
April 1, 2004 / Vol. 29, No. 7 / OPTICS LETTERS 745
Superprism effect based on phase velocities
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The superprism effect has been studied in the past by use of the anomalous group velocities of optical waves in
photonic crystals. We suggest the possibility of realizing agile beam steering based on purely phase-velocity
effects. We present designs of photonic crystal prisms that might make experimental observation of this
effect possible. © 2004 Optical Society of America
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The unusual dispersion properties of photonic crystals
outside their forbidden bandgaps have attracted much
recent attention.1 – 8 One particular example is the su-
perprism effect.2 This is most commonly understood
as an effect due to group-velocity dispersion: a large
change in the propagation direction of the refracted ray
within the photonic crystal is achieved with respect to a
small variation in incident parameters. As confirmed
by several recent authors,9 – 13 this superprism effect
occurs mostly within sharp-corner regions of the dis-
persion surfaces of photonic crystals. It is, however,
important to note that in this group-velocity-based
effect agile beam steering occurs for light waves
traveling inside the crystal. As a result, a large
crystal whose size is of the order of centimeters11 is
necessary when this effect is used to spatially sepa-
rate the slightly different incident light waves, e.g.,
in semicircular-shaped designs.10 A natural question
is whether the superprism effect can arise in prism-
shaped photonic crystals to manipulate the directions
of light beams in free space. Here Bloch wave vector
k, which measures the phase velocity of light waves in
the crystal, is the key quantity connecting the incident
and the outgoing directions: the component of k that
is parallel to the incident and the exit facets should
be conserved as a rule of thumb. When the super-
prism effect occurs in a high-curvature region of the
dispersion surface, the change in k inside the crystal
is actually small. As a result, for beams entering a
prism-shaped photonic crystal on one facet and exiting
on another facet, the large angular difference created
by the group-velocity dispersion disappears once the
light is outside the photonic crystal.

In this Letter we discuss the possibility of a super-
prism effect based on phase-velocity dispersion, i.e., an
effect that will induce large changes in Bloch wave
vector k with respect to small changes in the inci-
dent parameters. The pioneering work on exploring
the phase-velocity dispersion is due to Lin et al.,1 who
experimentally measured the dispersion properties of a
photonic crystal prism. The magnitude of dispersion
achieved in that experiment is comparable to that in a
classical grating, and approximately 2 orders of mag-
nitude smaller than the largest dispersion reported
using group-velocity dispersion effects.3 However, if
one is willing to accept large insertion losses, a clas-
sical grating can also have increased dispersion in its
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grazing-angle limit, perhaps by an order of magnitude.
Here we show that photonic crystals can be used to re-
alize a magnitude of phase-velocity dispersion much
larger than that of classical gratings in their grazing-
angle limit and thus comparable to that achieved with
the group-velocity dispersion effects. We present de-
signs of photonic crystal prisms that might make ex-
perimental observation of this effect possible.

For definitiveness we now focus on the propagation
direction as the parameter for continuous-wave (cw)
radiation incident from a uniform medium onto a
photonic crystal. The incident radiation is specified
by a plane wave with wave vector kinc, which couples
with one or more Bloch waves with Bloch wave vector
k inside the crystal. Since the component of k par-
allel to the interface, kk, will be Bloch equivalent to
that of kinc after refraction, a small difference in the
incident directions will produce a small change in this
component. Thus, a large change in k is possible only
if the k component perpendicular to the interface, k�,
undergoes a large variation. For this amplification to
happen for a continuous range of kk, the corresponding
region on the dispersion surface should be almost
perpendicular to the crystal interface and f lat. This
criterion points to a regime of dispersion surfaces
with a very small curvature, in contrast to the group-
velocity-based effect that relies on the sharp-corner
regions. In Figs. 1(a) and 1(b) we compare the re-
fraction analysis for both a sharp-corner region and a
f lat region of the dispersion surface. It is clear that,
for the same change in the incident directions, the
induced change in the Bloch wave vector k is much
larger in the latter case. On the dispersion surface
of a photonic crystal, generally there can be many re-
gions where the curvature is small. For the simplest
example, consider a crystal with a one-dimensional
(1D) periodicity with a weak dielectric contrast. The
dispersion surfaces will approximately be multiple
intersecting spheres centered on the reciprocal lat-
tice sites, which are distorted and connected by the
bandgap effect [Fig. 1(c)]. As a result, near the inter-
sections, regions of both large and small curvatures
appear, indicating that both the group-velocity-based
and phase-velocity-based superprism effect may be
possible near a bandgap. However, in this example,
an interface that is perpendicular to the f lat region
of the dispersion surface [near B in Fig. 1(c)] does
© 2004 Optical Society of America
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Fig. 1. (a) A sharp-corner region of the dispersion surface
makes possible large changes in the direction of u � ≠v�≠k
for small changes in kk. (b) A f lat region can produce a
large change in k� by a small change in kk. The k direc-
tion is parallel to the crystal interface, and the � direction
points toward the inside of the crystal. (c) Example
dispersion surfaces of a 1D photonic crystal with period a.
The background dashed lines represent the periodically
shifted dispersion surfaces of a uniform medium. Near
their intersections, regions of both large curvature (near
A1 and A2) and small curvature (near B) appear on
the photonic-crystal dispersion surface. O and G1 are
reciprocal-lattice sites.

not correspond to a major symmetry direction of the
crystal. This may complicate the application of this
analysis because of possible undesired diffractions.

A better approach is to use a two-dimensional (2D)
photonic crystal with a strong dielectric contrast.
Such crystals are known to exhibit very f lat disper-
sion surfaces along major symmetry directions, and
this has been shown to produce beam collimation
effects.4 The present effect can be regarded as essen-
tially a reverse of the collimation process through the
use of a prism-shaped crystal. A specif ic example is
shown in Fig. 2 for the TE modes (electric field in the
plane) traveling inside a 2D square lattice (period a)
of air holes of radius r � 0.35a in dielectric e � 12.
The dispersion surfaces of this system were calculated
in Ref. 14, and Fig. 2(b) shows a surface of frequency
0.17�2pc�a� with extremely f lat regions along the GM
direction. A possible way to demonstrate the angular-
amplification effect is then to use a device as shown
in Fig. 2(a) that couples light to the f lat dispersion
surface. A tiny change in the incident angle can
thus give rise to a huge change in the refracted wave
vector, steering the beam exiting the device within a
large range of directions.

How different is our 2D example from elemen-
tary processes of beams traveling at the grazing
angles, i.e., in refraction from a high-index medium
to a low-index medium or in one of the sidelobes of
diffraction gratings? In these latter possibilities,
a significant change in wave vector k of the outgo-
ing beam can also occur for a small change in the
incident directions. In fact, it is straightforward
to derive that in the outgoing beam a given small
variation of interface-parallel wave vector Dkk from
the exact grazing-angle point will induce a change
in interface-perpendicular wave vector Dk� by the
relation Dk��Dkk � �2��sDkk��1�2, where s is the cur-
vature of the dispersion surface at the exact grazing-
angle point of the outgoing medium. A large angular
amplification can thus also be expected in these
elementary processes in the limit of Dkk ! 0. The
key difference lies in the shape of the dispersion sur-
face. In a uniform material the surfaces are always
spherical, having a constant curvature everywhere,
but in a photonic crystal they become anisotropic
and very different shapes can emerge.5 In the 2D
example above we can have s ! 0 at a k point along
the GM direction, producing a dispersion surface
f latter than that of any uniform medium. In this
way, for a given Dkk a much higher sensitivity of beam
steering can result than for the elementary processes
in their grazing-angle limit. Therefore, the magni-
tude of dispersion here should in principle be able to
reach a level comparable to the largest reported value
obtained by use of group-velocity effects. Moreover,
since light of slightly different incident angles does not
need to be spatially separated within the crystal, the
present effect permits the use of crystals of a smaller
size. Another interesting point is that, while the
group-velocity dispersion effect seems to be favored
in triangular-lattice photonic crystals with strong
directional anisotropy, our effect demonstrates better
performance in square-lattice crystals, in which the
f lat dispersion surfaces occupy a large phase-space
region.

To explore the effects of phase velocities in more
detail, we numerically simulated light transmission
at the two interfaces of the 2D photonic crystal,
using the finite-difference time-domain method. The
incident wave coming from a high-index medium is
modeled as a finite-sized Gaussian beam. Because
light is expected to travel at grazing angles in the
crystal, as with all the elementary processes in this
limit the direct coupling efficiency is usually quite
small. Some particular interface designs that were
recently proposed15 may provide some improvement
to this problem. Here, we adopted a method in the
waveguide f ield that can systematically improve the
coupling eff iciency through adiabatic tapering.16 To
create a smooth transition between the medium and
the crystal, we added between the crystal and the
high-index medium several intermediate hole layers

Fig. 2. (a) Schematic illustration of a prism setup in
which light enters an extra prism of index e � 12 and
goes through the photonic crystal prism. (b) Analysis
of the refraction process at the incident (GM ) crystal
interface. The red contours are the dispersion surfaces
of the photonic crystal, and the blue contour is that of
the incident medium. The gray lines indicate the f irst
Brillouin zone with high-symmetry points G, X, and
M. The thin arrows represent the Bloch wave vectors of
the modes, and the thick arrows are their group velocities.
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Fig. 3. Finite-difference time-domain simulation snap-
shots of the magnetic field perpendicular to the plane for
cw waves [v � 0.17�2pc�a�] with incident angles shown.
The arrows in the outgoing waves indicate the directions
of the peak Poynting vectors. Red, white, and blue
correspond to positive, zero, and negative field values.

whose transverse periodicity is the same as that of the
crystal interface and whose longitudinal periodicity
is gradually tapered. These additional structures
seem to increase the coupling eff iciency into the bulk
crystal to an observable level (with actual numbers
shown below), at least for the modes of our interest
in Fig. 2, which have k� . 0 and can be tapered to
incidence wave vector kinc without passing through
k� � 0.17 An example simulation result of beam
steering is shown in Fig. 3. Here, a Gaussian beam
of half-waist w � 15.8a is used as the incidence from
the high-index medium, and beams of this size are
approximately at the upper limit of simulations that
we can perform on an ordinary computer. The beam
enters the photonic crystal on the tapered interface,
travels inside the crystal, and exits the device into
the air from a perpendicular direct interface as in
Fig. 2(a). As the incident angle from the high-index
medium changes slightly from 47± to 48.4±, a barely
noticeable variation in the incident side, the f ield
pattern of the outgoing beam does experience a sig-
nificant change: the intensity becomes weaker, and
the overall direction swings toward the normal of
the output facet. The angular change in the output
beam is �20±, and the energy carried by the output
beam with respect to the incident beam is estimated
to be 5% in Fig. 3(a) and 0.4% in Fig. 3(b). We
note that in these simulations there are significant
cylindrical-wave patterns accompanying the outgoing
beam, suggesting that diffraction is serious, and
this is due to the f inite-size effect, i.e., the reduced
waist of the beam traveling at grazing angles in
the crystal. Nevertheless, the general trend in the
simulated transmitted beam qualitatively follows our
simple analysis in Fig. 2. The issues associated with
beam-width reduction are a necessary consequence of
the large dispersion and the linearity of the present
effect, and their complete solution, e.g., based on
nonlinear effects, is beyond the scope of this Letter.
We anticipate that the drawbacks may, however, be
partly overcome in realistic experiments simply by
employing a suff iciently wide incident beam. Using a
beam-waist reduction ratio of the order of 1:20 as in
Fig. 3(b), we estimate that a width of 800 wavelengths
in the incident beam should be suff icient to reduce
the diffraction in an outgoing distance of the order
of 1 mm. The size of such a device operating in the
infrared and optical regimes can thus be a few mil-
limeters. Given the large dispersion of such devices,
this size compares favorably with those of gratings
and conventional prisms.

Although we focused on beam steering with respect
to incident directions, very similar conclusions can
also be drawn for beam steering with respect to
changes in the incident frequency, if the dispersion
relations for a f ixed incident angle are analyzed. This
effect can thus be used to separate beams of slightly
different frequencies as well. The 2D example can
be reproduced in experiments using guided modes in
2D photonic-crystal slabs. Similar effects can also
be expected in three-dimensional photonic crystals,
from which free-space beam steering in full space may
become possible.
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