum Hall effect at optical frequencies (633nm).
These are also the first experiments on Floquet topological
phases [46, 47]. Starting with a 2D resonator array, the authors
extended the cavities along the third direction (z), obtaining
a periodic array of coupled waveguides propagating along z.
In their system, z plays the role of time. More specifically,
the paraxial approximation of the Maxwell’s equations results
in an equation governing diffraction (propagating in z) that is
equivalent to the Schrödinger’s equation evolving in time. The
periodic helical modulations in z break z-symmetry, which is
equivalent to the time-domain modulations that break T . This
symmetry-breaking opens up protected band degeneracies in
the Floquet bandstructure, forming a topologically non-trivial
bandgap that contains protected gapless edge modes.

We note that the idea of creating effective magnetic fields
for neutral particles [48] using synthetic gauge fields were
first studied in optical lattices [49]. Very recently, similar
gauge fields were also studied in optomechanics [50] and
radio-frequency circuits [51]. Finally, although approxima-
tions like nearest-neighbor in space or rotating-wave in time
were adopted in the analysis of the systems described in this
section, these higher order corrections do not fundamentally
alter the topological invariants and phenomena demonstrated.

TIME-REVERSAL-INVARIANT REALIZATION USING
BIANISOTROPIC METAMATERIALS

In bi-anisotropic materials (χ , 0 in Eq. 2 in Box 2) [52],
the coupling between electric and magnetic fields provides a
wider parameter space for the realization of different topo-
logical phases. In particular, it has been shown that bi-
anisotropic photonic crystals can achieve topological phases
without breaking T (T -invariant), so neither magnetism nor
time-domain modulations are needed for the topological pro-
tection of edge states. Bi-anisotropic responses are known as
optical activity in chiral molecules in nature and can be de-
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signed in metamaterials as well.
Bianisotropy acts on photons in a similar way as spin-orbit

coupling does on electrons [53]. In their inspiring theoretical
proposal [11], Khanikaev et al. enforced polarization (“spin”)
degeneracy for photons by equating ε to µ (ε = µ), so that
the transverse electric (TE) and TM modes in 2D are exactly
degenerate in frequencies. When the pseudo-tensor χ is of the
same form as the gyroelectric or gyromagnetic terms in ε or
µ, then χ acts as a magnetic field on each polarization with
opposite signs without breaking T . This system can be sepa-
rated into two independent “spin” subspaces, in which quan-
tum anomalous Hall phases exist with opposite Chern num-
bers.

Very recently, it was suggested that the ε = µ condition
could potentially be relaxed [54]. Indeed in their experimen-
tal work, Chen et al. [55] relaxed the material requirements to
matching the ratio of ε/µ. They also realized broadband ef-
fective bianisotropic response by embedding the ε/µ-matched
materials in a metallic planar waveguide. These advances en-
abled them to experimentally observe the spin-polarized ro-
bust edge transport around 3GHz.

Similar to the T -invariant resonator arrays in Fig. 4b and
Ref. [9, 16, 37, 41, 42], the above metamaterial realiza-
tions also require strict conditions in order to decouple the two
copies of “spins”. In these cases, the requirements are on the
accurate realization of the constitutive parameters during the
metamaterial manufacturing. The lack of intrinsic T -protected
quantum spin Hall topological phase is one of the most funda-
mental differences between electronic and photonic systems
as discussed in Box 2.

Finally, Non-trivial surface states were also reported to ex-
ist in a bulk hyperbolic metamaterial having bi-anisotropic re-
sponses [56].

QUASICRYSTAL REALIZATION IN LOWER DIMENSIONS

Quasicrystals are aperiodic structures possessing spatial or-
der. They also have frequency gaps and interfacial states.
Quasicrystals can be constructed from the projections of peri-
odic crystals of higher dimensions.

Krauss et al. [14] projected the 2D quantum Hall phase to
a 1D quasicrystal model containing a tunable parameter that
is equivalent to the wavevector in 2D. Scanning this periodic
parameter reproduces the full gapless frequency spectrum of
the 2D quantum Hall phase; that is, the edge-mode frequency
of the 1D quasicrystal continuously sweeps through the bulk
gap. Experimentally, 1D optical waveguide arrays were fabri-
cated to be spatially varying along the propagation direction z
according to the continuous tuning of this parameter. In their
system, z plays the role of time. The edge state was observed,
starting from one edge of the waveguide array, merging into
the bulk modes, then switching to the other edge of the ar-
ray. Therefore, light is adiabatically transferred in space from
edge to edge. Going a step further, they proposed to realize
the quantum Hall phase in 4D using 2D quasicrystals [57].

WEYL POINTS AND LINE NODES: TOWARDS 3D
TOPOLOGICAL PHASES

2D Dirac points are the key bandstructures that led to the
first proposal and experiments of the photonic analogue of the
quantum Hall effect. For 3D [58, 59] topological phases, the
key bandstructures are line nodes [60], 3D Dirac points [61]
and, more fundamentally, the Weyl points [62]. However,
Weyl points have not been realized in nature. Recently, Lu et
al. theoretically proposed [12] to achieve both line nodes and
Weyl points in gyroid photonic crystals realizable at infrared
wavelengths using germanium or high-index glasses.
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FIG. 5. Phase diagram of line nodes and Weyl points in gyroid
photonic crystals. a, An illustration of the iso-frequency (red) line
of a line node in the 3D momentum space. b, The line-node band-
structure of a particular PT -symmetric DG photonic crystal. c, The
phase diagram of 3D linear degeneracies under T and P breaking per-
turbations. One pair and two pairs of Weyl points are the minimum
numbers in the T -dominated and P-dominated phases. Line nodes
are protected when both symmetry-breaking strengths are zero. d,
An illustration of a Weyl point carrying Chern number of one. A
Weyl point is the source or drain of Berry curvatures (red arrows). e,
The Weyl-point bandstructure of a P-broken DG photonic crystal. f,
Right side: a plane in the 3D Brillouin zone enclosing unpaired Weyl
point has non-zero Chern numbers. The red and blue colors indicate
the opposite Chern numbers of the Weyl points. Left side: the sur-
face states on this plane have protected gapless dispersions, plotted
along the same wavevector line of brown color on the right.

A line node [60] is a linear line-degeneracy; two bands
touch at a closed loop (Fig. 5a) while being linearly dispersed
in the other two directions; it is the extension of Dirac cone
dispersions into 3D. For example, H(k) = vxkxσx + vykyσz
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describes a line node along kz. So PT protects both Dirac
cones and line nodes. The line node bandstructure in Fig. 5b
is found in a double gyroid (DG) photonic crystal with both P
and T . The surface dispersions of a line-node photonic crystal
can be flat bands in controlled areas of the 2D surface Bril-
louin zone. When PT is broken, a line node can either open
up a gap or split into Weyl points. A phase diagram of the
DG photonic crystals is shown in Fig. 5c, where the line node
splits into one pair and two pairs of Weyl points under T and
P breakings.

A Weyl point [62] is a linear point-degeneracy; two bands
touch at a single point (Fig. 5d) while being linearly dispersed
in all three directions. The low frequency Hamiltonian of a
Weyl point is H(k) = vxkxσx + vykyσy + vzkzσz. Diagonal-

ization leads to the solution ω(k) = ±
√

v2
xk2

x + v2
yk2

y + v2
z k2

z .
Since all three Pauli matrices are used up in the Hamiltonian,
the solution cannot have a frequency gap. The existence of
the imaginary σy term means that breaking PT is the neces-
sary condition for obtaining Weyl points. Illustrated in Fig.
5d, Weyl points are monopoles of Berry flux; a closed sur-
face in 3D Brillouin zone containing a single Weyl point has
a non-zero Chern number of value ±1. This means a single
Weyl point is absolutely robust in the 3D momentum space;
Weyl points must be generated and annihilated pairwise with
opposite Chern numbers. Since T maps a Weyl point at k
to −k without changing its Chern number, when only P is
broken the minimum number of pairs of Weyl points is two.
When only T is broken (P preserves), the minimum number
of pairs of Weyl points is one. The bandstructure in Fig. 5e
containing the minimum of four Weyl points is realized in a
double gyroid photonic crystal under P-breaking. We note
that a Dirac point in 3D [61] is a linear point-degeneracy be-
tween four bands, consisting of two Weyl points of opposite
Chern numbers sitting on top of each other in frequency.

A photonic crystal containing frequency isolated Weyl
points has gapless surface states. Consider the brown plane
in the bulk Brillouin zone as shown on the right of Fig. 5f, it
encloses the top red Weyl point (C = +1) or equivalently the
lower three Weyl points depending on the choice of direction.
Either way, this plane has a non-zero Chern number similar to
the 2D Brillouin zone in the quantum Hall case. So surface
states of that fixed ky are also gapless and unidirectional. Plot-
ted on the left of Fig. 5f is an example of these surface states
of the P-broken DG photonic crystal.

OUTLOOK

During the past few years, topological photonics has grown
exponentially. Non-trivial topological effects have been pro-
posed and realized in a variety of photonic systems at different
wavelengths in all three spatial dimensions. In this review we
introduced the main topological concepts, experiments, and
proposals, focusing on 2D and 3D realizations. 1D examples
are discussed in Ref. [63–69].

In the coming years, we expect the discovery of new topo-
logical phases (mirrors) and invariants that could be classi-
fied with respect to different symmetries [70–74]. The topo-
logical phases of interacting photons [75–77] could be ex-
plored by considering nonlinearity [78] and entanglement.
Various topologically-protected interfacial states between dif-
ferent topological mirrors will be studied. The immunity to
disorder and Anderson localization of those interfacial states
need to be addressed. Moreover, the concepts and real-
izations of topological photonics can be translated to other
bosonic systems like surface plasmons [68, 69], exciton-
polaritons [79, 80] and phonons [81, 82]. Certain other known
robust wave phenomena can be explained through topological
interpretations [83].

Technologically, the exploitation of topological effects
could dramatically improve the robustness of photonic devices
in the presence of imperfections. As a result, robust devices
are easier to be designed. For example, designers can worry
much less about insertion loss and Fabry-Perot noise due
to back-reflections. Topologically-protected transport could
solve the key limitation from disorder and localization in slow
light [34] and in coupled resonator optical waveguides [37].
Unidirectional waveguides could decrease the power require-
ment for classical signals and improve the coherence in quan-
tum links [84, 85]. One-way edge states of T -breaking topo-
logical phases could be used as compact optical isolators [86].
Edge states of T -invariant topological phases [11, 55] do not
have reflection even when the system is reciprocal, thus it
might be possible that isolators are unnecessary for photonic
circuits consisting of T -invariant topological phases. The re-
alizations of practical topologically-protected unidirectional
waveguides towards optical frequencies are currently the main
challenge of this emerging field.

Much like the field of topological insulators in electronics,
topological photonics promises an enormous variety of break-
throughs in both the fundamental physics and the technologi-
cal outcomes.
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edge of a three-dimensional photonic crystal.” Physical review
letters 108, 243901 (2012).

[60] A. A. Burkov, M. D. Hook, and Leon Balents, “Topological
nodal semimetals,” Phys. Rev. B 84, 235126 (2011).

[61] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele,
and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys.
Rev. Lett. 108, 140405 (2012).

[62] Xiangang Wan, Ari M. Turner, Ashvin Vishwanath, and
Sergey Y. Savrasov, “Topological semimetal and fermi-arc sur-
face states in the electronic structure of pyrochlore iridates,”
Phys. Rev. B 83, 205101 (2011).

[63] Natalia Malkova, Ivan Hromada, Xiaosheng Wang, Garnett
Bryant, and Zhigang Chen, “Observation of optical shockley-
like surface states in photonic superlattices,” Optics letters 34,
1633–1635 (2009).

[64] Henning Schomerus, “Topologically protected midgap states
in complex photonic lattices,” Optics letters 38, 1912–1914
(2013).

[65] Wei Tan, Yong Sun, Hong Chen, and Shun-Qing Shen, “Pho-
tonic simulation of topological excitations in metamaterials,”
Scientific reports 4 (2014).

[66] A.V. Poshakinskiy, A.N. Poddubny, L. Pilozzi, and E.L.
Ivchenko, “Radiative topological states in resonant photonic
crystals,” Phys. Rev. Lett. 112, 107403 (2014).

[67] Meng Xiao, Z. Q. Zhang, and C. T. Chan, “Surface impedance
and bulk band geometric phases in one-dimensional systems,”
Phys. Rev. X 4, 021017 (2014).

[68] Alexander Poddubny, Andrey Miroshnichenko, Alexey
Slobozhanyuk, and Yuri Kivshar, “Topological majorana states
in zigzag chains of plasmonic nanoparticles,” ACS Photonics
(2014).

[69] CW Ling, Meng Xiao, SF Yu, and Kin Hung Fung, “Plasmonic
topological edge states between diatomic chains of nanoparti-
cles,” arXiv preprint arXiv:1401.7520 (2014).

[70] Alexei Kitaev, “Periodic table for topological insulators and su-
perconductors,” AIP Conf. Proc. 1134, 22 (2009).

[71] Andreas P. Schnyder, Shinsei Ryu, Akira Furusaki, and An-
dreas W. W. Ludwig, “Classification of topological insulators
and superconductors in three spatial dimensions,” Phys. Rev. B
78, 195125 (2008).

[72] Liang Fu, “Topological crystalline insulators,” Phys. Rev. Lett.
106, 106802 (2011).

[73] Vassilios Yannopapas, “Gapless surface states in a lattice of
coupled cavities: A photonic analog of topological crystalline
insulators,” Physical Review B 84, 195126 (2011).

[74] “On the role of symmetries in the theory of photonic crystals,”
Annals of Physics , to appear (2014).

[75] Xie Chen, Zheng-Cheng Gu, Zheng-Xin Liu, and Xiao-Gang
Wen, “Symmetry-protected topological orders in interacting
bosonic systems,” Science 338, 1604–1606 (2012).

[76] RO Umucalilar and I Carusotto, “Fractional quantum hall states
of photons in an array of dissipative coupled cavities,” Physical
Review Letters 108, 206809 (2012).

[77] Mohammad Hafezi, Mikhail D Lukin, and Jacob M Taylor,
“Non-equilibrium fractional quantum hall state of light,” New
Journal of Physics 15, 063001 (2013).

[78] Yaakov Lumer, Yonatan Plotnik, Mikael C Rechtsman, and
Mordechai Segev, “Self-localized states in photonic topological
insulators,” Phys. Rev. Lett 111, 243905 (2013).

[79] Thibaut Jacqmin, Iacopo Carusotto, Isabelle Sagnes, Marco
Abbarchi, Dmitry Solnyshkov, Guillaume Malpuech, Elisabeth
Galopin, Aristide Lemaître, Jacqueline Bloch, and Alberto
Amo, “Direct observation of dirac cones and a flatband in a
honeycomb lattice for polaritons,” Phys. Rev. Lett. 112, 116402
(2014).

[80] Torsten Karzig, Charles-Edouard Bardyn, Netanel Lindner,
and Gil Refael, “Topological polaritons from quantum wells
in photonic waveguides or microcavities,” arXiv preprint

http://arxiv.org/abs/1309.5269
http://arxiv.org/abs/1311.7095
http://arxiv.org/abs/1309.0878
http://arxiv.org/abs/1401.1276
http://arxiv.org/abs/1401.5448
http://dx.doi.org/10.1103/PhysRevB.84.235126
http://dx.doi.org/ 10.1103/PhysRevLett.108.140405
http://dx.doi.org/ 10.1103/PhysRevLett.108.140405
http://dx.doi.org/ 10.1103/PhysRevB.83.205101
http://arxiv.org/abs/1401.7520
http://dx.doi.org/ 10.1063/1.3149495
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevLett.106.106802
http://dx.doi.org/10.1103/PhysRevLett.106.106802


10

arXiv:1406.4156 (2014).
[81] Emil Prodan and Camelia Prodan, “Topological phonon modes

and their role in dynamic instability of microtubules,” Physical
review letters 103, 248101 (2009).

[82] CL Kane and TC Lubensky, “Topological boundary modes in
isostatic lattices,” Nature Physics (2013).

[83] Bo Zhen, Chia Wei Hsu, Ling Lu, A Doug Stone, and Marin
Soljacic, “Topological nature of bound states in the radiation
continuum,” arXiv:1408.0237 (2014).

[84] Jens Koch, Andrew A Houck, Karyn Le Hur, and SM Girvin,
“Time-reversal-symmetry breaking in circuit-qed-based photon
lattices,” Physical Review A 82, 043811 (2010).

[85] Alán Aspuru-Guzik, Eugene Demler, and Andrew G White,
“observation of topologically protected bound states in pho-
tonic quantum walks,” Nature Communications 3 (2012).

[86] Dirk Jalas, Alexander Petrov, Manfred Eich, Wolfgang Freude,
Shanhui Fan, Zongfu Yu, R Baet, Milos Popovic, Andrea Mel-
loni, John D Joannopoulos, et al., “What is and what is not an
optical isolator,” Nature Photonics 7, 579–582 (2013).

[87] Mikio Nakahara, Geometry, topology, and physics (CRC Press,
2003).

[88] Di Xiao, Ming-Che Chang, and Qian Niu, “Berry phase effects
on electronic properties,” Reviews of modern physics 82, 1959
(2010).

[89] T. Fukui, Y. Hatsugai, and H. Suzuki, “Chern numbers in dis-
cretized brillouin zone: Efficient method of computing (spin)
hall conductances,” Journal of the Physical Society of Japan 74,
1674–1677 (2005).

[90] Shivaramakrishnan Pancharatnam, “Generalized theory of in-
terference, and its applications. part i. coherent pencils,” in Pro-
ceedings of the Indian Academy of Sciences, Section A, Vol. 44
(Indian Academy of Sciences, 1956) pp. 247–262.

[91] Michael V Berry, “Quantal phase factors accompanying adia-
batic changes,” Proceedings of the Royal Society of London.
A. Mathematical and Physical Sciences 392, 45–57 (1984).

[92] Akira Tomita and Raymond Y Chiao, “Observation of berry’s
topological phase by use of an optical fiber,” Physical review
letters 57, 937 (1986).

[93] C. L. Kane and E. J. Mele, “Z2 topological order and the quan-
tum spin hall effect,” Phys. Rev. Lett. 95, 146802 (2005).

http://arxiv.org/abs/1406.4156
http://dx.doi.org/ 10.1103/PhysRevLett.95.146802


11

BOX 1 | TOPOLOGICAL INVARIANT

A closed surface can be smoothly deformed into various geometries without cutting and pasting. The Gauss-Bonnet theo-
rem [87] of Eq. 1, connecting geometry to topology, states that the total Gaussian curvatures (K) of a 2D closed surface is
always an integer. This topological invariant, named genus (g), characterizes the topology of the surface: the number of holes
within. Examples of surfaces of different geni are shown in Fig. 1a.

1
2π

∫
surface

KdA = 2(1 − g) (1)

Illustrated in Fig. B1, a two dimensional Brillouin zone is also a closed surface of the same topology of a torus due to
the periodic boundary conditions. Table B1 lists the definitions [88] of Berry curvature and Berry flux with respect to Bloch
wavefunctions in the Brillouin zone by comparing them to the familiar case of magnetic field and magnetic flux in the real space.
Integrating the Berry curvature over the torus surface yields the topological invariant called “Chern number” that measures the
total quantized Berry flux of the 2D surface. The Chern number can be viewed as the number of monopoles of Berry flux inside a
closed surface, as illustrated in Fig. B1. An efficient way to calculate Chern numbers in discretized Brillouin zones is described
in Ref. [89].

Topological invariants can be arbitrary integers (Z) or binary numbers (Z2, meaning Z mod 2). Chern numbers are integers
(C ∈ Z) and the sum of the Chern numbers over all bands of a given system vanishes.

We note that the geometric phase was first discovered in optics by Pancharatnam [90] prior to the discovery of the Berry
phase [91]. The first experiments demonstrating the Berry phase were done in optical fibers [92].

2D Broullion zone C = 0 C = 1 C = 2 Positive “charge” of Berry fluxC = -1Negative “charge” of Berry flux

kx ky

kz
ky

kx

FIG. B1. Chern number as the number of Berry monopoles in momentum space. A 2D Brillouin zone is topologically equivalent to a
torus. The Chern number (C) can be viewed as the number of monopoles (charges) of Berry flux inside a closed 2D surface. The arrows
represent Berry curvature from the positive and negative charges. In a 3D Brillouin zone, these monopoles are Weyl points.

vector potential A(r) A(k) = 〈u(k)|i∇k|u(k)〉 Berry connection
Aharonov-Bohm phase

∮
A(r) · dl

∮
A(k) · dl Berry phase

magnetic field B(r) = ∇r × A(r) F (k) = ∇k ×A(k) Berry curvature
magnetic flux

!
B(r) · ds

!
F (k) · ds Berry flux

magnetic monopoles # = e
h

�
B(r) · ds C = 1

2π

�
F (k) · ds Chern number

TABLE B1. Comparison of Berry phase of Bloch wavefunctions and the Aharonov-Bohm (A-B) phase. The Berry connection measures
the local change in phase of the wavefunctions in the momentum space, where i∇k is a Hermitian operator. Similar to the vector potential and
A-B phase, Berry connection and Berry phase are gauge dependent [u(k) → eiφ(k)u(k)]. The rest of the quantities are gauge invariant. The
Berry phase is defined only up to multiples of 2π. The phase and flux can be connected through Stokes’ theorem. Here u(k) is the spatially
periodic part of the Bloch function; the inner product of 〈〉 is done in the real space. The one-dimensional Berry phase is also known as the
Zak phase.
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BOX 2 | TIME REVERSAL SYMMETRY

Symmetry considerations are crucial to the determination of the possible topological phases of a system. For example, the
quantum Hall phase requires the breaking of time-reversal symmetry (T ). On the other hand, in the recently discovered 2D
and 3D topological insulators in electronics, T -symmetry is required to protect these topological phases characterized by Z2
topological invariants. For example, the 2D topological insulator, also known as the quantum spin Hall effect [93], allows the
coexistence of counter-propagating spin-polarized gapless edge states. Without T -symmetry however, these edge states can
scatter into each other. The edge energy spectrum opens a gap and the insulator can continuously connect to trivial insulators
like vacuum. A large table of symmetry-protected topological phases have been theoretically classified [70, 71]. These systems
have robust interfacial states that are topologically protected only when the corresponding symmetries are present [72].

Here we point out the fundamental difference in time-reversal symmetry between electrons and photons. A photon is a
neutral non-conserved noninteracting spin-1 Boson satisfying the Maxwell’s equations, while an electron is a charged conserved
interacting spin- 1

2 Fermion satisfying the Schrödinger’s equation. Similar to the Schrödinger’s equation, the lossless Maxwell’s
equations at non-zero frequencies can be written as a generalized Hermitian eigenvalue problem in Eq. 2.

i
(

0 ∇×

−∇× 0

) (
E
H

)
= ω

(
ε χ
χ† µ

) (
E
H

)
, (2)

where ε† = ε, µ† = µ and χ is the bianisotropy term, where † is Hermitian conjugation.

The anti-unitary time T operator is
(

1 0
0 −1

)
K, that squares to unity, where K is complex conjugation (∗). When ε∗ = ε,

µ∗ = µ and χ∗ = −χ∗, the system is T -invariant. Rotating the spin by 2π is the same as applying the T operator twice (T 2). But
T 2 has different eigenvalues for photons (T 2 = +1) and electrons (T 2 = −1). It is this minus sign that ensures the Kramer’s
degeneracies for electrons at T -invariant k points in the Brillouin zone, providing the possibility of gapless connectivity of edge
dispersions in the bulk gap. This fundamental distinction results in different topological classifications of photons and electrons
with respect to T . For example, photons do not have the same topological phases of 2D or 3D topological insulators protected
by T for electrons.
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