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Abstract: We present a useful framework within which we can un-
derstand some of the physical phenomena that drive thermal emission in
2D-periodic metallic photonic crystal slabs, emphasizingphenomenology
and physical intuition. Through detailed numerical calculations for these
systems, we find that periodicity plays a key role in determining the types
of physical phenomena that can be excited. We identify two structures
as good candidates for thermal design, and conclude with a discussion
of how the emissive properties of these systems can be tailored to our needs.
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1. Introduction

A blackbody is defined as an object of perfect absorption. Itsentropy is maximized, and
in that sense it exemplifies utter disorder. The physics of blackbodies has both fascinated
and intrigued scientists for well over a century now [1]. In practice, most objects have only
finite absorption, and are thus referred to as ‘graybodies’.However, graybodies are of in-
terest because their thermal emission spectra can be changed by altering the geometry of
the system or the materials used. The ability to modify or tailor the thermal emission pro-
file of an object is of great importance and interest in many areas of applied physics and
engineering. It has been noted that periodic sub-wavelength scale patterning of metallo-
dielectric systems, i.e. photonic crystals, can modify their emission spectra in interesting
ways [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Thermal radiation from 2D-
periodic photonic crystals has been studied within the contexts of spectral and directional con-
trol [19, 8, 20, 21, 22], guided resonances [23], thermophotovoltaic generation [13], resonant
scattering [24, 25], laser action [26], Kirchhoff’s law [15], coherence [9, 22], and spontaneous
emission enhancement [5, 7, 20].

In this article, we focus on some of the most important physical phenomena that give rise
to many of the features observed in thermal emission spectraof 2D-periodic metallic photonic
crystal slabs, with the intention of developing physical intuition and understanding of features
of emission spectra. We demonstrate through detailed numerical studies the key role played by
periodicity in determining the types of physical phenomenathat can be thermally excited in 2D-
periodic metallic photonic crystals. We develop understanding and physical insight using two
illustrative examples, before applying them to hybrid structures. Such structures exhibit strong
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thermal emission peaks which can be used as building blocks in thermal design. We show how
one can tailor the emissive properties of these structures to one’s design needs by changing two
simple physical parameters.

2. Description of numerical methods

Kirchhoff’s law states that for an object in thermal equilibrium with the surrounding radiation
field, its absorptivity and emissivity are equal, for every frequency, direction, and polarization.
Thus, to study thermal emission of an object, we need simply calculate its absorptivity spec-
trum, knowing that the object’s absorptivity and emissivity spectra are identical. Moreover, for
the purposes of developing an intuitive understanding of the physics behind thermal emission,
it is often more helpful to think in terms of absorption rather than emission, and it is on this
basis that we will proceed.

Fig. 1. Schematic illustrating the geometry of a typical system. Thex- andy-axes are de-
fined in the plane of the slab, with thez-direction coming out of the slab. We study the
thermal radiation being emitted in the perpendicular direction.

Figure 1 is a schematic illustrating the geometry of a typical system under investigation. It
is important to note that because of the mirror symmetry of the system in a plane perpendic-
ular to x and y, the modes of the system can be separated into transverse electric (TE) and
transverse magnetic (TM) modes with respect to the mirror plane. As a result of this symme-
try, x-polarized modes do not mix withy-polarized modes. Thus, we can analyze these two
polarizations completely separately, and this is what we doin all our calculations.

Numerical simulations in our work are performed using a finite-difference time-domain
(FDTD) algorithm [27]. These are exact (apart from discretization) 3D solutions of Maxwell’s
equations, including material dispersion and absorption.We choose a computational cell with
dimensions 40×40×240 grid points, corresponding to 40 grid points per latticeconstanta.
The faces of the cell normal to thex andy axes are chosen to have periodic boundary conditions,
while the faces normal to thez-axis (i.e. the top and bottom ones) have perfectly matched layers
(PML) to prevent reflection. In other words, this is a 3D simulation of a 2D-periodic system. The
PhC slab is in the middle, and flux planes are placed on either side of it at least 2a away. We run
the simulation for a total of 40,000 time steps, chosen to be sufficiently large to allow resolution
of peaks with quality factors (Q) up to 250. We illuminate the photonic crystal slab with a nor-
mally incident, temporally Gaussian pulse. We record the fields going through flux planes on ei-
ther side of the slab and perform a discrete Fourier-transform on the time-series of fields, which
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we use to calculate fluxes as functions of frequency,Φ(ω) = 1
2Re{∫ E∗(r ,ω)×H(r ,ω) ·dS}.

We run the simulation once with the slab in place, and again with vacuum only, such that
Eslab = Evac +Ere f , with Ere f being the field due to reflection. The reflectance is given by

R(ω) ≡ Φre f

Φvac
=

−1
2Re{∫

A1
[Eslab(r ,ω)−Evac(r ,ω)]∗× [Hslab(r ,ω)−Hvac(r ,ω)] ·dS}

1
2Re{∫

A1
E∗

vac(r ,ω)×Hvac(r ,ω) ·dS}
(1)

whereA1 is the flux plane corresponding to ‘1’, and the minus sign in the numerator is there
to make the reflected flux positive. This expression can be shown to simplify to R(ω) =
[Φvac

1 (ω)−Φslab
1 (ω)]/Φvac

1 (ω) where the flux plane closer to the light source is ‘1’, and the
flux plane further from the light source is ‘2’. (One can show that the numerator becomes
Φvac

1 (ω)−Φslab
1 (ω) + 1

2Re{∫
A1

(E∗
vac ×Hre f −Hvac ×E∗

re f ) · dS} but the cross term vanishes
for incoming and outgoing plane waves in vacuum, for whichE andH are proportional.) Sim-
ilarly, the transmittance is given byT (ω) = Φslab

2 (ω)/Φvac
2 (ω) and the absorbance is simply

A(ω) = 1−R(ω)−T (ω). This way, we obtain reflectance, transmittance and absorbance spec-
tra for PhC slabs. We incorporate absorption into our simulations by means of the Drude model,
according to the following equation:

ε(ω) = ε∞ +
σ

(ω2
0 −ω2− iγω)

(2)

whereε∞, γ, ω0 andσ are input parameters. In our case, we are concerned with metals, for
which ω0 = 0. By Kirchhoff’s law, the absorbance spectra so calculatedare identical to the
emittance spectra of these objects, for each polarization,frequency and observation angle.

3. Holes and dips

Let us now turn our attention to real systems and the physicaleffects that are manifested therein.
The goal is to develop an understanding of the physical processes that drive emittance in these
systems. The first structure we will examine is a simple metalslab with holes (see Fig. 2). If we
illuminate the structure with light incident from the top ofthe cell, the light propagates down
the holes which act as metallic waveguides. Waveguide cut-offs arise from the requirement that
the parallel component of the electric field be continuous across a boundary. Inside a perfect
metal, the electric field is strictly zero. For such a material, E‖ is constrained to vanish at the
surface, and this leads to the well-known cut-off frequencycorresponding to a half-wavelength
oscillation. Below this frequency, no propagating mode canbe supported within the waveg-
uide, because the boundary condition cannot be satisfied. For a realistic metal (i.e. one that
permits some penetration of fields), the fields are not required to exactly vanish at the surface,
but must decay away rapidly and exponentially once inside the material. Such boundary con-
dition matching leads to a similar cut-off as in the case of the perfect metal, except that the
penetration of field into the metal produces a cut-off with a slightly lower frequency, because
theeffective width of the waveguide is slightly larger. Cut-off frequencies depend on the width
of the waveguide. The wider the waveguide, the lower the cut-off frequency.

We present emittance and transmittance spectra for this system. Figure 2(a) shows how the
spectra change with hole radius. The peaks below 1.0 (indicated by black arrows) are waveguide
cut-offs arising from propagation of light through the holes. These peaks decrease in frequency
with increasing radius, a clear signature of waveguide cut-offs. They correspond to modes that
fit approximately half a wavelength across the hole in thex-direction. As we discussed, the
electric field has to be continuous as we cross media boundaries in thex-direction (becauseEy is
parallel to the media boundary) but not in they-direction. Thus, these modes have one ‘hump’ as
we cross the holes in thex-direction, and decay exponentially inside the metallic bulk between
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Fig. 2. (Color) Here we show emittance (solid lines) and transmittance (dotted lines)
spectra for a 2D-periodic metal slab with circular holes, viewed at normal incidence
and fory-polarized light. The Drude parameters used for the metal areε∞ = 1, ω0 = 0,
γ = 0.3(2πc/a) andωp =

√
10(2πc/a). In Panel (a), we fix the thickness of the slab at

1.0a (wherea is the lattice constant of the slab) and vary the radius of the holes. The black
arrows indicate the peaks produced by the waveguide cut-off in thex-direction. In Panel
(b), we keep the hole radius constant at 0.4a and vary the thickness of the slab. Here, we
use arrows to indicate the peaks produced by diffraction.
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holes such that the field profile within the metal is of the formof a hyperbolic sine/cosine
curve (a combination of a decaying and growing exponential), depending on parity. We can see
immediately that as we increase the radius of such a hole, theprofile relaxes in thex-direction
in such a way as to make the hump wider. This leads to a larger effectivex-wavelength for the
mode, and thus a lower frequency cut-off. (The wavelength inthey-direction is unaffected by
the radius of the hole, sinceEy is not required to be continuous in they-direction.)

Diffraction peaks occur when we consider the slab system at amacroscopic level, in terms of
incoming and outgoing radiation modes. This effect is not unique to metallic PhCs, and can be
observed in non-metallic PhCs as well. In terms of absorption, the incident light, being normal,
can couple into outgoing radiation modes (in transmission or reflection) that conserve the wave
vector up to a reciprocal lattice vector in a direction of discrete periodicity. Because the incident
light has noktransverse component, it can couple into outgoing modes withktransverse equal to an
integer multiple of 2π/a (i.e. 1 in our units). This means that as we increase the frequency of
the incoming radiation, a new diffraction direction will becoupled into atω = 1,

√
2,2,

√
5...,

corresponding to(kx,ky) = (1,0),(1,1),(2,0),(2,1)... At the threshold frequency for a new
diffraction mode, the wave vector has nokz component, and sok is parallel to the surface of the
slab. Such ‘grazing’ modes have maximum interaction with the slab because they travel close
to the surface of the metal, and as such are strongly absorbedby the material. These absorption
peaks translate into emission peaks, via Kirchhoff’s law, so we would expect to see emission
peaks for modes corresponding toω = |k| = 1,

√
2,2,

√
5...

Figure 2(b) shows how emittance and transmittance change with the thickness of the metal
slab. First, we notice that transmittance is greater for thethinner slab, as one would expect.
Second, we see the emergence of diffraction peaks at 1,

√
2,2 and

√
5 (we indicate these with

red and black arrows). Not only do they occur at precisely those frequencies that correspond
to the root of the sum of two squares (their wave vectors beingpermutations of (1, 0), (1, 1),
(2, 0) and (2, 1), respectively), they are also the same for both black and red curves, lending
further weight to the argument that they are diffraction peaks. Their magnitudes are clearly
quite variable; indeed, they wash out at higher frequencies. Such diffraction peaks can be seen
in Fig. 2(a), too.

What happens if we take the same metal slab, but do not drill holes in the slab that go all
the way through? What happens if, instead of having circular holes, we have circulardips?
We present emittance and transmittance for this structure in Fig. 3 as a function of dip radius.
Again, we see peaks below 1.0 which correspond to cut-offs, except in this case they are not
waveguide cut-offs but a kind of ‘cavity’ cut-off, wherekx is such that there is approximately
half a wavelength in thex-direction. We see diffraction peaks at 1,

√
2,2 and

√
5. Aboveωp =√

10≈ 3.16, the plasmon frequency of the metal, transmittance becomes significant, because
above that frequency, the metal becomes transparent and light can pass through it as though it
were a dielectric material (while still being subject to some absorptive loss).

4. Hybrid structures

Let us now turn our attention to hybrid structures which involve both metal and dielectric. We
consider a metal slab with a circular dielectric puck on top.This puck is intended to be a small
perturbation to the system that introduces discrete periodicity in both thex- andy-directions by
means of a piece of dielectric. We observe emitted light at normal incidence and polarized in
they-direction.

Figure 4(a) shows how emittance and transmittance vary withthe dielectric constant of the
perturbation (ε). First, we observe many peaks in the emittance spectra, andwe note that the
positions of some these peaks (particularly the ones at frequencies less than 2.0) decrease with
increasingε. Second, we see zero transmittance in the system for frequencies belowωp ≈
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Fig. 3. (Color) We show emittance (solid lines) and transmittance (dotted lines) spectra for
a 2D-periodic metal slab of thickness 1.0a with circular dips, observed at normal incidence
andy-polarization. The dips have a depth of 0.5a. The Drude parameters used areε∞ = 1,
ω0 = 0, γ = 0.3(2πc/a) andωp =

√
10(2πc/a). We show spectra for two different radii of

dips, keeping the slab thickness constant.

3.16, as we expect, because the metal is opaque at frequencies below the plasmon frequency.
Third, we see also an entire series of diffraction peaks, at frequencies 1,

√
2, 2,

√
5, 2

√
2 and

3, corresponding to modes with wave vectors (1, 0), (1, 1), (2, 0), (2, 1) and permutations
thereof. These are especially clearly seen on the black curve. We know they are diffraction
peaks because they not only fit the above sequence, but also have the same frequencies on
the red and green curves. (Diffraction peaks do not change with the dielectric constants of the
structure.) Fourth, we demonstrate that most of the emittance peaks with frequencies below 2.0
that we see in Fig. 4(a) are in fact produced by surface plasmons.

Surface plasmons (SPs) are excitations that exist on the interface between a plane-metal and
a dielectric. They are confined to the surface, but can propagate freely within that surface. They
have a relatively simple dispersion relation that is approximately linear at low wave vectors and
bends over toward a flat cut-off at higher wave vectors (ωp/

√
ε +1 is the cut-off frequency,

whereωp is the plasmon frequency andε is the dielectric constant). If the direction of prop-
agation isx (i.e. k is in thex-direction), then the SP will have field componentsEx, Ez and
Hy (thez-direction is normal to the interface). The SP is unusual in that it has an electric field
component in the direction of propagation. Normally incident light (for which ktransverse = 0)
cannot couple into SP modes with non-zerok because of conservation of wave vector; however,
it can couple into such modes if the wave vector of the SP is along a direction of discrete trans-
lational symmetry, because in such a direction, wave vectoris conserved only up to an integer
multiple of the reciprocal lattice vector. These correspond to k = (m,n)(2π/a) wherem andn
are integers.

To show that the emittance peaks with frequencies below 2.0 are indeed SPs, we record the
frequencies of the peaks (up toωp/

√
ε +1, the SP cut-off) for each curve in Fig. 4(a), and
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Fig. 4. (Color) Panel (a) shows emittance (solid lines) and transmittance (dotted lines) spec-
tra for a 2D-periodic metal slab of thickness 1.0a with circular dielectric pucks for normal
incidence and light polarized in they-direction. The pucks have a radius of 0.4a and a thick-
ness of 0.2a. The Drude parameters used for the metal areε∞ = 1, ω0 = 0, γ = 0.3(2πc/a)
andωp =

√
10(2πc/a). We show spectra for three different dielectric constants for the cir-

cular puck. In Panel (b), we took the peaks labeled by arrows in Panel(a), and plotted them
on a dispersion curve. (Note that the third red peak in Panel (a) coincides with a diffrac-
tion peak at frequency

√
2 ≈ 1.41.) We see that the dispersion of the peaks (lines with

circles) lies between the metal-air dispersion and the metal-dielectric dispersion, for the
corresponding dielectric constant. Therefore, it is quite plausible that these peaks are pro-
duced by surface plasmon modes. In Panel (c), we show the thermalemission spectrum for
the same metal slab with pucks of dielectric constantε = 5 at temperature 1000K (we call it
“PhC (model)”). We also show the blackbody spectrum at that temperature for comparison.
The lattice constant was chosen to bea = 2.94µm. Panel (d) shows the thermal emission
spectrum for the same system except that the “model” metal has been replaced by tungsten.
We modeled tungsten with Drude parameters[28]ε∞ = 1, ω0 = 0, γ/(2πc) = 487cm−1 and
ωp/(2πc) = 51700cm−1, and we chosea = 2.94µm. We show the emission spectra for a
uniform tungsten slab of thicknessa (without pucks) and a blackbody for comparison.
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plot them as circles in Fig. 4(b) against wave vector magnitude, making the assumption that
the first peak has a wave vector of (0, 1), the second a wave vector of (1, 1), and the third a
wave vector of (0, 2) (all in units of 2π/a). We make this assumption because this sequence
of (kx,ky) = (m,n) produces a sequence of frequencies in ascending order. In addition, we plot
SP dispersion curves for metal-air and metal-dielectric structures where both media are semi-
infinite in extent (dotted lines). SP modes in the structure under consideration would therefore
be expected to have a dispersion relation that lies between the metal-air and the metal-dielectric
dispersions, since the average dielectric constant of the dielectric strip/air lies between that of
the air and the dielectric. Thus, we would expect the black circles to lie between the dotted black
and blue curves, the red circles to lie between the dotted redand blue curves, and so on. Indeed,
this is exactly what we see. Furthermore, the fact that the circles, when joined together by solid
lines, form a dispersion relation that clearly bends over toward a cut-off, gives us confidence in
identifying these modes as SPs.

We can obtain the emissive power of these structures by taking the emittance spectra that
we have calculated and multiplying them by the blackbody emission spectrum (which is also
known as the Planck distribution). This is what we did in Fig.4(c). We chosea = 2.94µm and
plotted thermal emission of the PhC slab as a function of wavelength. We show the emission
spectrum of a blackbody for comparison. We can immediately see an emission peak near 4.7µm
that has as high emission as a blackbody; this peak corresponds to the first SP peak in Fig. 4(a).
The two emission peaks at approximately 2.1µm and 3.2µm are diffraction and SP peaks,
respectively.

In Fig. 4(d), we consider the same structure except that the “model” metal slab is now re-
placed by a tungsten slab. We did this by doing the calculation using the Drude parameters of
tungsten. We also plot the equivalent tungsten slab emittance (dashed red curve) for compari-
son. In keeping with Kirchhoff’s law, at no point does the emission of the PhC structure exceed
that of a blackbody. The qualitative similarities between this emission spectrum and that shown
in Fig. 4(c) can be traced quite easily: the three major peaksremain; the tall central peak and the
peak to its right are SPs, while the sharp peak to the left (around 2µm) comes from diffraction
into (1, 1) modes. Overall, the background emission of the tungsten PhC slab is lower than that
for the “model” metal that we have hitherto been studying, because the background emittance
of a slab[15] goes as 2γ/ωp (in regimeγ < ω < ωp), andωp is much higher for tungsten than
for the Drude metal in Fig. 4(c). Notice that the PhC tungstenslab has higher emission atall
frequencies than the uniform tungsten slab. Thus, we have excellent enhancement of emissive
power through the use of a PhC.

As we have already remarked, the dominant feature of the emission characteristics of this
structure is the central peak at 3.06µm, which achieves 80% of the emission of a blackbody.
As we will show in Fig. 5, it is possible to shift this peak by changing the lattice constant
of the structure. By so doing, we can place a strong emission peak at whatever frequency we
choose. If we combine copies of this structure with different lattice constants, we can place
strong emission peaks at multiple frequencies. This is the beginning of thermal design using
2D-periodic metallic PhC slabs.

5. Thermal design

In order to facilitate our discussion of thermal design in 2D-periodic metallic photonic crystals,
we turn our attention to another variation on the theme of a hybrid structure, and show how the
emission spectrum of this structure can be tailored to our needs. We study a tungsten slab on
top of which sits a dielectric slab with circular holes. One can think of the dielectric portion
of this structure as being the ‘inverse’ of the circular puck. Such a structure exhibits discrete
periodicity in both thex- andy-directions.
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Fig. 5. (Color) Here we show the thermal emission spectrum for a hybrid2D-periodic
structure consisting of a tungsten slab and a dielectric slab with holes. The metal slab is
1.0a thick while the dielectric slab (ε = 5) is 0.2a thick with holes of radius 0.4a. We
show emission of light polarized in they-direction. In Panel (a), we display emission at two
different temperatures. We chose a lattice constant ofa = 2.00µm. In Panel (b), we show
how the emissive power changes with lattice constant. In both panels, we show emission
spectra for a uniform tungsten slab of thicknessa without dielectric, and a blackbody, for
comparison.
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We show the emission spectrum for such a structure in Fig. 5. In Panel (a), we choosea =
2.00µm and vary the temperature of operation. We plot thermal emission for the PhC slab,
the unadorned tungsten slab, and a blackbody. Again, the PhCemission far exceeds that of a
uniform tungsten slab. We see three prominent groups of peaks, the smallest of which has fairly
complicated substructure. First, we notice that the positions of the peaks do not change with
temperature. Second, increasing temperature increases emission atall wavelengths. Emissive
power goes asT 4 (Stefan’s law), so that, going from 1000K to 1200K, emissionincreases by
a factor of(1.2)4 ≈ 2.07 (provided the weighting does not change significantly). Third, the
relative weighting given to different wavelengths changeswith temperature, because the peak
of the Planck distribution shifts toward lower wavelengthswith increasing temperature. In our
case, the group of small peaks between 1 and 2µm were insignificant features at 1000K, but
became more prominent at 1200K, because the blackbody spectrum shifted in such a way as
to give those peaks much more weight than before (thus, they were enhanced by more than
a factor of 2.07). Fourth, the emission of the PhC slab exceeds that of the uniform slab at all
wavelengths and at all temperatures. In fact, the enhancement is impressive: we see a 20-fold
increase in emissive power (over that of a slab) at the major peak at around 2.9µm. Of course,
emissivity never exceeds unity, because that would violatethe Second Law of Thermodynamics
(the large peak in question attains 66% emissivity). The important lesson we learn from this
is that we can emphasize different parts of the emission spectrum of a PhC by changing the
temperature at which we operate the thermal structure.

In Fig. 5(b), instead of changing the temperature, we keep temperature fixed and vary the
lattice constant of the PhC. The blackbody envelope and the emission spectrum of a uniform
slab of this same metal are shown for comparison. We see that increasing the lattice constant
shifts the emission peaks in the PhC towards a higher wavelength. In our case, fora = 2.00µm,
the large peak is already close to the point of maximum blackbody emission, so that increasing
the lattice constant toa = 3.23µm only served to decrease the total emission from that excitation
(incidentally, it is a surface plasmon). However, the change ina also brought some small peaks
from the lower wavelengths into the picture. The point of this exercise is to illustrate the degree
of control we have over the position of the peaks, and by thesesimple techniques, we can
shift emissive power around to different parts of the spectrum. It is useful to note that for both
choices ofa, there is significant enhancement of emission over that of a uniform slab because
the breaking of continuous translational symmetry allows more wave vector modes to be excited
and coupled into.

The two hybrid structures we considered in this and the previous sections would be suitable
candidates for applications that require narrow band emission in one or more frequencies. Both
structures have a dominant peak that can be shifted in wavelength by changing the lattice con-
stant. If we want three emission bands separated by 1-2µm, the structure in Fig. 5 would be a
good choice. There are two different ways to amplify an emission peak relative to background
emission. We can choose to operate the structure at different temperatures, or we could change
the lattice constant. These are simply two different ways ofmaking the emission peak co-
incide with the wavelength of maximum blackbody emission. By combining many such hybrid
structures, each with its own lattice constant, we can placestrong emission peaks at whichever
wavelengths we choose. We therefore have a means of tailoring the thermal emission properties
of a hybrid structure to our needs.

6. Conclusion

We presented a physical and intuitive framework within which we can understand some of
the physical phenomena that drive thermal emission in 2D-periodic metallic photonic crystal
slabs. We performed detailed numerical calculations for these systems, and found that period-
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icity played a key role in determining the types of physical phenomena that can be excited.
In particular, we saw how periodicity gave rise to waveguidecut-offs, waveguide resonances,
diffraction peaks and surface plasmon modes. Using hybrid structures composed of metal and
dielectric components, we obtained sharp emission enhancement over and above that of a metal
slab. In the case of tungsten, we created strong emission peaks with 80% and 66% emissivity,
far exceeding that of a uniform tungsten slab, which plateaus at about 3-4%. These peaks could
be shifted at will by changing the lattice constant of the structure or by changing the tempera-
ture at which the structure is operated. We can design materials with multiple emission peaks
by combining hybrid structures, each with its own lattice constant. Thus, we have a powerful
set of tools with which to develop physical intuition and understanding for thermal design.
The ability to design thermal emission could well find uses inthermophotovoltaic systems and
defense applications, where many targeting systems rely onthe detection of thermal emission
from projectiles.
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