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Tailoring thermal emission via Q matching of photonic crystal resonances
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We develop a model for predicting the thermal emission spectrum of a two-dimensional metallic photonic
crystal for arbitrary angles based on coupled-mode theory. Calculating the appropriate coupled-mode parameters
over a range of geometrical parameters allows one to tailor the emissivity spectrum to a specific application.
As an example, we design an emitter with a step-function cutoff suppressing long-wavelength emission, which
is necessary for high-efficiency thermophotovoltaic systems. We also confirm the accuracy of the results of our
model with finite-difference time-domain simulations.
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I. INTRODUCTION

The spectral emissivity of a blackbody is the upper limit that
any material can achieve. However, in certain applications, it is
desirable to have an emitter that radiates only within a certain
frequency bandwidth—a selective emitter. Photonic crystals,
metallodielectric structures with periodic wavelength-scale
refractive index modulations, are well suited for creating a
selective emitter by virtue of possessing photonic band gaps
[1–5]. Using metals introduces more flexibility in creating a
selective emitter; below the plasma frequency of the metal,
electromagnetic fields are strongly attenuated [6,7], which
assists broadband frequency selectivity [6–14]. However, the
high infrared reflectivity of metals implies, via Kirchhoff’s law,
a low emissivity [15] and therefore requires a modification of
the surface by a one-dimensional (1-D) array of grooves [8] or
a 2-D array of holes [9–11,14] to enhance emission at those
frequencies. The surface periodicity allows light to couple
to grazing, diffracted plane waves, or surface plasmons, if
they are present. Moreover, if the grooves or holes are large
enough, they will support waveguide resonances that couple
to one another, providing another mechanism for enhancing
thermal emission by increasing the interaction time of light
with the material. While previous work [8–10,14] has demon-
strated that the peaks due to waveguide resonances occur at
frequencies corresponding to the isolated waveguide resonant
frequencies, the mechanism and quantitative prediction for
the amplitude of the peaks were missing. Here we show that
matching the radiative and absorptive rate of the photonic
crystal resonances dictates the emissivity spectrum, and by
tuning a small number of geometrical parameters, tailoring a
broadband, selective thermal emitter becomes possible.

In particular, one such application of a selective broadband
emitter is in thermophotovoltaics (TPV). In TPV, the emitter,
such as a slab of tungsten, is heated to a high temperature,
radiating the majority of its energy in the infrared and onto a
photovoltaic (PV) cell with a band gap designed to lie in the
infrared [16,17]. InGaAs, for example, possesses a band gap of
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0.6 eV/h̄ [10,18]. However, low efficiency and power density
are obtained since the typical graybody has low emissivity in
the infrared; this is remedied with the selective emitter.

II. LOSS RATES OF WAVEGUIDE RESONANCES

Consider the emissivity spectra illustrated in Fig. 1. The
ideal selective emitter should only emit photons above a
cutoff frequency. Here the cutoff frequency corresponds to the
electronic band gap of InGaAs. Tungsten, which has a high
melting point and low emissivity beyond the cutoff frequency,
is far from an ideal selective emitter. However, the introduction
of a periodic array of holes, illustrated in Fig. 2, can greatly
improve its selectivity via the creation of extra states on the
surface that couple to external radiation.

Intuitively, the radiative and absorptive rates of these
coupled waveguide resonances should depend more strongly
on the hole radius R and depth d than on the period a;
therefore consider first a single, isolated hole (a → ∞).
Because the field penetrates into tungsten, the resonant
mode will not in general simply be TE or TM-polarized, but
display hybridized longitudinal polarization and be HE- and
EH-like. Only resonances with angular number ν = 1 will be
considered since only those resonances in a periodic array of
holes couple to plane waves at normal incidence. In addition,
for the R and d values considered here for Q matching, ν = 1
yields the lowest resonances. The hole resonances experience
three types of losses: radiation through the top, absorption on
the sidewalls and bottom, and absorption on the front tungsten
surface. Since the last mechanism is a second-order effect
dependent on the radiative rate, it is neglected. If the two
remaining loss rates are not too large compared to the resonant
frequency, then each can be calculated in the absence of the
other [19]. From each loss rate, a quality factor Q = ωoτ/2 is
calculated, where ωo is the resonant mode frequency and τ is
the lifetime (or inverse loss rate) associated with a particular
loss mechanism. The quality factor is a dimensionless
lifetime: After Q periods, a resonance decays by exp (−2π ).
When these two loss rates are equal—the Q-matching
condition—complete absorption of incident radiation occurs.

033810-11050-2947/2011/83(3)/033810(6) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.83.033810


M. GHEBREBRHAN et al. PHYSICAL REVIEW A 83, 033810 (2011)

FIG. 1. (Color online) Emissivity spectrum of flat, bulk tungsten
(blue) and an ideal selective emitter (green) designed to match the
0.6 eV/h̄ band gap of InGaAs.

The loss rate due to absorption can be closely approximated
by closing the top with a perfectly conducting metal. A perfect
magnetic conductor cover, corresponding to a electric field
maximum at the opening, could just as well be employed since
the absorptive rate does not depend much on which boundary
condition is used. Finite-difference time-domain (FDTD)
simulation is used to simulate the closed hole [20,21]. A point
source is placed in the cavity, and resonant modes are excited
whose loss rates are extracted by a filter-diagonalization
method [22]. The resonant frequency ωoa/2πc and absorptive
quality factor Qabs = ωoτabs/2 are plotted in Figs. 3(a) and
3(b) as functions of the cavity radius and depth for the first
three hole resonances. The general trend of Qabs decreasing
toward the left can be understood from an equivalent definition
of Q, Qabs = ωoU/Pabs. Decreasing the hole volume reduces
the total field energy U of the mode and forces a larger value of
the electric field on the tungsten surface, thereby raising Pabs.

The radiative quality factor Qrad = ωoτrad/2, plotted in
Fig. 3(c) as a function of R and d, is obtained by replacing
tungsten with a perfect conductor in simulations. The lack of
an intrinsic length scale implies that Qrad will depend only on
the ratio d/R and is manifested in Fig. 3(c) as lines emanating
from the origin. It can be shown to leading order in d/R that

Qrad ∝
(

d

R

)3

(1)

through Qrad = ωoU/Prad. The stored field energy is approx-
imately the product of the hole volume and the electric field

FIG. 2. A periodic array of cylindrical holes with period a, depth
d , and radius R etched into a slab of tungsten. The hole depth is less
than the tungsten slab thickness.

FIG. 3. (Color online) (a) Resonant mode frequency in units of
2πc/a with a = 1 µm, (b) Qabs, and (c) Qrad of the lowest three
modes. The absorptive and radiative Q are plotted on the same color
scale. Q matching of the first resonance is indicated by the white line.

intensity at the hole center, U ≈ ε0R
2d|Ecenter|2. The radiated

power is the product of the Poynting field at the cavity opening
and the area of the opening, Prad ≈ R2|Eopening|2/(cµ0). From
numerical simulations of holes with R and d varied separately,
one obtains |Eopening|/|Ecenter| ≈ 2R/d, which gives Qrad ∝
ωod

3/(cR2). Expressing the resonant frequency ωo in terms of
the geometric parameters yields the desired result to leading
order in d/R. FDTD simulations confirm Eq. (1), but with an
exponent slightly less than 3.

Q matching is attained wherever the two surfaces,
Qabs(R,d) and Qrad(R,d), intersect. For the first resonance,
this occurs on the white line in Fig. 3(c). Above the line, Qrad

is too large, and the hole is undercoupled to external radiation.
Below it, Qrad is too small, and the hole is overcoupled to
external radiation; power can effectively couple into the hole,
but it is trapped for too short a time to be absorbed. Critical
coupling is achieved by tuning the radius to increase Qrad to a
high enough value.

III. EFFECT OF PERIOD

The optimal dimensions for a periodic array of holes
may not be the same as for an isolated hole. Since the far
field of neighboring holes can destructively interfere, Qrad

may increase. Moreover, Q matching has been achieved for
spherical waves converging onto the hole. The period’s effect
on Qrad can be determined through a field-matching formalism
described in Ref. [23]. In this formalism, the field above the
perfect conductor slab is expanded in a plane wave basis, the
field inside the holes is expanded as a linear combination of
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waveguide modes, and boundary conditions are imposed to
produce a set of linear equations for the field amplitudes. It
is found that Qrad is typically larger than that of an isolated
hole due to partial, destructive interference of the far field. The
period can change Qrad by about 50% relative to the isolated
hole Qrad. Most of the variation in Qrad occurs near periods
where there exists diffracted plane waves that are resonant
with a waveguide mode. During this resonance, it is possible
for Qrad to be less than that of the isolated hole value. Qabs,
on the other hand, is not expected to change by more than a
few percent for holes that are separated by a skin depth or
more since that coupling is exponentially dependent on the
separation [24]. Nonetheless, the Q-matching condition of the
isolated holes can serve as a guide toward the optimal hole
parameters for the photonic crystal slab.

Using the previously built intuition, we simulate a tungsten
photonic crystal with hole dimensions predicted to satisfy Q

matching: R = 0.5 µm, d = 1.89 µm, and period a = 4.8 µm.
A normally incident, linearly polarized plane wave is directed
at the tungsten photonic crystal slab. Perfectly matched layers
(PML) terminate the computational cell above the slab and
periodic boundary condition [k‖ = (kx,ky) = 0] on the sides.
(PML is unnecessary below since the slab is opaque to
radiation.) The absorptivity spectrum is calculated from the
reflectivity spectrum A(ω) = 1 − R(ω). The emissivity spec-
trum, for normal emission, is obtained from the absorptivity
spectrum via Kirchhoff’s law, which states that for a body in
thermal equilibrium, emissivity and absorptivity must match at
each frequency, wave vector, and polarization [15,25,26]. Due
to the large period, the emissivity spectrum of the a = 4.8 µm
crystal (Fig. 4) is essentially that of flat tungsten with sharp
peaks due to grazing plane waves or Bragg-diffracted surface
plasmons and broadened photonic crystal resonances superim-
posed. Because the holes occupy a small fraction of the surface,
coupling into the photonic crystal resonances from normal
incidence is weak. (However, Qrad of the first isolated hole
and photonic crystal resonance is 14.3 and 12.7, respectively.)
To realize a stronger frequency selectivity, it is necessary to
adjust a; plotted in Fig. 5 are the emissivity spectra for various
a. As a is decreased, the first resonant peak eventually appears
below the diffraction limit, ωa/2πc = 1. Further reduction

FIG. 4. (Color online) Absorption spectrum for the tungsten
photonic crystal slab with a = 4.8 µm, R = 0.104a, and d = 0.394a.
Diffraction appears as sharp peaks and resonant peaks due to photonic
crystal modes appear at approximately 2.7 and 3.4 2πc/a.

FIG. 5. (Color online) Absorption spectra for photonic crystal
slabs with various a but R and d fixed at 0.5 and 1.89 µm, respectively.

of a pushes the diffraction limit above additional resonances,
increasing the bandwidth of the high-emissivity region. This
can be continued up to a = 2R, at which point the hole
resonances are strongly coupled to each other through the
tungsten sidewalls in addition to the nonradiative coupling via
evanescent plane waves. Clearly, for small enough periods,
such as for a = 0.75 µm, the photonic crystal resonances can
no longer be described as coupled waveguide resonances. Note
that at wavelengths much larger than a, different absorptivities
occur due to the varying ratios of air hole to tungsten sidewall
volumes. In the long-wavelength limit, the free electron density
makes the dominant contribution to the permittivity, and
effective medium theory is valid. Decreasing the tungsten
fraction decreases the free electron density. This lowers the
effective plasma frequency, which increases the absorption
rate.

IV. COUPLED-MODE THEORY

We now focus on the a = 1.2 µm emissivity spectrum
below the diffraction limit and understand it through temporal
coupled-mode theory [27–29]. The tungsten photonic crystal
can be thought of as a multimode resonator, illustrated in
Fig. 6, with only three resonances below the diffraction
limit. Associated with each resonance is a resonant fre-
quency ωi , absorptive lifetime τabs,i , and radiative lifetime
τrad,i . In addition, they can radiatively couple to each other
with a lifetime τij (i �= j ) on the order of τrad,i [30].
The coupled-mode equations for the multimode resonator
are

da
dt

= (i�0 − �)a + DT s+, (2)

s− = Cs+ + Da, (3)

where a is a three-component vector describing the resonant
mode amplitudes, �0 is a 3 × 3 diagonal matrix of the resonant
mode frequencies, � is a 3 × 3 matrix of decay rates, s+ (s−)
is the incoming (outgoing) channel amplitude, C is the direct
pathway scattering amplitude, and D is a 1 × 3 matrix of
the resonance-channel coupling amplitudes. The reflectivity
is R = |s−/s+|2. The decay rate matrix � can be separated
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FIG. 6. A multimode resonator with resonant frequencies ωi

and absorptive and radiative lifetimes τabs,i and τrad,i , respectively.
Resonances radiatively couple to each other with rate 1/τij .

into a radiative contribution �r and an absorptive contribution
�a with �r,ii = 1/τrad,i and �a,ii = 1/τabs,i . The resonance-
resonance coupling rates, 1/τij , are given by the off-diagonal
part of �r , which are dependent on the radiative rates �r,ii . The
dependence comes about through the matrix constraint 2�r =
D†D, which is a consequence of energy conservation and
reciprocity. In addition, the direct pathway scattering matrix
constrains the phases of D via the relation CD∗ = −D. Since
the front surface absorption is neglected, the front surface is
approximated as a perfect conductor, and C is set to −1. The
phases of the elements of D depend in part on how many
ways the photonic crystal resonances can couple to each other
[30]. For instance, in the case of hole depth equal to slab
thickness, the photonic crystal resonances couple via the top
and bottom openings. If the resonances have opposite parity,
then the resonances will not couple, that is, τij → ∞. Here
the hole depth is less than the slab thickness by more than a
couple skin depths, eliminating one of the channels, and so
all resonances will radiatively couple to one another. This also
implies that the resonance-channel coupling amplitudes will
have the same phase.

From FDTD simulations, we obtain ωi , τabs,i , and τrad,i

for each resonance. In particular, τrad,i is obtained from
simulating a unit cell of the photonic crystal with the radius
widened by a skin depth. The resulting emissivity spectrum
is compared with the emissivity spectrum obtained from the
full FDTD simulation in Fig. 7. Since coupled-mode theory is
a perturbation theory, it is most accurate for resonances with
total Q � 1; here the resonances have total Q of 8.0, 4.4,
and 6.3, respectively, and unsurprisingly, the spectra display
some differences. The resonances above the diffraction limit
are not taken into account; doing so requires not only their
resonant frequencies and lifetimes, but also modifying the
couple-mode equations to include the extra channels that
correspond to diffracted plane waves. Accounting for the
first-order diffraction at normal emission would in general
require s± to be a 10 × 1 vector (a channel for s and p
polarization at each reciprocal wave vector), D a 10 × 3
matrix, and C a 10 × 10 frequency-dependent matrix. For
frequencies much less than the cutoff frequency, where the

FIG. 7. (Color online) Absorptivity spectrum for a = 1.2 µm
calculated via FDTD simulation (blue) and coupled-mode theory
(red).

absorption is due primarily to the front surface of tungsten,
the coupled-mode equations here will not work. In principle,
it can be accounted for in the coupled-mode equations by con-
sidering the front surface absorption as another channel [30].
Since the absorptivity spectrum is accurately reproduced with
only the coupled-waveguide resonances, surface plasmons
due to tungsten’s permittivity can apparently be ignored.
Surface plasmon resonances for flat tungsten would appear
at a frequency just under the diffraction threshold; at least for
shallow holes (corresponding to d/a < 0.1 in Refs. [4,31]),
this remains true. However, this portion of the absorption
spectrum is well reproduced with the coupled-waveguide
resonances whose decay rates are matched. In cases where
surface plasmons are important, they could be included
into the coupled-mode equations once their decay rates are
known.

Off-normal emission (k‖ �= 0) can be handled with this
framework as well. The absorptive Q will not change much
with k‖ as long as the holes are separated by at least a few skin
depths [24]. The mode-matching formalism described earlier
can be used to obtain the resonant frequency and radiative Q

for nonzero k‖. It is found that the resonant frequency changes
little with k‖; this reflects the fact that the resonant peaks
are due to coupled hole resonances. The emissivity spectrum
calculated by FDTD and coupled-mode theory for an arbitrary
k‖ is plotted in Fig. 8. It should be noted that the normal and off-
normal spectra display little difference; in particular, the first
and second resonances retain nearly perfect emissivity at polar
angles of 18◦ and 15◦, respectively. This high selectivity con-
tinues nearly unchanged up to the diffraction threshold, where
new channels open and the radiative Q drops in value. Once
the diffraction threshold is crossed, it is necessary to solve the
coupled-mode equations again. The direct-pathway scattering
matrix C can be obtained from the formalism of Ref. [23]
by reducing the depth of holes to eliminate the resonances.
The square of the magnitudes of the elements of D can be
obtained from the fraction of power radiated by each resonance
into each channel and the radiative Q. Finally, the phases of
the elements of D can obtained from solving the equation
CD∗ = −D.
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FIG. 8. (Color online) Absorptivity spectrum for the same struc-
ture as in Fig. 7, but with k‖a/2π = (0.1776,0.1056). Peaks in the
emissivity would correspond to polar angles of 18◦ and 15◦ and an
azimuthal angle of 31◦.

V. APPLICATIONS AND CONCLUSIONS

Demonstrating that it is possible to predict the emissivity
spectra with only a few input parameters—the optical con-
stants of tungsten, a, R, and d—attention can be directed
toward applications. In TPV and solar TPV (STPV), the
radiated photons from a high-temperature radiator are captured
and converted into electron-hole pairs via a PV cell [16,17].
In the case of STPV, concentrated sunlight is used to heat the
tandem absorber-emitter structure, which then radiates onto a
PV cell [32,33]. In both cases, the emitter is heated to over
1000 K. The selective emitter described here can dramatically
improve both the efficiency and power density of the TPV and
STPV systems by enhancing the emission of above–band gap

energy photons that directly generate electron-hole pairs in
the PV cell and suppressing emission of low-energy photons
that would only heat the PV cell. Evidently, Fig. 8 shows
that this remains true even for large polar angles. Moreover
retaining the low-energy photons contributes toward keeping
the emitter hot [34]. One such realistic structure would be the
tungsten photonic crystal in Figs. 7 and 8, which has a cutoff
frequency of 0.67 eV/h̄. It can be made to better match the
0.6 eV/h̄ band gap of InGaAs [18] by slightly widening the
holes.

In conclusion, we have demonstrated how Q matching, via
the geometrical parameters, can be used to tailor the emissivity
spectrum of 2-D metallic photonic crystals. One advantage of
this approach compared to FDTD or finite-element methods
is that the emissivity spectra can be calculated much more
quickly. This becomes important when one considers that
thermal radiation is incoherent, and the emissivity at all
k‖ is needed. Once the reflectivity spectrum as a function
of frequency, polarization, and k‖ is obtained, the radiated
power at a given temperature can be obtained by averaging
the emissivities over polarization, weighing by the Planck
distribution, and integrating over k‖ and frequency.
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