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Minimal Potentials with Very Many Minima

Marin Soljac̆ić1 and Frank Wilczek2

1Princeton University, Princeton, New Jersey 08544-1098
2Institute for Advanced Study, Princeton, New Jersey 08544-1098

(Received 7 May 1999)

We demonstrate, by construction, that simple renormalizable matrix potentials with SN , as opposed to
O�N�, symmetry can exhibit an exponentially large number of inequivalent deep local minima.
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There are many situations where behavior of great com-
plexity arises, or is thought to arise, from simple under-
lying equations. Extensively studied cases include chaos,
turbulence, and spin glasses. Chaos and turbulence involve
long-term dynamics and extended spatial structures, while
spin glasses involve an element of randomness. Here we
will analyze a much simpler case (the simplest known to
us) involving a static, deterministic, and very symmetri-
cal system, wherein simple equations exhibit quite a com-
plicated space of solutions. In particular, we present a
simple class of potentials in n-component order parame-
ters, whose number of local minima unrelated by sym-
metry grows exponentially in n. Our model is closely
related to ones commonly used in studying large N limits
of quantum field theory [1], differing only in that the as-
sumption of some continuous symmetry among the fields
[e.g., O�N�] is replaced by a discrete permutation symme-
try (basically SN ). Of course, it is just such permutation
symmetries which arise in studies of quenched disorder
in long range models of spin glasses, so there is a close
connection to that branch of spin glass theory [2,3]. In
some circumstances the flexibility afforded by imposing
less symmetry might allow better extrapolations than the
traditional one, in the sense that 1�N corrections might be
made smaller, and more complex behaviors captured.

To put the later results in perspective, and to highlight
the minimal requirements for complexity in our frame-
work, let us first consider an example that does not work.
Suppose that we have N order parameters fi, for i �
1, . . . , N . For definiteness, we focus our attention on
no more than quartic potentials; such potentials are also
renormalizable. The most general renormalizable potential
0031-9007�00�84(11)�2285(5)$15.00
symmetric under the SN permuting these parameters, and
under a change in all of their signs simultaneously, is
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Varying with respect to fa, we find that for an extremum
fa must obey a cubic equation. The equation can be writ-
ten in a form that is the same for every value of a. That
is, for a particular fixed minimum, the equation can be
written as a cubic equation in fa, so that the coefficients
of the various terms (when evaluated as constant numbers
for the particular minimum in question) are the same for
all values of a. This cubic equation has at most three real
roots. Of these, at most two are local minima. Therefore,
for any local minimum, the different components of the
order parameter will take at most two distinct values. Thus
for large values of N many of the components will be
equal. Let us suppose there are n1 components with value
r1, and n2 components with value r2, where n1 1 n2 � N
and n2 # n1. Then (for given n1, n2) the conditions for
an extremum will be two polynomial equations of degree
3 in the variables r1 and r2. In general, these will have
at most nine solutions. Taking into account that there
are at most two solutions when n2 � 0, for generic
values of the parameters m, a, and b1, . . . , b5 in the
potential we readily bound the number of distinct minima
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depths by �9N 1 4��2 for N even, and �9N 2 5��2
for N odd. We expect that with more care this number
could be further reduced. Nongeneric values presumably
correspond either to fine tuning of the parameters, which
is not physically realistic, or to enhanced symmetry,
which renders mathematically distinct solutions physi-
cally equivalent. In any case, one does not find here a
straightforward possibility for the exponential growth in
the number of physically distinct minima that we will
encounter shortly.

Instead of vector order parameters, let us now consider
matrices. For simplicity we require that our matrices be
symmetric, so Mij and Mji are the same variable. Each
index runs from 1 to N ; thus, there are N�N 1 1��2 inde-
pendent order parameters in the matrix M. We define the
ath “row-column” of a matrix to be the union of the ath
row and the ath column of the matrix; it is the set of all
Mia’s and all Mai’s for all i’s.

We assume the potential is symmetric under M ! 2M
and under permutation of the values of the labels; none
of the row-columns is to be singled out in any way. For
example, one can take a matrix and, every time one sees
index 3 in the matrix, replace it with index 7, and vice
versa. Thus entries M37 and M73 stay the same, entries
M33 and M77 get interchanged, and, for all other i’s, Mi3
swaps with Mi7, and M3i swaps with M7i . We refer to this
symmetry as the “exchange symmetry” of the potential.

Given these constraints, the allowed quadratic terms in
a potential are

MiiMii , MiiMij , MiiMjj , MijMij ,

MiiMjk , MijMik , and MijMkl . (2)

Here, and hereafter, summation over all indices, even
if they are not repeated, is always assumed. There are
many allowed quartic terms. Terms as highly structured
as MijMjkMklMli and MiiMijMjkMkl are fair game now.

We now demonstrate, by explicit construction, exponen-
tial proliferation of inequivalent local minima in this case.
Our strategy is to use a subset of the allowed terms to
construct a very simple potential with many isolated lo-
cal minima. These are equivalent under a symmetry of
the simplified potential, but not under the smaller sym-
metry of our full class of allowed potentials. We then lift
the degeneracy (and physical equivalence) of these minima
in a controlled way be perturbing with additional allowed
terms, in such a way that they remain local minima.

To begin, we form what we call a plastic-soda-bottle
potential out of the allowed terms (in contrast to a wine-
bottle potential, a plastic-soda-bottle potential in two vari-
ables has four symmetrically arranged dips):
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where a, b . 0 are arbitrary, and no summation over the
indices is assumed. All the local minima lie at:
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They are all related by the accidental symmetry of the
plastic-soda-bottle potential, which allows both indepen-
dent changes in the signs of individual components and in-
terchange of any two components (not just row-columns).

Now we experiment numerically by adding in more of
the allowed terms. The positions of the minima, and their
depths, change as we vary the amounts of the various small
terms we are adding. We are careful that the terms we are
adding are small enough so as not to destabilize any mini-
mum or change the sign of any of the order parameters at
the position of any of the minima. Let us add the terms
of the form MijMjkMklMli and MiiMijMjkMkl with small
coefficients, with N � 2, 3, 4, 5, 6, and track the depth
of each minimum numerically. We then count the number
of distinct numerical values for the potential at the per-
turbed minima. Local minima with distinct energies must
be physically inequivalent, i.e., unrelated by an underlying
symmetry. The results are exhibited in Fig. 1; it appears
that the number of distinct minima classes grows exponen-
tially in the number of the order parameters, in response to
only these two particular terms for the perturbations. Now
we discuss how this proliferation can be understood.

Let us show that the number of minima which are not
related by the exchange symmetry, or by the M $ 2M
symmetry, grows exponentially in the number of the order
parameters. We focus our attention on one very particular
subset of all minima, and prove that the number of min-
ima in this subset that is not related by any of the allowed

2 4 6 8 10 12 14 16 18 20 2210
0

10
1

10
2

10
3

10
4

Number of order parameters: N(N+1)/2

N
um

be
r 

of
 d

is
tin

ct
 m

in
im

a 
cl

as
se

s

FIG. 1. On a semilog plot, the number of distinct minima
classes versus the number of order parameters appears as a
straight line. This is evidence that the number of distinct min-
ima grows exponentially with the number of order parameters.
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symmetries grows exponentially with N2. This subset con-
sists of all minima that can be written in the form∑

B A
AT C

∏
, (5)

where, when N is even, all matrices A, B, and C have
N�2 rows and N�2 columns; when N is odd, B has
�N 1 1��2 rows and �N 1 1��2 columns, while C has
�N 2 1��2 rows and �N 2 1��2 columns; consequently,
A has �N 1 1��2 rows and �N 2 1��2 columns. Further-
more, we require that the matrix B has only positive values
on the diagonal [from now on, denoted by �1�], while the
matrix C has only negative values on the diagonal [from
now on, denoted by �2�], while any other entry of B and
C is “free” to be either �1� or �2� (as long as Mij � Mji).
Note that the number of such free entries grows with N2

for large N . Finally, all entries of the matrix A are fixed; if
N is even, all elements on or above the diagonal are �1�’s,
while all elements below the diagonal are �2�’s; if N is
odd, entry Akl is �1� if k # l, and �2� otherwise.

The reason we focus our attention on this particular sub-
set is that none of its elements are related by the symme-
tries of our class of potentials, as we now discuss. The
proof proceeds in two steps. First, ignoring the existence
of the M $ 2M symmetry, we prove that exchange sym-
metry alone cannot change one member of a subset into
another. Second, we prove that the M $ 2M symmetry
does not cause any further problems.

We propose a “painting scheme” to keep track of where
each entry of the matrix moves during the exchange pro-
cess. Paint each row-column with a different color. Each
Mij for i fi j is covered with two layers of distinct paints;
Mii is covered with two layers of the same paint. Use “light
colors” if �1� is on the diagonal entry of the row-column
you are painting, and use “dark colors” if �2� is on the
diagonal entry. Each entry Mij for i $ j is now labeled
uniquely by its two colors; of course, Mij has the same
colors as Mji , but they are the same variable anyway.

Say the second row-column is yellow and the fifth row-
column is green. Exchanging indices 2 and 5 makes the
fifth row-column yellow and the second row-column green.
Using the coloring scheme, it is easy to keep track of where
each particular entry moved during the exchange. Say the
eleventh row-column was blue initially, and we want to
know where the entry M2,11 ended up after the exchange,
we look for the square of the matrix that is covered pre-
cisely by the yellow, and the blue, paint and conclude that
the entry in question is now at the position M5,11.

Note that every entry of the B matrix initially contains
only light colors, while the matrix C contains only dark
colors. In contrast, every entry of matrix A is painted with
precisely one light and one dark color.

Now, we start with a matrix M1 and permute it into a
matrix M2 so that both of these matrices are elements of
our preferred subset. Note that all rows of A2 and B2 are
painted with light colors, while all columns of A2 and C2
are painted with darker colors; this is so because B2 has
only 1’s on the diagonal, while C2 has only 2’s on the
diagonal. Therefore, the set of all entries of A1 is exactly
the same as the set of all entries of A2; only these entries
are such as to have exactly one light and one dark color.
Suppose that the light colors we have are yellow, orange,
red and pink, and suppose N � 8. Furthermore, suppose
that A1 has the first row yellow, the second row orange,
etc. Since two entries that were the same row-column
before the exchanges stay in the same row-column after
the exchanges, the only way to get exactly 4 �1�’s in
the first row of A2 is to have the first row of A2 yellow.
This implies that the first row-column of M2 is yellow.
Furthermore, the only way to have exactly 3 �1�’s in the
second row of A2 is to have the second row of A2 orange,
implying that the second row-column of M2 is orange, etc.
This way we determine the position of all light colors, and
thereby determine uniquely everything about the matrix
B2. In a similar manner, we determine everything about
the matrix C2. Therefore A1 � A2, B1 � B2, and C1 �
C2, so that M1 � M2. Therefore, there is no symmetry
that relates any two elements of this particular subset.

The particular case N � 8 is just illustrative; what we
said generalizes immediately to any even N , and with only
minor modifications to the case where N is odd.

Now we prove that, during the whole process of trans-
forming M1 into M2, one always has to multiply the ma-
trix with 21 an even number of times. When N is odd,
we have to end up with less �2�’s than �1�’s on the di-
agonal of M2, which is the same as for the diagonal we
started with; however, none of the entries of the diagonal
ever moves off the diagonal during the process. When N
is even, we have to end up with less �2�’s than �1�’s in
the matrix A2, and we already proved during Step 1 of
this proof that A1 consists of the same set of elements as
A2. Therefore, the matrix has to be multiplied with 21
an even umber of times during the process, both when N
is odd and when N is even. Since the operation of multi-
plication with 21 treats all of the elements of the matrix
indiscriminately, it does not matter at all when during the
process we perform these operations; we could perform all
of them before doing anything else, but then, we might as
well not do them at all, since multiplying the matrix with
21 an even number of times leaves the matrix unchanged.

This concludes our proof that the number of local
minima of the special potential that are unrelated by any
symmetry of the general potential grows exponentially in
the number of the order parameters for large N .

Physical intuition suggests that, unless two minima
have a very good reason to have the same depths (e.g.,
an underlying symmetry of the full potential), generically
one would not expect them to have equal depths. Since
the potentials of our class support an exponentially large
number of minima unrelated by symmetry, we expect that
such potentials generally have a number of distinct depths
at local minima that are exponential in the number of order
2287



VOLUME 84, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 13 MARCH 2000
parameters, unless the equations that determine them are
insensitive to the symmetry-breaking structure. That is the
behavior indicated by our numerical work. It differs
markedly from the vector case. The following considera-
tion makes it plausible that the degeneracy among the
physically distinct minima, which occurs for our initial
plastic-soda-bottle potential, is lifted by perturbation with
certain of the allowed potential terms. The derivative
with respect to Mij of a term such as MabMbcMcdMda,
that is, MibMbcMcj , probes the whole structure of M
in a way this is significantly different for each value of
ij. Unlike in the vector case, here the response to the
perturbation, in principle, knows enough about (contains
enough independent measures of) the order parameter to
encode its detailed structure. In the vector case, one would
need to go to Nth order terms, of the type f1f2 · · · fN ,
or higher to encounter similar sensitivity.

We now examine the properties of some particular cases
of our potentials, thus showing concretely how various
minima become physically inequivalent.

To keep things as simple as possible, we add just a tiny
perturbation to the initial plastic-soda-bottle potential. Be-
cause the perturbations are tiny, we are justified in evaluat-
ing the changes in the potential only to first order; we say
that the depth of each minimum moves by whatever pertur-
bation we are adding evaluates to at the original position of
the minimum in question; these positions are given in (4).
To first order, the degeneracy cannot be broken into an ex-
ponentially large number of minima classes; for example,
a quartic term that involves as many as eight different
indices can assume at most O �N8� different values when
evaluated at the positions given in (4), since it is a sum of
N8 terms, each of which can be either a 11 or a 21. Even
if we add all of the allowed terms, each multiplied by an
arbitrary tiny coefficient, at lowest order we still have at
best a power law breaking of the degeneracy.

Nevertheless, the number of distinct minima one can get
by analyzing only to first order is quite large, especially
if we include many allowed terms to create the perturba-
tion. Furthermore, for small perturbations, the expectation
values of different operators typically do not differ signifi-
cantly if we evaluate the changes in the depths only to first
order, as opposed to evaluating them exactly. Moreover, in
practice we sort the minima into energy bins of finite width
in our plots. If our perturbation breaks the degeneracy to
first order into, say, O �N8� distinct minima classes and
N � 6, we have, in principle, up to �106 distinct minima.
Our plots typically involve 200 bins; it does not matter that
we evaluate the depth changes to first order only.

Typical results are displayed in Fig. 2. Plots (A) and
(B) from that figure demonstrate that one can get quite a
rich structure by using only a few of the allowed terms.
Furthermore, the breaking of degeneracy is quite extensive
even when we work to first order only. When we include
more than one perturbative term, the degeneracy break-
ing is even bigger, producing quite a rich structure even at
2288
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FIG. 2. Plots of bin occupation numbers versus the changes in
minima depths, evaluated to first order in the small perturbations.
All plots are for N � 6. The x axes are in arbitrary units. The
width of the bins in plots (A)– (C) is 1022 energy units, and in
plot (D) is 2.5 3 1024 energy units. The term added in plot (A)
was 2MiiMijMjkMkl , while in plot (B) it was 2MijMjkMklMli .
To create plot (C), we add 20 different terms, with random
coefficients multiplying them. Plot (D) is exactly the same as
plot (C), except with much higher bin resolution.

first order. This is visible in plots (C) and (D) of Fig. 2,
where we included 20 of the allowed terms, with random
coefficients multiplying them. Plot (D) has a very high
resolution of almost 40 000 bins for the whole plot; both
plots are for exactly the same potential. Note that in these
plots we count the total number of minima, so that minima
are counted as distinct even if they are related by a sym-
metry. Thus, much of the degeneracy is intrinsic, and will
not be broken in any order of approximation.

An example of the general type of structure described
here arises in the analysis of QCD with many flavors of
quarks at high density. For three flavors, the color-flavor
locking condensate takes the form [4]
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where the Greek indices refer to color and the Latin to
flavor. For our present purposes we are suppressing vari-
ous inessential complications (spin, chirality, momentum
dependence), and emphasizing the existence of the matrix
degree of freedom U, which parametrizes the degenerate
vacua associated with the spontaneous symmetry breaking
SU�3�color 3 SU�3�flavor ! SU�3�color1flavor .

It seems that for 3k flavors the favored condensation is
repeated color-flavor locking [5]. Thus we take the ansatz:
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corresponding to the symmetry breaking SU�3�color 3

SU�3k�flavor ! SU�3�color1diagonal 3 Sk . The residual
SU(3) acts on the flavor indices in blocks of 3, and the
permutation symmetry Sk implements block interchanges.

Now the question arises as to how the energy depends
on the relative alignment of the U�i�. Nontrivial relative
alignments violate the permutation symmetry. We will
not attempt to determine here whether this actually occurs
in the ground state, or in other low-lying states, but we
do want to point out that to analyze this question one
would need to consider potentials resembling those dis-
cussed above, featuring permutation rather than rotation
symmetry in internal space. This case is intermediate in
complexity between the vector and matrix cases discussed
above, in that the permutation acts on a single index (as in
the vector case), but the objects being permuted are chosen
from a complicated manifold, rather than being a simple
choice of sign. Symmetry-breaking correlations of the type
�U�i�U� j�� � M�ij� could produce an effective matrix
structure in the permutation index.
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