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We perform direct thermal emission calculations for three-dimensionally periodic photonic crystal slabs
using stochastic electrodynamics following the Langevin approach, implemented via a finite-difference time-
domain algorithm. We demonstrate that emissivity and absorptivity are equal, by showing that such photonic
crystal systems emit as much radiation as they absorb, for every frequency, up to statistical fluctuations. We
also study the effect of surface termination on absorption and emission spectra from these systems.
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I. INTRODUCTION

The physics of blackbodies has fascinated and intrigued
researchers for well over a century now �1�; properties of
their thermal emission provided one of the most important
clues for the discovery of quantum mechanics. In practice,
most objects have absorption less than that of a blackbody,
and are thus referred to as “graybodies.” By virtue of Kirch-
hoff’s law, these objects also have subunity emissivity. How-
ever, the thermal emission spectra of graybodies can be
changed by altering the geometry of the system or the mate-
rials used.

Very exciting work has been done recently on three-
dimensionally �3D� periodic photonic crystals with photonic
band gaps �2–10� concerning enhancement and suppression
of thermal emission �3,6,7� and thermophotovoltaic applica-
tions �5,8�. Emission and absorption from 2D periodic pho-
tonic crystals have been also studied within the contexts of
spectral and directional control �11–15�, guided resonances
�16�, thermophotovoltaic generation �17�, resonant scattering
�18,19�, laser action �20�, Kirchhoff’s law �21,22�, coherence
�15,23�, and spontaneous emission enhancement �13,24,25�.
It has been noted that periodic subwavelength scale pattern-
ing of metallodielectric systems, i.e., photonic crystals, can
modify their thermal emission spectra in many interesting
ways �10,12,14,17,22,23,25–28�, through various physical
effects such as surface plasmons �13,29�, resonant-cavity en-
hancement �30�, Bragg reflection �31�, and modification of
density of states via photonic band gaps �3,5,8,31�.

In previous work, most calculations for thermal emission
were performed by calculating the absorption and then ap-
pealing to Kirchhoff’s law, which states that absorptivity and
emissivity are equal. This has been shown analytically for a
uniform slab. Luo et al. �22�, following a Langevin approach
to stochastic electrodynamics, performed a direct thermal
emission calculation for a 2D periodic photonic crystal slab
and showed that emissivity was equal to absorptivity �up to
thermal fluctuations�, thus numerically verifying Kirchhoff’s
law for such systems.

In this paper, we extend the work done by Luo et al. to 3D
periodic structures. Using stochastic electrodynamics, we
perform direct simulations of emission spectra for 3D peri-
odic structures. We compare these directly calculated emis-
sion spectra to the absorption spectra of these systems, and

demonstrate that Kirchhoff’s law holds for 3D periodic pho-
tonic crystal slabs. Moreover, we examine the effect of
changing the surface termination of a 3D periodic structure
and suggest how it may be used to enhance absorption and
emission of a photonic crystal. We also give an in-depth and
coherent presentation of the theory of stochastic electrody-
namics, including relevant derivations and detailed explana-
tions of our methodology.

This paper is organized as follows: in Sec. II, we describe
the theory of stochastic electrodynamics, and how it can be
used to perform direct emission calculations. Section III out-
lines the numerical methods and techniques used in this pa-
per. In Sec. IV, we study a 3D periodic woodpile structure,
and show band structure, absorption, and emission calcula-
tions. We do the same in Sec. V for a 3D periodic metallodi-
electric structure. Section VI deals with the effect of surface
termination, and how it can be used to enhance emission in
these photonic crystal slab structures.

II. THEORY

A. Stochastic electrodynamics and the Langevin approach

Maxwell’s equations, as they stand, are classical deter-
ministic field equations. We would like to introduce an ele-
ment of randomness into these field equations, in order to
represent the randomness inherent in thermal fluctuations.
We follow the Langevin approach to Brownian motion by
introducing a random force term into our equations. There
are three ways in which we can proceed: �i� introduce ran-
domness directly in the Newtonian equation of motion, �ii�
add a random term to the displacement field, D, or �iii� add a
random term to the free current density, J. These three ways
of introducing randomness are entirely equivalent, as we will
demonstrate.

The first approach introduces randomness through the ad-
dition of a random term in Newton’s equation of motion.
Modeling charge carriers as damped simple harmonic oscil-
lators driven by an external field E, we can write, for a
deterministic system, r̈+�ṙ+�0

2r=eE /m, where r is the po-
sition of the charge carrier, e its charge, m its mass, � the
damping constant of the system, and �0 the natural resonant
frequency of the system. Converting this to polarization via
P=ner �where n is the density of positive charge�, we have
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d2P

dt2 + �
dP

dt
+ �0

2P = �E , �1�

where ��ne2 /m. We introduce a random term �K� to the
right-hand side following the Langevin approach:

d2P

dt2 + �
dP

dt
+ �0

2P = �E + K�t� . �2�

Substituting in a harmonic ansatz for P gives the following
solution:

P�r,�� =
�E�r,��

�0
2 − �2 − i��

+
K�r,��

�0
2 − �2 − i��

.

Polarization is related to the displacement field via D=E
+4�P. Thus, we see that D consists of an external field E,
the usual nonstochastic polarization-induced component
4��E�r ,�� / ��0

2−�2− i���, and a random component which
we define as

Q�r,�� �
4�K�r,��

�0
2 − �2 − i��

. �3�

Thus, a fluctuating polarization �K� in the Newtonian equa-
tion of motion is equivalent to a random, fluctuating term
�Q� in the displacement field. The fourth Maxwell equation
now becomes

� � H =
4�

c
J +

1

c

�

�t
�D + Q� .

Alternatively, instead of introducing randomness to the dis-
placement field, we could just as easily have added a random
term Jfluc= �1/4����Q /�t� to the free current density J, and
the end result would have been the same. Therefore, we have
shown that approaches �i�, �ii�, and �iii� for introducing ran-
domness into Maxwell’s equations are entirely equivalent.

B. Statistical properties of thermal fluctuations

Let us proceed with the fluctuating displacement field.
The correlation function for Q has to satisfy a fluctuation-
dissipation relation, derived by Rytov �32�:

�Qi�r,��Qj
*�r�,���� =

16�3c2 Im������
�3

�I0��,T��ij������r − r�� , �4�

where Qi for i=1,2 ,3 are the components of Q, �¯ � de-
notes ensemble averaging, c is the speed of light, Im������ is
the imaginary part of the permittivity including the polariza-
tion response in the absence of fluctuations �cf. Eq. �1��, and
I0�� ,T�= �c /4��D���E�� ,T�. In this expression, D���
=�2 /�2c3 is the free-space density of photon states and
E�� ,T�=	� / �exp�	� /kT�−1� is the Bose-Einstein energy
distribution function at absolute temperature T.

We can also calculate the correlation function for Q di-
rectly from Eq. �3�:

�Qi�r,��Qj
*�r�,���� =

�4��2

���0
2 − �2� − i������0

2 − ��2� + i����

��Ki�r,��Kj
*�r�,���� . �5�

The two expressions for the Q correlation function must be
equal. By equating Eqs. �4� and �5�, we can learn something
about the correlation function of K.

Our first step is to find the imaginary part of the dielectric
function. In the absence of fluctuations, the dielectric func-
tion for our system is

���� = 1 + 4�
�P�
�E�

= 1 +
4��

�0
2 − �2 − i��

.

Therefore, the imaginary part is

Im������ =
4����

��0
2 − �2�2 + �2�2 . �6�

Combining Eqs. �4�–�6�, gives

�Ki�r,��Kj
*�r�,���� =

4�2c2��

�2 I0��,T��ij������r − r�� .

�7�

This expression for the K correlation function gives us infor-
mation about the distribution of the Langevin noise term.
However, since finite difference numerical simulations re-
quire the discretization of space, for our calculations, it will
be necessary to convert the Dirac delta function in r to a
Kronecker delta.

The delta function ��r−r�� can be defined as follows:

f�r� = 	
V

f�r����r − r��d3r�

for any function f�r� over some volume V. We can discretize
the above definition by approximating the integral by a dis-
crete summation:

f�r� = 

V

f�r��
�rr�


V

V ,

where 
V is the volume element used in the simulation.
Therefore, we can go from the continuous to the discrete
limit by making the replacement ��r−r��→�rr� /
V. Mak-
ing this substitution in Eq. �7� gives us the discretized ver-
sion �where we have set r�=r�:

�Ki�r,��Kj
*�r,���� =

4�2���ij����


V

I0��,T�
��/c�2 . �8�

Note that in the high temperature limit, where 	��kT, the
Bose-Einstein energy density function 	� / �exp�	� /kT�
−1��kT, and so I0�� ,T���2. This exactly cancels out the
frequency dependence on the right-hand side of Eq. �8�, lead-
ing to a white-noise spectrum in K. However, we will find in
the next section that emissivity can be simulated by a white-
noise spectrum for all frequencies.

CHAN, SOLJAČIĆ, AND JOANNOPOULOS PHYSICAL REVIEW E 74, 036615 �2006�

036615-2



C. Calculation of emissivity

To calculate emissivity, the target thermal emission inten-
sity needs to be normalized by that of the free-space Planck
radiation. The linearity of the system ensures that this nor-
malization procedure amounts to dividing the right-hand side
of Eq. �8� by the blackbody radiation collected within an
element of a solid angle. It can be shown that �33� the Planck
radiation emitted into an element of solid angle d� is
I0�� ,T�cos  d�.

However, in finite-difference time-domain calculations of
photonic crystal systems implementing Bloch-periodic
boundary conditions in the xz and yz faces, directions are
specified using wave vectors kx and ky instead of polar and
azimuthal angles  and �. Thus, the calculable quantity is
�Ki�r ,��Kj�

*�r ,����dkxdky for emission into a wave vector
range �kx ,kx+dkx� and �ky ,ky +dky�. It is straightforward
to calculate the Jacobian to convert from angles to
wave vector components: dkxdky = �� /c�2sin  cos d d�
= �� /c�2cos  d�. The Planck intensity of emission into d�
is therefore

I0��,T�cos d� = I0��,T�
dkxdky

��/c�2 . �9�

Thus, the normalization factor is I0�� ,T� / �� /c�2. Dividing
Eq. �8� by this factor gives the emissivity spectrum for a
given �kx ,ky�:

�Ki��r,��Kj�
*�r,���� =

4�2C�2���ij����


V
, �10�

where K��r ,���C�K�r ,���� /c�2 / I0�� ,T�, and we are
considering emission into an element of a wave vector speci-
fied by dkxdky. C� is a dimension-correcting factor that de-
pends only on the discretization details of the system. It con-
verts a fluctuation in polarization to a fluctuation in
emissivity. Fourier-transforming back to the time domain
gives

�Ki��r,t�Kj�
*�r,t��� =

1

N2 

���

�Ki��r,��Kj�
*�r,���e−i�t+i��t��

=
4�2C�2

N
V
���ij�tt� �11�

with N being the number of time steps used in the Fourier
transform. Thus, we can simulate emissivity by producing a
time series of random drawings from a distribution with vari-
ance ��Ki��r , t��2�. Since this is the only physical constraint on
the distribution of K, we are free to choose a simple and
tractable distribution for our simulations. We choose a uni-
form distribution:

w�Ki�� = �1/Ks if �Ki�� � Ks/2

0 if �Ki�� � Ks/2
� �12�

such that Ks
2=C��, with C=48�2C�2 / �N
V� being a

discretization-specific constant. Since Kirchhoff’s law has
been proven analytically for a 1D uniform slab, we perform
calibration runs on a uniform slab for both emission and

absorption in order to obtain the calibration constant. We
then use the same constant �which is discretization-specific�
to convert emitted “flux” to emissivity for the case of the
photonic crystal slab. Thus, we can calculate emissivity for a
photonic crystal at all temperatures.

D. Limitations of the method

The approach we have outlined so far is able, as far as
thermal fluctuations are concerned, to reproduce the wave
nature of light, but not its particle nature.

From statistical mechanics �33�, we know that the ex-
pected number of photons occupying a particular mode j is
given by the Bose-Einstein distribution:

�nj� =
1

e��j − 1
,

where �nj� is the mean occupation number of state j, �
=1/kT, where T is the temperature and k is Boltzmann’s
constant, and � j is the energy associated with the jth state.

The mean square deviation of the photon occupation num-
ber from this mean is given by �33�

�
nj
2� =

1

�

��nj�
�� j

= �nj� + �nj�2. �13�

Thus, we see that

�
nj
2�

�nj�2 = 1 +
1

�nj�
. �14�

For a general particle in the Maxwell-Boltzmann limit,
−� /kT�1 and so the Bose-Einstein distribution can be ap-
proximated by e���−�j�. Plugging this into Eq. �13� gives

�
nj
2�

�nj
2�2 =

1

�nj�
.

Therefore, we can think of the 1/ �nj� term as arising from
the particle nature of light �because in the Maxwell-
Boltzmann limit, these photons do behave more like particles
than waves�. Consequently, by deduction, the 1 term in Eq.
�14� accounts for the wave nature of light. This term domi-
nates in the limit of kT�� j.

Luo et al. �22� performed a statistical analysis on their
ensemble data and found that �
I�� ,T�2�= �I�� ,T��. Thus,
the stochastic electrodynamics that we have described so far
reproduce the wave nature of light correctly. We can convert
the fluctuations we see in our simulations to the real physical
fluctuations by observing that �
nj

2� / �nj�2=exp�	� /kT� for
physical fluctuations, and then scaling the observed fluctua-
tions by the factor exp�	� /2kT�. Therefore, �
I�� ,T�2�
=exp�	� /2kT��I�� ,T��.

III. DESCRIPTION OF NUMERICAL METHODS

Numerical simulations in our work are performed using a
finite-difference time-domain �FDTD� algorithm �34�. These
are exact �apart from discretization� 3D solutions of Max-
well’s equations, including material dispersion and absorp-
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tion. Equations �1� and �2� can be discretized in the standard
way by writing d2P�r , t� /dt2��P�r , t+�t�−2P�r , t�+P�r , t
−�t�� /�t2 and dP�r , t� /dt��P�r , t+�t�−P�r , t−�t�� / �2�t�.

For 2D calculations, we choose a computational cell with
dimensions 40�2�640 grid points, corresponding to 40
grid points per lattice constant a. The faces of the cell normal
to the x and y axes are chosen to have periodic boundary
conditions, while the faces normal to the z axis �i.e., the top
and bottom ones� have perfectly matched layers �PML� to
prevent reflection. This is a 2D simulation of a 2D periodic
system. The slab is placed in the middle of the cell, and flux
planes are placed on either side of it at least 4a away. We run
the simulation for a total of 81 600 time steps, chosen to give
a frequency resolution of 0.001c /a.

For 3D calculations, we choose a computational cell with
dimensions 30�30�420 grid points, corresponding to 30
grid points per lattice constant a. The faces of the cell normal
to the x and y axes are chosen to have periodic boundary
conditions, while the faces normal to the z axis �i.e., the top
and bottom ones� have PML boundary conditions. The slab
is placed one-third of the way down the cell, and flux planes

are placed on either side of it at least 3a away. We run the
simulation for a total of 60 000 time steps, also chosen to be
sufficiently large to give a frequency resolution of 0.001c /a.

For absorbance calculations, we illuminate the photonic
crystal �PhC� slab with a normally incident, temporally
Gaussian pulse. We record the fields going through flux
planes on either side of the slab and perform a discrete Fou-
rier transform on the time series of fields, which we use to
calculate fluxes as functions of frequency ������. We run the
simulation once with the slab in place, and again with
vacuum only. We record the fields going through flux planes
on either side of the slab and perform a discrete Fourier
transform on the time series of fields, which we use to cal-
culate fluxes as functions of frequency, ����
= 1

2Re�� ·E*�r ,�� ·H�r ,�� ·dS�. We run the simulation once
with the slab in place, and again with vacuum only. To cal-
culate reflectance, we know that Eslab=Evac+Eref is true
above the slab �i.e., between the source and the slab�, with
Eref being the field due to reflection. The reflectance is given
by

R��� �
�ref

�vac
=

− 1
2 Re�	

A1

�Eslab�r,�� − Evac�r,���* � �Hslab�r,�� − Hvac�r,��� · dS�
1
2 Re�	

A1

Evac
* �r,�� � Hvac�r,�� · dS� ,

where A1 is the flux plane corresponding to “1,” and the
minus sign in the numerator is there to make the reflected
flux positive. This expression can be shown to simplify,
in air, to R���= ��1

vac���−�1
slab���� /�1

vac���, where the
flux plane closer to the light source is 1, and the flux plane
further from the light source is 2. �One can show that the
numerator becomes �1

vac���−�1
slab���+ 1

2Re��A1
�Evac

* �Href

−Hvac�Eref
* � ·dS� but the cross term vanishes for incoming

and outgoing plane waves in vacuum, for which E and H are
proportional.� Similarly, the transmittance is given by T���
=�2

slab��� /�2
vac��� and the absorbance is simply A���=1

−R���−T���. This way, we obtain reflectance, transmit-
tance, and absorbance spectra for PhC slabs.

We incorporate absorption into our simulations by means
of the Drude model, according to the following equation:

���� = �� +
4��

��0
2 − �2 − i���

, �15�

where ��, �, �0, and � are input parameters. In our case, we
are concerned with metals, for which �0=0.

For emittance calculations, we use the same setup except
that we do not have a source plane. We include the random
term �K� in our updating of the polarization �see Eq. �2��,
and we monitor the fluxes passing through the same two flux

planes. We repeat this many times, and then perform an av-
erage of the fluxes. Averaging reduces the size of the fluc-
tuations. The averaged fluxes are then multiplied by the same
constant conversion factor that exists between the absor-
bance and the fluxes in the case of the 1D uniform slab, for
which emittance and absorbance are known to be equal, ana-
lytically.

A note about time averaging and ensemble averaging is
appropriate here. According to the ergodic theorem, time av-
erages and ensemble averages are equivalent in the limit of
long time and large ensemble. However, when a discrete
Fourier transform �DFT� is involved, the situation is some-
what subtle. In the FDTD algorithm that we use, the simula-
tion is run for a discrete number of time steps N, after which
a DFT is taken over the time series of fields E�t� and H�t�,
producing fields as functions of frequency E��� and H���.
The frequency resolution �
�� of the resulting DFT-
produced spectrum is inversely proportional to the number of
time steps for which the simulation is run: 
��1/N. Thus,
the net effect of increasing the length of the run is to increase
the frequency resolution of the spectrum. However, the time
series of fields �and therefore its true, continuous Fourier
transform� follows a stochastic process, which consists, in
general, of a background drift combined with random fluc-
tuations �distributed according to the probability density
function in Eq. �12��. It is well known that stochastic pro-
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cesses, while continuous, are not differentiable anywhere,
i.e., they are infinitely “wiggly.” This means that as we in-
crease N and thus frequency resolution, all we are doing is
resolving the fluctuations at a finer and finer level of detail,
i.e., increasing N does nothing to reduce the magnitude of the
fluctuations. On the other hand, performing a larger number
of such runs and then taking the ensemble average does re-
duce the magnitude of those fluctuations, and we get much
better convergence. Therefore, it is only necessary to make N
large enough to achieve a desired frequency resolution. Once
that resolution is reached, computational power is better
spent performing more ensemble runs. We see this quite
clearly in Figs. 2 and 4, both of which are averaged over an
ensemble of 40 runs. Runs in Fig. 2 are ten times as long as
runs in Fig. 4. Note that the magnitudes of the fluctuations
are comparable in the two figures, but the stochastic process
is resolved at a much finer level of detail in Fig. 2, due to the
higher frequency resolution that accompanies longer run
times.

IV. 3D PERIODIC WOODPILE STRUCTURE

The first 3D periodic structure we consider is the wood-
pile �35�. Pioneering work on thermal emission and the na-
ture of the band gap for this structure was done by Lin et al.
�2–6,8�. We choose this particular structure because of the
absence of linear bands at frequencies close to zero and the
existence of a cutoff at 0.4c /a �there is a band gap in range
0–0.4c /a�. As a result, the structure behaves like a metal at
low frequencies, with �p�0.4c /a.

The structure is made of metal rods with square cross
sections of width 0.25a arranged so that the rods are orthogo-
nal to each other in adjacent layers. These layers follow an
ABCD pattern, such that C is the same as A shifted by half a
lattice constant, and the same is true for D and B �B is the
same as A rotated by 90°�. It turns out that such a structure

can be described by a body-centered cubic lattice whose ba-
sis consists of two rods, one on top of the other, forming a
“plus” pattern. �One can also describe it as a stretched face-
centered cubic lattice with a “cross” for a basis, but the ratio
of the z length to the x or y length of the unit cell would be
different, leading to an effectively orthorhombic lattice.�

In a general 3D periodic system, there are no mirror
planes of symmetry that would allow us to separate the
modes into TM and TE modes. This means that it is not
possible, in general, to excite perpendicular and transverse
polarizations separately; the different polarizations are
coupled together. Therefore, it is necessary to use all three
directions �x, y, and z� for polarizations in our simulations:
all three must also be turned on for absorbance and for emit-
tance calculations.

Figure 1 shows the band structure for a 3D periodic
woodpile structure of perfect metal rods of width 0.25a and
square cross section. We plot the bands from �-X and �-Z,
since the Z direction is distinct from the X direction as a
result of the basis of rods �though in the body-centered cubic
lattice, they are equivalent directions�. We see that there is a
photonic band gap in the region 0–0.42c /a. Above 0.42c /a,
there are bands which permit propagation of light through
the photonic crystal. The upper limit of the band gap is de-
termined by the frequency of the first band at �, since that is
the frequency of the lowest energy propagating mode in this
metallic woodpile system.

In Fig. 2, we see a comparison between emissivity and

Γ

Γ

FIG. 1. �Color� Band structure for a 3D periodic woodpile struc-
ture made of perfect metal rods with a square cross section of width
0.25a. We show bands along �-X and �-Z. The resolution is 30 grid
points per a. We consider modes with all polarizations. We notice a
large band gap in the system where light is forbidden from propa-
gating, specifically from 0 to 0.42c /a.

FIG. 2. �Color� Comparison between absorption and thermal
emission �averaged over 40 runs� from a slab of 3D periodic wood-
pile made of metal rods, at normal incidence. We use a long com-
putational cell with two unit cells of the woodpile structure in the z
direction. For the metal, we use the Drude model with parameters
��=1, �=0.3�2�c /a�, 4��=10�4�2c2 /a2�. The frequency resolu-
tion is 0.001c /a. We see good agreement between the emissivity
�green and blue solid lines� and the absorptivity �black and red
dashed lines�. We note also that the emission of the woodpile struc-
ture exceeds that of a uniform slab at all frequencies. The greatest
enhancement comes from the nongapped region above 0.4c /a,
where the enhancement can be as high as a factor of 4. Translucent
yellow shading indicates regions of pseudogap for such a woodpile
slab structure made of imperfect metal rods, inferred from the ab-
sorption and/or emission spectrum.
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absorptivity of the 3D periodic woodpile structure as a func-
tion of frequency. The jagged lines �green and blue� corre-
spond to emissivity, while the dashed lines �black and red�
correspond to absorptivity. We show absorptivity and emis-
sivity spectra for both the woodpile and the uniform slab.
The agreement is excellent. Furthermore, we note that the
emissivity of the woodpile structure exceeds that of the uni-
form slab at all frequencies, but especially at frequencies
above the photonic band gap of the system. �We indicate the
pseudogap for the metallic woodpile slab with a translucent
yellow color.�

These observations can be explained by considering the
structure as being equivalent to a uniform metal slab, with a
plasmon frequency ��p�4��� equal to the upper bound of
the band gap. In such a situation, we can derive expressions
for the absorbance of the slab in two regimes: �����p
and �����p. This we do by calculating the reflectance
using R= ��n−1�2+k2� / ��n+1�2+k2�, where n and k are the
real and imaginary parts of the refractive index, defined by
�= �n+ ik�2, and � is the Drude dielectric function. Once we
have the reflectance, we can obtain the absorbance by A=1
−R. There is no transmission because the thickness of the
slab is much greater than the penetration depth of the struc-
ture. If we perform this calculation for A in the low fre-
quency regime, such that �����p, we find that A
�8�� /�p. This explains the square-root dependence on
frequency at extremely low frequencies. For the intermediate
frequency regime, described by �����p, we find that A
�2� /�p, which is independent of frequency. This explains
the “plateau” region of the absorption spectrum, where fre-
quency dependence is almost flat. Finally, we note that the
effective penetration depth of the photonic crystal slab is
larger than that of the uniform metal slab, because the pho-
tonic crystal contains both metal and air while the uniform
slab contains only metal. A larger penetration depth corre-

sponds to a smaller effective �p �since penetration depth
goes as 1/�p�. Therefore, we expect a larger absorbance for
the photonic crystal slab than the uniform metal slab in both
the low and intermediate frequency regimes, and this is in-
deed what we observe.

Above the band gap, the photonic crystal has bands which
allow light to propagate through the bulk of the structure.
Now, light emitted from deep inside the structure can escape
and contribute to the emissivity of the crystal. This explains
the significant enhancement of emission over that from a
uniform slab at frequencies above that of the pseudogap re-
gion. The emissivity of a uniform slab is limited to contribu-
tions from within about one penetration depth of the surface
of the metal; light emitted from the bulk cannot escape be-
cause there are no propagating modes available to transport
the light to the surface. Emissive contributions from the bulk
of the structure are the reason that the emissivity from the
nongapped region of a photonic crystal slab is significantly
higher than that from a uniform metal slab.

V. 3D PERIODIC METALLODIELECTRIC STRUCTURE

The next structure we consider is a 3D periodic metall-
odielectric structure made of metal spheres embedded in a

Γ

FIG. 3. �Color� Band structure for a 3D periodic metallodielec-
tric structure made of perfect metal spheres of radius 0.177a in a
background of Teflon ��=2.1�. We show bands along �-X and �
-L. The resolution is 32 grid points per a. We consider modes with
all polarizations. We note a complete band gap in the system where
light is forbidden from propagating, specifically from 0.54c /a to
0.63c /a.

FIG. 4. �Color� Comparison between absorption and thermal
emission �averaged over 40 runs� from a slab of 3D periodic met-
allodielectric structure made of metal spheres in a Teflon back-
ground, at normal incidence. We use a long computational cell with
two unit cells of the metallodielectric structure in the z direction.
For the metal, we used the Drude model with parameters ��=1, �
=0.3�2�c /a�, 4��=10�4�2c2 /a2�. Here, we use a lower frequency
resolution of 0.01c /a in order to decrease the duration of each run.
We see good agreement between the emissivity �green and blue
solid lines� and the absorptivity �black and red dashed lines�. We
notice also that the emission of the metallodielectric structure ex-
ceeds that of a uniform slab at all frequencies above 0.1c /a. The
greatest enhancement comes from the nongapped region around
0.8c /a, where the enhancement can be as high as a factor of 6. Note
that the emissivity in that region is close to unity. Note also that the
decreased run time leads to lower frequency resolution, as evi-
denced by the smoother spectrum. However, the size of the fluctua-
tions remains unchanged �compare with Fig. 2�, since is determined
by the number of runs used in ensemble averaging.
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Teflon background ��=2.1�, as studied by Fan, Villeneuve,
and Joannopoulos �36�. In direct contrast to the woodpile
structure investigated in the previous section, this metallodi-
electric structure does have linear bands at low frequencies.
While the woodpile exhibited metallic behavior at low fre-
quencies, here we expect to see uniform dielectric behavior
in that same frequency range. Whereas the woodpile struc-
ture had a band gap from 0 to 0.42c /a, the metallodielectric
structure has propagating bands for all frequencies except for
a small gap from 0.54c /a to 0.63c /a. We will see dramatic
differences between the emissivity of this structure and that
of the woodpile.

The band structure of this metallodielectric structure is
shown in Fig. 3. The metal spheres have radius 0.177a
�where a is the lattice constant� and are arranged in a dia-
mond structure. We show the bands from �-X and �-L, be-
cause the size of the band gap is determined by the frequen-
cies of modes at these points in the Brillouin zone. The
structure has a complete band gap between 0.54 and 0.63c /a.

Figure 4 shows the results of comparing the absorptivity
spectrum with the emissivity, calculated for a slab of the 3D
periodic metallodielectric structure using stochastic electro-
dynamics. Once again, there is good agreement between
emissivity and absorptivity. This time, we used a lower fre-
quency resolution �
�=0.01c /a� in order to reduce compu-
tation time. It is clear that the emission spectra are smoother
here than in Fig. 2, but note that the size of the emissivity
fluctuations �vertical fluctuations on the graph� are compa-

rable to those in Fig. 2. This is because in both Figs. 2 and 4,
the emissivity spectra were averaged over 40 runs, and, as
we have already observed, the only way to reduce the size of
the thermal fluctuations and increase convergence is to aver-
age over a larger ensemble of runs.

We note that for a large range of frequencies �
�0.4–1.0c /a� the emissivity of the photonic crystal far ex-
ceeds that of the uniform metal slab. This we already ex-
plained in the previous section in terms of emissive contri-
butions from the bulk of the photonic crystal being allowed
to escape because of the existence of propagating bands at
those frequencies. The gapped region in this structure is so
narrow �0.54–0.63c /a� that the dip in emissivity one would
expect to see in that region is not noticeable. What is inter-
esting is that for frequencies below 0.1c /a, the emissivity of
the photonic crystal is actually lower than that of the uniform
slab. This requires some explanation.

At low frequencies, the photonic crystal behaves effec-
tively like a uniform dielectric. We can see this from the
band structure, which shows roughly linear bands in the re-
gion 0–0.4c /a. Such uniform dielectric behavior can be
modeled by the Drude dielectric function with an oscillator
frequency that is much higher than the frequency regime we
are interested in, i.e., we are working in the low-loss, dielec-
triclike regime given by �����0. In this regime, the
imaginary part of the dielectric function �see Eq. �6��, which
is given by Im���=4���� / ���0

2−�2�2+�2�2�, is approxi-
mately linear in �. The ac conductivity of the structure is

FIG. 5. �Color� Absorbance and/or emittance spectrum for a woodpile PhC slab made of imperfect metal rods for five different surface
terminations. Light polarized along x is normally incident from the top of the cell. We use a long computational cell with two unit cells of
the woodpile structure in the z direction. For the metal, we used the Drude model with parameters ��=1, �=0.3�2�c /a�, 4��
=10�4�2c2 /a2�. The inset is a schematic �lengths not to scale� indicating the surface terminations chosen. For all calculations, we keep the
thickness of the slab to about two unit cells, so changing the surface termination amounts to shifting the structure within a two-unit-cell-thick
slab “mask” which remains stationary as the structure is shifted, such that the total amount of material is kept constant. For instance, for ST0
the structure used is that between the two black lines, while for ST6, it is what lies between the two blue lines. ST7 appears to have the
highest absorption and/or emission at all frequencies.
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given by ��0 Im���, which goes as �2. Thus, the absorbance
of the system, which is proportional to the integral of the ac
conductivity over the volume of the structure, scales as �2 in
the low frequency regime. This is precisely what we see in
Fig. 4, and explains why the emissivity of the photonic crys-
tal slab is lower than that for a uniform metal slab for �
→0.

As Figs. 2 and 4 demonstrate, we have successfully veri-
fied Kirchhoff’s law numerically for two very different 3D
periodic photonic crystal structures.

VI. EFFECT OF SURFACE TERMINATION

One may wonder whether details of the absorption and
emission spectra of a structure are affected by the surface
termination one chooses. By surface termination, we refer to
the plane in the periodic structure at which we terminate the
PhC slab. Our choice of this termination may well have an
effect on the surface modes that can be excited by incident
light. The absorption-reflection-transmission caused by the
bulk of the structure remain unchanged, because we keep the
same thickness of the bulk structure in the PhC slab. We can
imagine a window as wide as the thickness of the slab, mov-
ing downwards in the z direction across such a periodic
structure of infinite extent; as the window moves, it reveals a
slab of material with a different surface termination.

Figure 5 shows how absorbance and/or emittance of
x-polarized light changes with surface termination in the case
of the 3D periodic woodpile slab structure. We indicate in the
inset the different ways in which the slab structure can be
“terminated.” The number following the letters “ST” indicate
the position of the surface termination plane in relation to the
structure. For example, ST2 is halfway down the first layer
of blocks, and ST7 is three-quarters of the way down the
second layer of blocks. It is remarkable how big a difference
in absorption and/or emission can arise as a result of chang-
ing the surface termination. For example, ST7 seems to lead
to the highest absorbance at all frequencies investigated,
whereas ST4 has lower absorbance than almost all the other
terminations.

In the band gap region �0–0.4c /a�, the light incident from
the top of the cell is only able to penetrate the top surface; it
is forbidden from propagating through the bulk of the crys-
tal. Effectively, the incident light sees only the top surface,
and any absorption and/or emission in the structure takes
place near that surface. Thus, the absorption and/or emission
spectra within the band gap are more sensitive to surface
termination than that lying above the gap, for which absorp-
tion and emission are dominated by the bulk of the structure.
This explains why the curves are more distinct in the band
gap region than above it.

We notice also that above the band gap, the red and blue
curves overlap significantly, as do the black and green
curves. This requires some explanation.

We see from the schematic in Fig. 5 that the red and blue
�ST2 and ST6� terminations are very similar, the only differ-
ence being that the blue structure is the same as the red
structure rotated by 90° about the z axis. In fact, such a
rotation maps the red onto the blue, and vice versa. In terms

of surface terminations, they are the same: the termination
that red has at the top of the slab is what blue has at the
bottom, so that what the red structure emits from the top
surface is what the blue structure emits from the bottom sur-
face. Thus, we expect to see very similar absorbance and/or
emittance spectra for the red and blue structures above the
gap, and this is indeed what we see: the red and blue curves
overlap significantly at frequencies above 0.5c /a. The small
differences comes from the fact that in the absorption calcu-
lation in Fig. 5, the light is incident from the top; this means
that the top surface has a greater contribution to absorption
than the bottom surface �even though both surfaces contrib-
ute because the bulk is transmitting above the gap�, and
causes the spectra to be polarization-sensitive, since the top
surfaces of the red and blue structures are different.

At first glance, one may be tempted to think that the black
and green �ST0 and ST4� terminations are related to each
other in the same way. However, that is not the case: a 90°
rotation will not map the black structure onto the green struc-
ture. Thus, as far as x-polarized light is concerned, they are
irreducibly different surface terminations, in that one is or-
thogonal to the other. The curves show this clearly: the black
and green curves are quite close together, but not as close
together as the red and blue curves. And once again, the
difference is most pronounced in the band gap region, where
surface contributions dominate.

This information can be very useful in tailoring thermal
emission properties of such woodpile slab structures, and
more generally, photonic crystal slabs. By choosing a favor-
able surface termination, we can get over 20% enhancement
in absorption and/or emission in certain frequency ranges
over a randomly chosen surface termination.

VII. CONCLUSION

We outlined in detail the theory and implementation of
stochastic electrodynamics following the Langevin approach
and performed direct calculations of thermal emission for 3D
periodic photonic crystal slabs via an FDTD algorithm. We
demonstrated that emissivity and absorptivity are equal for a
3D periodic woodpile structure and a 3D periodic metallodi-
electric structure, by showing that such photonic crystal sys-
tems emit as much radiation as they absorb, for every fre-
quency, up to statistical fluctuations. We also studied the
effect of surface termination on absorption and emission
spectra from these systems, and found that subtle changes in
surface termination can have significant effects on emissiv-
ity. In terms of applications, the stochastic electrodynamic
framework described in this work has many potential uses,
including direct calculations of thermal emission in nonequi-
librium systems, and systems with short thermalization
times. One can also use this methodology to verify Kirch-
hoff’s law numerically for finite-sized �nonslab� thermal ob-
jects. The results on surface termination can be used to en-
hance thermal emission for many such photonic crystal
systems.
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