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1Department of Physics, University of Zagreb,
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Abstract

Screening is one of the fundamental concepts in solid state physics. It has a great impact on

the electronic properties of graphene where huge mobilities were observed in spite of the large con-

centration of charged impurities. While static screening has successfully explained DC mobilities,

screening properties can be significantly changed at infrared or optical frequencies. In this paper

we discuss the influence of dynamical screening on the optical absorption of graphene and other

2D electron systems like metallic monolayers. This research is motivated by recent experimental

results which pointed out that graphene plasmon linewidths and optical scattering rates can be

much larger than scattering rates determined by DC mobilities. Specifically we discuss a process

where a photon incident on a graphene plane can excite a plasmon by scattering from an impurity,

or surface optical phonon of the substrate.

PACS numbers: 73.20.Mf,73.25.+i
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I. INTRODUCTION

In recent years there has been a lot of interest in the field of plasmonics which seems

to be the only viable path towards realization of nanophotonics: control of light at scales

substantially smaller than the wavelength1. However, plasmonic materials (most notably

metals) suffer from large losses in the frequency regimes of interest, which resulted in a

wide search for better materials2. Lots of attention has recently been given to plasmonics

in graphene3,4, which is a single two-dimensional (2D) plane of carbon atoms arranged in a

honeycomb lattice5,6. One exciting point of interest of 2D materials is that they are tunable.

For example, graphene can be doped to high values of electron or hole concentrations by

applying gate voltage5, much like in field effect transistors. Furthermore, graphene can be

be produced in very clean samples with large mobilities (demonstrated by DC transport

measurements)5,6. The DC scattering rates would imply small plasmon losses in graphene,

however, it is still not clear how the scattering rates change with frequency, particularly

in the infrared (IR) region. Recent nano-imaging measurements7 have demonstrated some-

what increased plasmon losses at IR compared to the estimate based on DC transport

measurements. Measurements of optical transmission through graphene nano-ribbons8 have

demonstrated strong increase of plasmon linewidth with frequency and losses that are much

larger than the DC estimates. However, since the ribbon width in these experiments is

very small (10-100nm) edge scattering can significantly increase the losses. Nevertheless,

a similar experiment9 with graphene nano-rings has demonstrated plasmon linewidths that

approximately agree with the DC estimate.

Finally Electron Energy Loss Experiments (EELS)10 on graphene sheets have demon-

strated huge plasmon linewidths that increase linearly with plasmon momentum; however,

the (DC) transport measurements were not reported so it is not clear what was the actual

quality of the graphene films. It is also interesting to note that similar results11 were ob-

tained with EELS on the mono-atomic silver film which could imply a common origin of

plasmon damping in these two 2D systems. On one hand, metallic monolayers might be

even more interesting from the point of view of plasmonics since they have abundance of

free electrons even in the intrinsic case, while graphene has to be doped with electrons since

it is a zero band gap semiconductor. On the other hand, graphene has superior mechani-

cal properties and was demonstrated in a free standing (suspended) samples while metallic
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monolayers have only been observed on a substrate.

Instead of calculating plasmon linewidth, we will focus on a directly related problem of

optical absorption, which is easier to analyze. In that respect, it was shown experimentally12

that suspended graphene absorbs around 2.3% of normal incident light in a broad range of

frequencies. However, if graphene is doped with electrons, then Pauli principle blocks some

of these transitions and there should be a sudden decrease of absorption below a certain

threshold, which should theoretically occur at twice the Fermi energy. Nevertheless, optical

spectroscopy experiments13 have shown that there is still lots of absorption even below this

threshold. This absorption is much larger than the estimate based on DC measurements.

A great deal of theoretical work addressed this problem14–18, but to our knowledge, the

experimental results have quantitatively not been explained yet.

In this paper, we focus on optical absorption mediated by charged impurity scattering.

As we have already stated, the motivation for studying this problem follows from the fact

that typical graphene samples can have large mobilities (µ ≈ 10000 cm2/Vs) in spite of a

huge concentration of charged impurities19 (ni ≈ 1012 cm−2), which is actually comparable

to the typical concentration of electrons. The reason one can have such a large mobility

is screening19. In fact, if one assumes that electrons scatter from bare charged impurities

described with the Coulomb potential Vq, then the resulting mobility is almost two orders

of magnitude lower than the measured value19. The only way to reconcile the experiment

and theory is to say that the actual scattering potential is screened to Vq/ε(q), where ε(q) is

the static dielectric function. However, in the dynamical case, at finite frequency, screening

is not so effective and ε(q) should be replaced with the dynamic dielectric function ε(q, ω).

This will certainly influence the single particle excitations where an incident photon excites

an electron hole pair through impurity scattering. Moreover, at finite frequency one can have

ε(q, ω) = 0 (at the plasmon dispersion) so there exists an additional decay channel where

an incident photon excites a plasmon of the same energy, through impurity scattering. In

other words, impurities break the translational symmetry (momentum does not need to be

conserved), which allows the photon to couple directly to a plasmon mode. Very recently

another group also calculated this process in graphene but only in the small frequency

limit20. Here we give the result for the arbitrary frequency (both for metallic monolayers

and graphene) which can be very different from the small frequency limit.

More specifically, we calculate the optical absorption in the 2D electron systems with
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the randomly arranged charged impurities. First, we discuss the case of metallic monolayers

which have a parabolic electron dispersion, and then the case of graphene with Dirac electron

dispersion. We focus on a decay channel where the incident photon emits a plasmon through

impurity scattering, but we also discuss a case where the incident photon emits the plasmon

and a surface optical phonon of the substrate. For graphene on SiO2 substrate, the resulting

optical absorption is very small compared to the experimental results13, and not enough to

reconcile the difference between the theory14–18 and the experiment13. On the other hand we

predict large optical absorption by plasmon emission via impurity scattering in suspended

graphene. Thus we believe that these ideas can be tested in suspended graphene. Finally

we note that for suspended graphene (metallic monolayers) the small frequency limit20 gives

an order of magnitude lower (larger) result than the more exact RPA calculation.

II. METALLIC MONOLAYERS

The case of the optical absorption in a bulk 3D system with parabolic electron dispersion

and randomly arranged impurities was already studied by Hopfield21. It is straightforward

to extend his result to a 2D system and here we provide only a brief description of the

calculation.

We study a system described by the Hamiltonian H = H0 +He−e +Hl +Hi, where H0

represents kinetic energy of free electrons, He−e describes electron-electron interaction which

is conveniently represented through the screening effect, Hl describes scattering with light,

and Hi scattering with impurities. Electrons in a metallic monolayer can be described with a

parabolic dispersion: H0 = p2/2m∗, where p is the electron momentum, and m∗ is effective

mass of the electron. Next, let us introduce a monochromatic light beam of frequency ω

which is described by the electric field E(t) = E0e
−iωt + c.c.. This wave is incident normally

on a 2D electron gas, that is E(t) is in the plane of the gas. If we are only interested

in a linear response with respect to this electric field, then interaction of electrons with

light takes a particularly simple expression: Hl = −i e
m∗ω

p · E0e
−iωt + c.c., where we have

introduced electron charge (−e). Further on, since momentum is a good quantum number

even in an interacting electron system, light scattering (Hl) will not change the many-body

eigenstates of H0+He−e, but only the eigenvalues, see Ref.21. Then, one only needs to do the

perturbation theory in the impurity scattering. Unfortunately this trick (due to Hopfield)
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works only in the systems with parabolic electron dispersion, while in the case of Dirac

electrons, like those found in graphene, one needs to do the perturbation theory both in the

light scattering and in the impurity scattering, which is a much more tedious task.

We can write the Hamiltonian for impurity scattering as a Fourier sum over wavevectors

q: Hi =
1
Ω

∑
q Vi(q)e

iq·r, where Ω is the total area of our 2D system. By calculating the

induced current to the second order in Vi(q) one can find the real part of conductivity21:

ℜσ(ω) = − e2

m∗2ω3

1

Ω

∑
q

q2x
1

Ω
|Vi(q)|2

1

Vc(q)
· ℑ 1

ε(q, ω)
(1)

Note that this quantity (ℜσ(ω)) determines the optical absorption in our system. Here

ε(q, ω) stands for a dielectric function of the electron gas and Vc(q) =
e2

2ε̄rε0q
is the Fourier

transform of the Coulomb potential between two electrons in 2D layer embedded between

two dielectrics of average relative permitivity ε̄r = (εr1 + εr2)/2. We have assumed without

loss of generality that the external field points in the x direction (E0 = x̂E0) and is parallel

to the plane of our 2D electron gas.

In the case of randomly assembled impurities at positions Rj, one can write for the scat-

tering potential Vi(q) = −Vc(q)
∑

j e
−iq·Rj . Note that we are assuming positively charged

(e) impurities embedded in a see of negative electrons (−e). Then by averaging over random

impurity positions one has ⟨|Vi(q)|2⟩ = Ni · V 2
c (q), where Ni is the number of impurities22.

Equation (1) depends on the loss function ℑ 1
ε(q,ω)

which generally contains contribution

from single particle excitations and collective (plasmon) excitations. In this paper we focus

solely on the plasmon contribution in which case one can write23:

ℑ 1

ε(q, ω)
=

−π
∂ε
∂ω

· δ(ω − ωq), (2)

where ωq is the plasmon frequency determined by the zero of the dielectric function:

ε(q, ωq) = 0. This term then represents the process where an incident photon excites plasmon

of the same energy, through impurity scattering.

The δ-function from equation (2) extracts only a single wavevector from the sum in

equation (1), which corresponds to the plasmon wavevector at the given frequency ω. Then

one is left with integration over the angle φq which is straightforward to perform since∫ 2π

0
dφq · q2x = πq2.

Finally, we plot the conductivity from expression (1) in Figure 1 by using the dielectric

function ε(q, ω) within Random Phase Approximation (RPA) given in Ref.24. To represent
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the experiment11, which studied silver monolayer on a silicon substrate, we choose εr1 =

εSi = 12, εr2 = 1, the effective mass m∗ = 0.3m, where m is the free electron mass, electron

concentration n = 2 · 1013 cm−2, and we assume the impurity concentration ni = 1012 cm−2.

It is also convenient to look at the small frequency limit (~ω ≪ EF ) in which case only

long wavelength (q ≪ qF ) plasmons contribute to the scattering. Here EF and qF stand for

Fermi energy and Fermi momentum, respectively. In this limit, one can use a simple Drude

model to obtain the dielectric function:

εD(q, ω) = 1− q

ω2
· e2n

2ε̄rε0m∗ . (3)

In this case, plasmon dispersion is simply ω ∝ √
q and one can easily evaluate equations (1)

and (2) to obtain the conductivity:

ℜσ(ω) = πe2

4~
ni

q2TF

(
~ω
EF

)3

. (4)

Here we have introduced the Thomas-Fermi wavevector: qTF = e2m∗

2πε̄rε0~2 , while ni = Ni/Ω

stands for the impurity density. From Fig. 1 b we see that in the case of metallic monolayers

the small frequency limit (dashed line) significantly overestimates the more exact RPA result

(solid line).

III. GRAPHENE

Unfortunately, the trick that Hopfield used in the case of the parabolic dispersion does

not work for Dirac dispersion so one has to do the perturbation theory both in impurity

scattering and in light scattering, while including the screening effect in every order of the

perturbation theory. This is straightforward, but very tedious task, so we give the derivation

of the optical absorption in the Appendix. Here we only write the final result:

ℜσ(ω) = −e
2v2F
ω

1

Ω

∑
q

1

Ω

∣∣∣∣Vi(q)ε(q)

∣∣∣∣2 F 2(q, ω)Vc(q) · ℑ
1

ε(q, ω)
, (5)

where we have assumed general impurity scattering Hamiltonian: Hi =
1
Ω

∑
q Vi(q)e

iq·r (see

the Appendix for more details). In the case of charged impurities one has ⟨|Vi(q)|2⟩ =

Ni · V 2
c (q) after averaging over random impurity positions. Then, to find the contribution

of plasmon emission process one can use equation (2) and the dielectric function which is
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FIG. 1: Plasmon dispersion and optical conductivity for metallic monolayers. In plot (a) we show

plasmon dispersion relation within the Random Phase Approximation (solid line) and within the

Drude model i.e in the small frequency limit (dashed line). Grey area denotes regime of single

particle excitations. Random assembly of impurities break the translation invariance which allows

a zero momentum photon to couple to a finite momentum plasmon (sketched by the red arrow).

In plot (b) we show the optical absorption for the plasmon emission process through impurity

scattering. We plot real part of the conductivity in units of σ0 = e2

4~ , versus photon energy in

units of Fermi energy EF . One can see that the small frequency limit (dashed line) significantly

overestimates the more exact RPA result (solid line).

calculated in Ref.27 within the RPA. The resulting optical absorption, is plotted in Figure 2.

To resemble parameters from the experiment13 we choose electron concentration n = 7 ·1012

cm−2, and impurity concentration ni = 1012 cm−2. Furthermore, we plot the case of graphene

sitting on the SiO2 substrate where ε̄r = 2.5, but also the case of suspended graphene where

ε̄r = 1.

It is also convenient to look at the small frequency limit (~ω ≪ EF ) in which case only

long wavelength (q ≪ qF ) plasmons contribute to the scattering. Then, one can use a simple

Drude model to obtain the dielectric function in graphene3:

εD(q, ω) = 1− q

ω2
· e2vF

√
n

2ε̄rε0~
√
π
. (6)

In this case the function F takes a particularly simple expression (see the Appendix for more

details): F (q, ω) = −qx
π~2ωvF

, and it is straightforward to evaluate expression (5) to obtain:

ℜσ(ω) = πe2

4~
ni

q2TF

(
~ω
EF

)3

. (7)

Note that this is the same result as in the case of metallic monolayers. This is expected

because in the small frequency (long wavelength) limit, one does not expect to see specific
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FIG. 2: Plasmon dispersion and optical conductivity for graphene sitting on the SiO2 substrate

with air above. In plot (a) we show plasmon dispersion within the Random Phase Approximation

(solid line), and within the Drude model i.e. in the small frequency limit (dashed line). Grey

area denotes regime of single particle excitations. Random assembly of impurities breaks the

translation invariance, which allows a zero momentum photon to couple to a finite momentum

plasmon (sketched by the red arrow). This process is possible only when the plasmon dispersion is

outside of the grey area. Otherwise, plasmons are strongly damped due to single particle excitations

(Landau damping). In plot (b) we show optical absorption for plasmon emission process through

impurity scattering. We plot the real part of the conductivity in units of σ0 = e2

4~ , versus photon

energy in units of Fermi energy EF . One can see that the small frequency limit (dashed line) is

very close to the more exact RPA result (solid line). This is related to the fact that in this case

the plasmon dispersion from (a) is very well described by the small frequency limit.

details of the band structure. Of course, in the graphene case, the Thomas-Fermi wavevector

is given by a different expression: qTF = e2qF
πε̄rε0~vF

. We would like to note that the small

frequency limit in the case of graphene was also recently obtained by another group20.

However, from Figure 3 one can see that the small frequency limit can be very different

from the more general RPA result.

If we now compare our results [Figure 2 (b)] with experiment13, we see that this ef-

fect of plasmon emission is relatively small (ℜσ < 0.02σ0) compared to the experimen-

tal results (ℜσ ≈ 0.3σ0) in this regime. One might ask what are the other potentially

strong scattering mechanisms? For example in experiment13, graphene is sitting on SiO2,

which is a polar substrate, so there is a strong interaction of electrons with the surface

polar phonons at energy ~ωSO ≈ 0.15 eV. This is described by the Hamiltonian HSO =
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1
Ω

∑
q VSO(q)

(
eiq·ra†q + e−iq·raq

)
, where a†q is the phonon creation operator. For the square

of the scattering potential we can write28: V 2
SO(q) = Ω e2

2ε0
~ωSO

(
1

εr(∞)+1
− 1

εr(0)+1

)
e−2qz

q
. We

use parameters from Ref.28 for SO scattering: εr(0) = 3.9, εr(∞) = 2.5, and we assume

that the Van der Waals distance between graphene and the substrate is z = 0.35 nm. If we

neglect the frequency dependence of HSO, one can make an estimate of absorption simply

by replacing Vi(q) with VSO(q) in relation (5). Strictly speaking this is valid only at large

frequencies when ω ≫ ωSO, but it should give a reasonable estimate in the regime ω ≈ 2ωSO

which is the relevant regime in experiment13. The resulting absorption is still extremely

small (ℜσ < 0.003σ0) in the regime of interest (~ω ≈ EF ).

Even though our analysis suggests that these loss mechanisms can not be distinguished

from other loss mechanisms in current experiments involving graphene on a SiO2 substrate,

our calculations point out that they should be observable in suspended graphene (see Figure

3). Suspended graphene is a much cleaner system as one can eliminate all the scattering

mechanisms that originate from the interaction with the substrate. Moreover, in optical

transmission measurements on suspended graphene (sketched in Figure 3 (c)) one does not

need to consider optical absorption of the substrate. Suspended graphene can be doped

by depositing electron-donor atoms like Sodium or Lithium. In that case one is left with

impurity ions with the same number as the number of injected electrons. In Figure 3

(b) we plot optical absorption in suspended graphene for identical impurity and electron

concentrations ni = n = 1012 cm−2. One can see that there is a huge optical absorption

through the plasmon emission channel as the real part of conductivity reaches ℜσ ≈ 0.3σ0.

This would correspond to the 0.7% reduction in the intensity of transmitted light, which

could easily be observed as the 2.3% reduction is already visible by naked eye12. Finally

we note that the small frequency limit (equation (7)) underestimates the more exact RPA

calculation (equation (5)) by an order of magnitude.

IV. CONCLUSION

In conclusion, we have studied optical absorption of 2D electron gas in graphene and

metallic monolayers with random distribution of charge impurities. This formalism can also

treat other 2D electron systems like those found in heterostructures, single layer boron-

nitride, or single layer molybdenum-disulphide where we expect similar behavior. Specif-

9



FIG. 3: Plasmon dispersion and optical conductivity for suspended graphene. In plot (a) we show

plasmon dispersion within the Random Phase Approximation (solid line), and within the Drude

model i.e. in the small frequency limit (dashed line). Grey area denotes regime of single particle

excitations. Random assembly of impurities breaks the translation invariance, which allows a

zero momentum photon to couple to a finite momentum plasmon (sketched by the red arrow).

This process is possible only when the plasmon dispersion is outside of the grey area. Otherwise,

plasmons are strongly damped due to single particle excitations (Landau damping). In plot (b)

we show optical absorption for plasmon emission process through impurity scattering. We plot the

real part of the conductivity in units of σ0 = e2

4~ , versus photon energy in units of Fermi energy

EF . One can see that the small frequency limit (dashed line) can be an order of magnitude lower

that the more exact RPA result (solid line). The predicted loss mechanism should be observable

in optical transmission measurements on suspended graphene, as sketched in plot (c). Red circules

with crosses represent positively charged impurity ions that have donated electrons to the graphene

plane. See text for details.

ically, we have focused on a decay channel where an incident photon excites a plasmon

through impurity scattering. For the graphene sitting on a SiO2 substrate, we have also

studied a decay channel where an incident photon excites a plasmon and an optical phonon

of the polar substrate. The resulting optical absorption is more than one order of magnitude

lower than the experimental results13, and not enough to reconcile the difference between the

theory14–18 and the experiment13. On the other hand we predict large optical absorption by

plasmon emission via impurity scattering in suspended graphene. Thus we believe that these

ideas can be tested in suspended graphene. Finally we note that for suspended graphene
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(metallic monolayers) the small frequency limit20 gives an order of magnitude lower (larger)

result than the more exact RPA calculation.

APPENDIX: CALCULATION OF OPTICAL ABSORPTION IN GRAPHENE

We use single particle density matrix (SPDM) approach which is a convenient way to

take into account both temperature and the Pauli principle. Equation of motion for SPDM

ρ is given by29:

i~
∂ρ

∂t
= [H, ρ] , (A.1)

where the Hamiltonian is given by

H = H0 +Hl +Hi +Hs. (A.2)

Here H0 represents kinetic energy of free electrons, Hl describes scattering with light, Hi

scattering with impurities, and Hs describes electron-electron interactions which we only

take in the form of a self-consistent screening field. In the case of graphene, electrons are

described by Dirac dispersion25,26:

H0 = ~vFσ · k, (A.3)

where vF = 106 m/s is Fermi velocity, k is electron wavevector, σ = σxx̂+σyŷ, and σx,y are

the Pauli spin matrices. Let us denote by |nk⟩ eigenstates of H0, where n = 1 stands for the

conduction band, and n = −1 for the valence band. Then the eigenvalues of H0 are given

by Dirac cones: Enk = n~vF |k|. If we now introduce a light source described by the electric

field E(t) = x̂E0e
−iωt + c.c., then scattering with light is determined by the Hamiltonian:

Hl = −ievF
ω
σxE0e

−iωt + c.c., (A.4)

where −e is the electron charge. Furthermore, we can write the Hamiltonian for impurity

scattering as a Fourier sum over wavevectors q:

Hi =
1

Ω

∑
q

Vi(q)e
iq·r, (A.5)

where Ω is total area of our graphene flake, r is the position operator, and Vi(q) is the

Fourier transform of the scattering potential. Here we assume a general scattering potential
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and only later we will specify Vi(q) for the case of charged impurity scattering and surface

polar phonon scattering. Finally, one can also write the screening field as a Fourier sum:

Hs =
1

Ω

∑
q

V s(q)eiq·re−iωt + c.c., (A.6)

but one has to keep in mind that different orders of the perturbation expansion will

have different time dependence (frequencies). Here, the screening field is taken as a self-

consistent electrostatic field that the electrons induce on themselves, so one can write

V s(q) = Vc(q)n(q), where n(q) is the Fourier transform of the electron density, and Vc(q)

is the Fourier transform of the Coulomb potential between two electrons. For a 2D electron

gas embedded between two dielectrics of relative permitivity ε̄r = (εr1 + εr2)/2, one can

write: Vc(q) =
e2

2ε̄rε0q
. Note that this is valid only in the electrostatic limit q ≫ ω/c which is

the relevant regime for our case. Furthermore, since n(q) = Tr {e−iq·rρ}, one can write for

the screening field:

V s(q) = Vc(q) · 4
∑
n1n2k

⟨n1k|e−iq·r|n2k+ q⟩⟨n2k+ q|ρ|n1k⟩, (A.7)

where we have taken into account 2 spin and 2 valley degeneracies. We are now interested

in calculating the current response up to the linear order in the external electric field E(t).

Since the electric field is uniform in the graphene plane, we are only interested in the q = 0

term, and the current density operator is given by jop = − evF
Ω
σ. The induced current will

have only the x component, since the electric field points in the x direction. Finally, the

induced current density is given by j = Tr {jop ρ}, so we can write:

jx = −evF
Ω

· 4
∑
n1n2k

⟨n1k|σx|n2k⟩⟨n2k|ρ|n1k⟩. (A.8)

To include also impurity scattering, we need to calculate the induced current up to the

second order in Vi(q). In other words we need to do a perturbation expansion of SPDM:

ρ = ρ0 + ρl + ρi + ρli + ρlii, (A.9)

where ρ0 is the equilibrium solution to equation (A.1) for independent Dirac electrons in

the absence of impurity scattering and light scattering, ρl ∝ Hl is solution of equation (A.1)

correct up to a linear order in light scattering, ρi ∝ Hi is solution up to the linear order in

impurity scattering, ρli ∝ Hl ·Hi is solution up to linear order both in light scattering and

12



impurity scattering, and ρlii ∝ Hl ·H2
i is solution up to the linear order in light scattering

and quadratic in impurity scattering. Using equation (A.1), we can now write the equation

of motion for every order of SPDM expansion:

i~
∂ρ0
∂t

= [H0, ρ0] , (A.10)

i~
∂ρl
∂t

= [H0, ρl] + [Hl +Hs
l , ρ0] , (A.11)

i~
∂ρi
∂t

= [H0, ρi] + [Hi +Hs
i , ρ0] , (A.12)

i~
∂ρli
∂t

= [H0, ρli] + [Hi +Hs
i , ρl] + [Hl +Hs

l , ρi] + [Hs
li, ρ0] , and (A.13)

i~
∂ρlii
∂t

= [H0, ρlii] + [Hi +Hs
i , ρli] + [Hs

li, ρi] + [Hs
lii, ρ0] . (A.14)

The equilibrium solution of equation (A.10) describes the free electrons and is given by:

⟨n2k+ q|ρ0|n1k⟩ = δn1,n2δq,0 · fn1k, (A.15)

where δa,b is the Kronecker delta symbol and fnk =
[
e(Enk−EF )/kT + 1

]−1
is the Fermi-Dirac

distribution at temperature T and Fermi energy EF . Using relation (A.15) we can write the

solution of equation (A.11) as:

⟨n2k+ q|ρl|n1k⟩ = −ievF
ω
E0 · δq,0⟨n2k|σx|n1k⟩

fn1k − fn2k

~ω + En1k − En2k

, (A.16)

which is a stady-state solution of SPDM that oscillates at frequency ω. Here we have used the

following relation: ⟨n2k+ q|σx|n1k⟩ = δq,0⟨n2k|σx|n1k⟩. We have neglected the screening

field Hs
l in equation (A.11) since the 2D electron gas can not screen the uniform electric

field. This can be seen below from equation (A.40) which gives the dielectric function of

graphene in the long wavelenght limit. One can immediately see that ε(q = 0, ω) = 1 which

means that there is no screening in the q = 0 limit.

Let us now focus on equation (A.12). We can introduce a self-consistent Hamiltonian

Hsc
i = Hi +Hs

i , and write: Hsc
i = 1

Ω

∑
q V

sc
i (q)eiq·r, where V sc

i = Vi + V s
i is a self-consistent

scattering potential that consists of a bare impurity scattering potential Vi, and a screening

field V s
i . By solving equations (A.7) and (A.12) in a self-consistent way one can show that

V sc
i (q) = Vi(q)/ε(q), where ε(q) is the static dielectric function. The dynamic dielectric

function of graphene is generally

ε(q, ω) = 1− Vc(q)
4

Ω

∑
n1n2k

fn1k − fn2k+q

~ω + En1k − En2k+q

|⟨n2k+ q|eiq·r|n1k⟩|2, (A.17)
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and one can simply check that ε(q) = ε(q, ω = 0). Finally, the solution to equation (A.12)

can be written as

⟨n2k+ q|ρi|n1k⟩ =
1

Ω

Vi(q)

ε(q)

fn1k − fn2k+q

En1k − En2k+q

⟨n2k+ q|eiq·r|n1k⟩. (A.18)

To solve the next order of perturbation theory ρli we need to include the screening field

described by a Hamiltonian Hs
li =

1
Ω

∑
q V

s
li (q)e

iq·re−iωt + c.c.. One can then solve equation

(A.13) by using results (A.15), (A.16) and (A.18) to obtain:

⟨n2k+ q|ρli|n1k⟩ =
1

Ω
V s
li (q)

fn1k − fn2k+q

~ω + En1k − En2k+q

⟨n2k+ q|eiq·r|n1k⟩

+
1

Ω

Vi(q)

ε(q)
(−i)evF

ω
E0

1

~ω + En1k − En2k+q

×

×

(∑
n3

⟨n2k+ q|eiq·r|n3k⟩⟨n3k|σx|n1k⟩
fn1k − fn3k

~ω + En1k − En3k

−
∑
n3

⟨n2k+ q|σx|n3k+ q⟩⟨n3k+ q|eiq·r|n1k⟩
fn3k+q − fn2k+q

~ω + En3k+q − En2k+q

+
∑
n3

⟨n2k+ q|σx|n3k+ q⟩⟨n3k+ q|eiq·r|n1k⟩
fn1k − fn3k+q

En1k − En3k+q

−
∑
n3

⟨n2k+ q|eiq·r|n3k⟩⟨n3k|σx|n1k⟩
fn3k − fn2k+q

En3k − En2k+q

)
. (A.19)

Next, one can use relation (A.7) to obtain the screening field in a self-consistent way:

V s
li (q) =

Vi(q)

ε(q)

Vc(q)

ε(q, ω)
(−i)evF

ω
E0

4

Ω

∑
n1n2n3k

⟨n1k|e−iq·r|n2k+ q⟩
~ω + En1k − En2k+q

×

×
(
⟨n2k+ q|σx|n3k+ q⟩⟨n3k+ q|eiq·r|n1k⟩

fn1k − fn3k+q

En1k − En3k+q

−⟨n2k+ q|eiq·r|n3k⟩⟨n3k|σx|n1k⟩
fn3k − fn2k+q

En3k − En2k+q

)
, (A.20)

where ε(q, ω) is the dynamic dielectric function given in (A.17). Note that the terms con-

taining fn1k−fn3k and fn3k+q−fn2k+q have disappeared after summation over n1, n2, n3 and

k. One can also demonstrate the following important property: V s
li (−q) = −V s

li (q). Finally,

one can use equation (A.14) to find ρlii, and equation (A.8) to find the induced current up

14



to the first order in light scattering, and the second order in impurity scattering:

jliix = −evF
Ω

· 4
∑

n1n2n3k,q

⟨n1k|σx|n2k⟩
~ω + En1k − En2k

×

×
(
1

Ω

Vi(q)

ε(q)
⟨n2k|e−iq·r|n3k+ q⟩⟨n3k+ q|ρli|n1k⟩

− 1

Ω

Vi(q)

ε(q)
⟨n2k|ρli|n3k− q⟩⟨n3k− q|e−iq·r|n1k⟩

+
1

Ω
V s
li (−q)⟨n2k|e−iq·r|n3k+ q⟩⟨n3k+ q|ρi|n1k⟩

− 1

Ω
V s
li (−q)⟨n2k|ρi|n3k− q⟩⟨n3k− q|e−iq·r|n1k⟩

)
. (A.21)

Note that we have neglected the screening field Hs
lii since we need only the q = 0 component

of ρlii to obtain jliix , and there is no screening in the 2D electron gas in the q = 0 case. Also

note that we have skipped the lower orders in the induced current since one can generally

show that jlix = 0. On the other hand jlx ̸= 0 but we are here interested in the optical

absorption below interband threshold ~ω < 2EF , where ℜjlx = 0. Finally, to evaluate the

current component jliix from expression (A.21) we need to use expression (A.18) for ρi and

expression (A.19) for ρli. The resulting conductivity is:

σlii(ω) = i
e2v2F
ω

1

Ω

∑
q

1

Ω

∣∣∣∣Vi(q)ε(q)

∣∣∣∣2 ×
×

(
Vc(q)

ε(q, ω)
F 2(q, ω) +

4

Ω

∑
n1n2n3n4k

G(n1, n2, n3,k,q, ω) ·H(n1, n2, n4,k,q, ω)

)
, (A.22)

where the functions F , G and H are given by the following expressions:

F (q, ω) = − 4

Ω

∑
n1n2n3k

fn1k − fn2k+q

En1k − En2k+q

×

×
(
⟨n3k|e−iq·r|n2k+ q⟩
~ω + En3k − En2k+q

⟨n2k+ q|eiq·r|n1k⟩⟨n1k|σx|n3k⟩

−⟨n1k|e−iq·r|n2k+ q⟩ ⟨n2k+ q|eiq·r|n3k⟩
−~ω + En3k − En2k+q

⟨n3k|σx|n1k⟩
)
. (A.23)

G(n1, n2, n3,k,q, ω) =
1

~ω + En1k − En2k+q

×

×
(
⟨n3k|e−iq·r|n2k+ q⟩ ⟨n1k|σx|n3k⟩

~ω + En1k − En3k

−⟨n1k|e−iq·r|n3k+ q⟩ ⟨n3k+ q|σx|n2k+ q⟩
~ω + En3k+q − En2k+q

)
. (A.24)
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H(n1, n2, n4,k,q, ω) = ⟨n2k+ q|eiq·r|n4k⟩⟨n4k|σx|n1k⟩×

×
(

fn1k − fn4k

~ω + En1k − En4k

− fn4k − fn2k+q

En4k − En2k+q

)
+ ⟨n2k+ q|σx|n4k+ q⟩⟨n4k+ q|eiq·r|n1k⟩×

×
(
− fn4k+q − fn2k+q

~ω + En4k+q − En2k+q

+
fn1k − fn4k+q

En1k − En4k+q

)
. (A.25)

However, if we are interested only in the contribution from the collective excitations, we can

neglect the single particle excitations to obtain:

ℜσ(ω) = −e
2v2F
ω

1

Ω

∑
q

1

Ω

∣∣∣∣Vi(q)ε(q)

∣∣∣∣2 F 2(q, ω)Vc(q) · ℑ
1

ε(q, ω)
. (A.26)

Note that this is the complete expression for the real part of conductivity, i.e. ℜσ(ω) =

ℜσlii(ω) since ℜσl(ω) = 0 in this regime, and generally ℜσli(ω) = 0. Then, since we are

only interested in the plasmon contribution one can write the loss function as

ℑ 1

ε(q, ω)
=

−π
∂ε
∂ω

· δ(ω − ωq) =
π
∂ε
∂q

· δ(q − qω), (A.27)

where ωq is plasmon frequency at a given wavevector q, and qω is plasmon wavevec-

tor at a given frequency ω, which is determined by the zero of the dielectric function:

ε(q, ωq) = ε(qω, ω) = 0. Note that δ-function from equation (A.27) extracts only a single

wavevector from the integral
∫
dq in equation (A.26). Moreover, one can explicitly perform

the remaining integral
∫
dφq. To demonstrate this we start by writing the expression for

the Dirac wave function in coordinate representation:

ψn,k(r) = ⟨r|nk⟩ = 1√
2Ω

 n

eiφk

 eik·r. (A.28)

It is straightforward to calculate the following matrix elements:

⟨nk|e−iq·r|n′k+ q⟩ = 1

2

(
nn′ + e−iφk+iφk+q

)
, (A.29)

⟨n′k+ q|eiq·r|nk⟩ = 1

2

(
nn′ + eiφk−iφk+q

)
, (A.30)

⟨n′k|σx|nk⟩ =
1

2

(
ne−iφk + n′eiφk

)
. (A.31)
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Furthermore, the product of the last three terms can be written as:

⟨nk|e−iq·r|n′k+ q⟩⟨n′k+ q|eiq·r|n′′k⟩⟨n′′k|σx|nk⟩ =

=

(
1

4
(1 + nn′′) +

n′

4
(n+ n′′)

k + q cosφ

|k+ q|
+ i

n′

4
(n− n′′)

q sinφ

|k+ q|

)
×
(
cosφ

2

[
n′′eiφq + ne−iφq

]
+ i

sinφ

2

[
n′′eiφq − ne−iφq

])
, (A.32)

where φ = φk − φq. Finally one can show that:

F (q, ω) = F̃ (q, ω) · cosφq (A.33)

where F̃ (q, ω) depends only on the magnitude of the wavevector q and is given by the

following expression:

F̃ (q, ω) = − 4

Ω

∑
n1n2n3k

fn1k − fn2k+q

En1k − En2k+q

(
1

~ω + En3k − En2k+q

− 1

−~ω + En3k − En2k+q

)
×
{
n1(n1 + n3)

(
n1 + n2

k + q cosφ

|k+ q|

)
cosφ

4
+ n1(n1 − n3)n2

q sinφ

|k+ q|
sinφ

4

}
.

(A.34)

Now one can indeed see that the that integration over dφq in equation (A.26) simply con-

tributes with the following factor:
∫ 2π

0
dφq cos

2 φq = π. Finally, equation (A.26) is reduced

to the following expression:

ℜσ(ω) = −e
2v2F
ω

1

4π
q
1

Ω

∣∣∣∣Vi(q)ε(q)

∣∣∣∣2 F̃ 2(q, ω)Vc(q) ·
π

∂ε(q,ω)
∂q

∣∣∣∣∣
pl

, (A.35)

where q is the plasmon wavevector at the frequency ω. To evaluate this expression one needs

to calculate the double integral
∫
dk
∫
dφk to evaluate the function F̃ (q, ω). This can be

further simplified at zero temperature when the Fermi-Dirac distrubution is a step function.

In that case, we can group (n1, n2, n3) and (−n1,−n2,−n3) terms in equation (A.34) to

obtain:

F̃ (q, ω) = − 4

Ω

∑
n1n2n3k

fk − fk+q

En1k − En2k+q

(
1

~ω + En3k − En2k+q

− 1

−~ω + En3k − En2k+q

)
×
{
n1(n1 + n3)

(
n1 + n2

k + q cosφ

|k+ q|

)
cosφ

4
+ n1(n1 − n3)n2

q sinφ

|k+ q|
sinφ

4

}
,

(A.36)
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where fk = fn=1,k stands for the Fermi-Dirac distribution of the conduction band, and we

have assumed electron doping i.e. EF > 0. We perform a numerical integration to evaluate

the function F̃ (q, ω); however, one can obtain a closed expression in the small frequency

limit when ~ω ≪ EF . In that case, only intraband transitions contribute and one can set

n1 = n2 = n3 = 1 in equation (A.36). Furthermore, in that case plasmon wavevector q is

much smaller than the Fermi wavevector qF so one can use the long wavelength expansions:

Ek − Ek+q = −∇kEk · q, and (A.37)

fk − fk+q = − ∂f

∂E
(∇kEk · q). (A.38)

Next, it is straightforward to perform integration in equation (A.36) to obtain long wave-

length (small frequency) approximation:

F̃ (q, ω) = − q

π~2ωvF
. (A.39)

In a similar manner, from equation (A.17), one can obtain the dielectric function in this

approximation:

ε(q, ω) = 1− q

ω2
· e2vF

√
n

2ε̄rε0~
√
π
, (A.40)

which is just the Drude model for the dielectric function in graphene3.

Finally, from equation (A.35) we obtain optical absorption in the small frequency limit:

ℜσ(ω) = πe2

4~
ni

q2TF

(
~ω
EF

)3

, (A.41)

where qTF = e2qF
πε̄rε0~vF

is the Thomas-Fermi wavevector.
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