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We demonstrate the possibility of achieving enhanced frequency-selective near-field radiative heat

transfer between patterned (photonic-crystal) slabs at designable frequencies and separations, exploiting a

general numerical approach for computing heat transfer in arbitrary geometries and materials based on the

finite-difference time-domain method. Our simulations reveal a tradeoff between selectivity and near-field

enhancement as the slab-slab separation decreases, with the patterned heat transfer eventually reducing to

the unpatterned result multiplied by a fill factor (described by a standard proximity approximation). We

also find that heat transfer can be further enhanced at selective frequencies when the slabs are brought into

a glide-symmetric configuration, a consequence of the degeneracies associated with the nonsymmorphic

symmetry group.
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Radiative transfer of energy from a hot to a cold body is
well known to be enhanced (even exceeding the black-
body limit) when the bodies are brought close enough for
evanescent fields to contribute flux [1–9]. In this Letter, we
demonstrate that near-field radiative transfer can be greatly
modified by using periodically patterned photonic-crystal
(PhC) surfaces, with frequency-selective enhancement that
can be controlled by choosing the geometry (rather than
relying on material or plasmon resonances available only at
long wavelengths [10–12]). Until now, investigations of
near-field transfer in microstructured geometries have been
hampered by the lack of computational modeling tech-
niques, and we employ a new rigorous approach based
on directly simulating Maxwell’s equations in time with
random thermal sources, an extension of the Langevin
approach we previously used to model the emissivity of a
single body [13]. Previously, aside from semianalytical
results for planar structures [11,14,15], formulations have
been developed that in principle handle arbitrary geome-
tries but which thus far have only been evaluated using
Fourier methods specialized only for pairs of spheres and/
or plates [16–21]. Multilayer planar structures are tractable
[22], but (Fabry-Perot) resonant modes created in such
structures are not evanescent in the air gap, unlike leaky
modes in transverse-patterned structures (each of which
has both evanescent and propagating fields in the gap), so
multilayer films do not lend themselves to frequency-
selective near-field enhancement. In the far field, it is
known that more complicated structures such as PhCs
can be designed to resonantly enhance radiative transfer
at desired frequencies [23–25], which is crucial for
applications such as thermophotovoltaic cells in which
only certain frequencies can be efficiently converted to

power [9,25–27]. One would like to obtain similar short-
wavelength (&2 �m [25]) enhancement of near-field
effects, whereas plasmon resonances are too long-
wavelength for such applications. In a simple model sys-
tem consisting of two PhC slabs, thin films with periodic
grooves [Fig. 1 (top)], we show that the resonant leaky
modes created by the periodicity yield orders of magnitude
enhancement in the flux at designable wavelengths even for
moderate separations (100 s of nm to microns for infrared
wavelengths) compared with similar structures in the far
field, starting with weakly absorbing thin slabs that transfer
<1=1000 of the flux between black bodies in the far field.
Furthermore, we show that the selective enhancement can
be almost doubled at selective peaks by using a glide-
symmetric configuration [Fig. 3 (bottom)], due to degen-
eracies resulting from the properties of the nonsymmorphic
symmetry group [28]. Ultimately, there is a tradeoff
between enhancement and frequency selectivity—much
larger enhancement is theoretically attained for nm sepa-
rations [4,5,7–9] where geometric resonances have no
effect, at the cost of frequency selectivity and much more
difficult fabrication—and this Letter offers a first glimpse
of the practical design space that is available to optimize
these considerations.
Given two arbitrary bodies, at temperatures T1 and T2,

their radiative heat transfer Hð!; T1; T2Þ is
Hð!;T1; T2Þ ¼ �ð!Þ½�ð!; T1Þ ��ð!; T2Þ�; (1)

where � is the flux into a single object due to random
(white noise) current sources present in the other object,
and � is the Planck distribution [9]. (Physically, for
linear electromagnetism it is equivalent to using Planck-
distributed thermal fluctuations or to using white-noise
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sources multiplied afterward by �.) Computationally, this
formulation can be expressed directly in terms of a
Langevin model [13], in which white-noise sources are
introduced into the evolution of Maxwell’s equations in a
finite-difference time-domain (FDTD) method. (More
sophisticated approaches for solving this problem exist,
e.g., nonstochastic methods in the frequency domain, but
the sacrifice in efficiency of our FDTD approach is
compensated by its generality and simplicity.) Although
we previously only applied this method to equilibrium
situations [13], the extension to nonequilibrium situations
is straightforward because the statistical independence of
random currents in different objects allows one to calculate
the flux due to thermal sources for one object at a time.
Reciprocity allows one to calculate the flux � from one
body to the other and infer the flux in the other direction, a
fact that is implicit in Eq. (1).

We investigate the proof-of-concept structure shown in
Fig. 1 (top), involving two PhC dielectric slabs (thin films)
of thickness h ¼ 0:2a, separated by a distance d in the x
direction, with z-oriented air grooves of period a and
width t ¼ 0:2a in the x direction. The permittivity of the
slabs is taken to be of the Drude form "ð!Þ ¼ "1 �
�=!ð!þ i�Þ, where "1 ¼ 12:5, � ¼ 0:2533ð2�c=aÞ2,
and � ¼ 1:5915ð2�c=aÞ, approximating a dispersionless

dielectric with Re" � 12:5 and Im" � 1 at wavelengths
comparable to a. The computation of � for this structure
involves introducing uncorrelated white-noise sources into
the damped polarization equation [13] at each position
(pixel) of one of the bodies [red or top slab in Fig. 1
(top)], and integrating the resulting flux spectrum over a
surface surrounding the other slab [blue or bottom slab in
Fig. 1 (top)]. The resulting spectrum is ensemble averaged
over many simulations (� 60) to reduce the noise level in
the spectrum. We employ a periodic unit cell in x with
Bloch-periodic boundaries (phase difference eikxa), trun-
cate the cell in the y direction using standard perfectly
matched layers boundary conditions, and integrate � over
kx. The translation-invariant z direction can similarly be
handled by integrating 2D simulations over kz. We first
consider the purely 2D problem corresponding to kz ¼ 0
and comment on the full 3D problem further below. At the
moderately large separations �a studied here (assuming a
in the microns), the TE modes (H � ẑ ¼ 0) of the structure
exhibit stronger confinement than the TM modes [29], and
end up dominating the heat transfer at all relevant !, and
therefore we only compute the TE contribution.
Figure 1 plots the (TE, kz ¼ 0) modal frequencies!ðkxÞ

of a single (isolated) slab. Modes that lie in the gray region
(above the ! ¼ ckx, light line) are leaky modes [29],
which radiate into the air and therefore contribute to heat
transfer between the slabs in the far field. Modes that
lie below the light line are guided modes [29], which
evanescently decay in air and thus transfer energy only in
the near field.
Figure 2 (top) plots the flux enhancement � ¼ �t;d=

�0;1 as a function of !, where �t;d is the flux spectrum

between PhC slabs of groove width t and separated by
distance d, here normalized by the flux spectrum �0;1 of

the unpatterned slabs (t ¼ 0) in the far field (d ! 1) to
clearly illustrate the effect of finite t and d. (�0;1 is

computed by Kirchoff’s law from the reflectivity in the
far field [4], by transfer-matrix methods.) The �0;1 spec-

trum by itself is nearly flat, so the spectral features in Fig. 2
are not due to the normalization. Note that we are starting
with very weakly absorbing slabs (thin films), i.e., �0;1 is

more than 1000 times smaller than the corresponding
� ¼ 1 of two black bodies.
Radiative heat transfer can be significantly changed by

the periodicity of the slabs [24], as illustrated by the green
(d ¼ 1) curve in Fig. 2 (top), which shows � for PhCs of
groove width t ¼ 0:2a in the far field. �0:2a;1 exhibits

wide-bandwidth peaks, orders of magnitude larger than
�0;1. Not surprisingly, the bandwidths of these peaks

match the bandwidths of the leaky-mode bands in Fig. 1
(bottom), whose integrated contribution over all ky leads to

a smearing of the sharp spectral peaks that occur at the
leaky-mode frequencies for each ky. The sharp drop in �

between the peaks is a consequence of the presence of
pseudogaps between the leaky-mode bands.

π

ω
π

FIG. 1 (color online). Top: Schematic geometry of two PhC
slabs of thickness h ¼ 0:2a, separated by a distance d, with
periodic air grooves of period a and width t ¼ 0:2a. Bottom:
Modal frequencies !ðkxÞ of the TE (H � ẑ ¼ 0), kz ¼ 0 modes
of an isolated slab; note the presence of both leaky (gray region)
and guided modes. Insets: mode profiles at kx ¼ f0; �=ag.
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As the separation decreases, a number of dramatic fea-
tures are observed in Fig. 2 (top), which shows � at three
additional separations (d ¼ 0:2a, d ¼ 0:5a, and d ¼ a).
At d ¼ a, one can observe a dramatic increase in � at low
frequencies. This arises due to the evanescent coupling and
contribution of guided modes to h. This near-field coupling
increases further at smaller d, and additionally (especially
in the d ¼ 0:2a curve) one can see a dip corresponding to
the gap in the guided modes of Fig. 1 (bottom), and sharp
peaks at the edges of the gap (a consequence of van Hove
singularities [29]). There is also an enhancement of � at
small d at the leaky-mode peaks because, in a patterned
slab, leaky modes have an evanescent as well as a radiative
component [29], and the former enhances the coupling at

short distances. As for the guided modes, this evanescent
coupling is further enhanced by the van Hove singularities
of the zero-slope ‘‘slow-light’’ band edges. Also, the leaky
modes split into bonding and antibonding pairs as d
decreases, and a similar splitting is visible in the guided
mode peaks at even smaller d, a phenomenon visible even
more clearly in Fig. 2 (bottom).
A striking phenomenon in the near-field interaction

occurs when one patterned slab is shifted in the x direction
by 0:5a with respect to the other slab, as shown in Fig. 2
(bottom). In this case (plotted here as absolute � on a
linear scale), the bonding-antibonding peaks of the sym-
metric configuration (solid red curve, s ¼ 0) merge at
certain !, and can even add to approximately double the
heat transfer of the unpatterned slab. This arises due to the
glide symmetry of the shifted structure, whose nonsym-
morphic symmetry group supports degeneracies at the
Brillouin zone edge (kx ¼ �=a) [28], causing the corre-
sponding bonding-antibonding mode splittings to disap-
pear. In contrast, the frequency splitting corresponding to
the kx ¼ 0 band edges, e.g., at ! � 0:9ð2�c=aÞ, persists
even for the glide-symmetric structure. Similarly, the
gap in the guided modes of Fig. 1 (bottom), near ! �
0:4ð2�c=aÞ, is greatly modified by the presence of the
other slab in the mirror-symmetric case (red curve,
s ¼ 0) but not in the glide-symmetric case (black curve,
s ¼ 0:5).
Figure 2 (top) also shows the enhancement for unpat-

terned (t ¼ 0) slabs. These also exhibit a striking near-field
enhancement for d < a, but in this case the enhancement is
broadband, because there are no standing-wave leaky-mode
solutions in an unpatterned slab to induce frequency selec-
tivity. In particular, at relatively large separations (e.g.,
d ¼ a), the patterned slab exhibits more than 10 times the
enhancement of the unpatterned slab, due to these resonant
contributions. At d ¼ 0:5a, the unpatterned slab is better
for small! and is worse for larger!, where the latter is due
to the fact that the evanescent interactions become shorter
range at high ! and vanish in the absence of resonant
enhancement. At d ¼ 0:2a, the unpatterned slab has a
larger enhancement over the whole bandwidth shown
here, but lacks frequency selectivity. In general, as d de-
creases, the periodic structure of the PhC slabs ceases to
matter, and the enhancement of the peaks relative to the
overall near-field enhancement is lost. At even smaller d,
not shown here, the interaction between the PhCs can be
described by a proximity approximation in which adjacent
surfaces are treated as parallel plates [5,7–9]multiplied by a
fill factor.
Figure 3 plots the total (integrated) heat transfer Ht;d

as a function of separation d for both patterned (Ht;d,

squares) and unpatterned (H0;d, thin lines) slabs of period

a ¼ 2 �m, at various temperatures T2, and T1 ¼ 300 K.
At T2 ¼ 500 K, dominated by low-! contributions, the
unpatterned slabs yield larger H over almost every d

Φ
 / 

Φ
0

ω π

Φ

ω π

FIG. 2 (color online). Top: Flux enhancement � ¼ �0:2a;d=
�0;1 as a function of ! (units of 2�c=a), where �t;d is the

flux spectrum between PhC slabs of groove width t and separa-
tion d, at various d ¼ 0:2a, 0:5a, a, 1. Solid (dashed) lines
denote � for PhC (unpatterned) slabs. Bottom: Flux spectrum
�0:2a;0:2a [units of @cð2�=aÞ2] for a symmetric (s ¼ 0, red

line) or glide-symmetric (s ¼ 0:5a, black line) slab-slab
configuration.
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(even as d ! 1), which increases for small d due to
near-field enhancement. Moreover, we find that � ¼
Ht;d=H0;d ! 1� t=a ¼ 0:8 as d ! 0, as expected from

the proximity approximation. (For TE modes, H asymp-
totes to a finite value as d ! 0, whereas for TM modes,
whose contributions are negligible at the separations
we consider here, H eventually diverges [9].) At T2 ¼
1000 K, larger ! begin to dominate, and the presence of
PhC peaks [Fig. 2] causes a significant increase inH. In the
(purely radiative) limit d ! 1, the PhC slabs perform
much better than the unpatterned slabs (�� 3), although
the tradeoff between enhancement and selectivity is appar-
ent as there exist a dc � 7 �m below which � < 1 (even-
tually ! 0:8). As expected, dc decreases as T2 increases
due to the increasing role of higher-frequency resonances.
At T2 ¼ 2000 K, we find that � � 5 at larger d, increases
at intermediate d and falls below 1 at dc � 2 �m.

Figure 3 illustrates the advantages of using PhCs at large
and intermediate d, where both selectivity and near-field
effects coexist. However, in many applications, the figure
of merit is not the overall H but the integrated H over a
finite frequency bandwidth. In thermophotovoltaics, heat
transferred from a hot body to a cold semiconductor is
converted to electricity via electronic band gap transitions,
which means that photons of frequency smaller than the
band gap frequency !g (band gap wavelength of a few

microns) are lost in the conversion process [9]. The left
inset of Fig. 3 shows a corresponding ad hoc figure

of merit: the windowed heat transfer Hw ¼ R
d!H

ð!; T1; T2Þnð!Þ between slabs of period a ¼ 1 �m, as a
function of separation d, and at temperatures T1 ¼ 300 K
and T2 ¼ 1500 K. The window function n is similar to the
‘‘quantum efficiency’’ function of a typical semiconductor
of band gap wavelength 2�c=!g ¼ 2:5 �m [9]. The spec-

tra Hð!Þ and nð!Þ are plotted on the right inset of Fig. 3
at d ¼ 2 �m. Noticeably, the presence of high-frequency
peaks in the PhC makes its Hw over an order of magnitude
larger than that of the unpatterned slab for d * 1 �m;
the situation is even more favorable for the PhC because
the low-frequency photons in the unpatterned case are
wasted.
Our calculations of H were restricted to kz ¼ 0 for

computational convenience. However, preliminary calcu-
lations of the kz-integrated Hð!Þ, for a single separation,
reveal no qualitative changes in the spectrum, except for a
slight broadening of the spectral peaks. As noted above, the
geometry of Fig. 1 is in no way optimal and represents only
a proof of concept: we believe that a 2D-periodic geometry
will yield even better performance, an exciting direction
for future numerical studies.
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