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We show that there are shape-independent upper bounds to the extinction cross section per unit volume
of dilute, randomly arranged nanoparticles, given only material permittivity. Underlying the limits are
restrictive sum rules that constrain the distribution of quasistatic eigenvalues. Surprisingly, optimally
designed spheroids, with only a single quasistatic degree of freedom, reach the upper bounds for four
permittivity values. Away from these permittivities, we demonstrate computationally optimized structures
that surpass spheroids and approach the fundamental limits.
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Many applications [1–8] employ disordered collections
of particles to absorb or scatter light, and the extinction
for a given total particle volume (for a dilute system in
which coagulation and multiple scattering are negligible) is
determined by the total extinction (scatteringþ absorption)
cross section per unit volume σext=V of the individual
particles [9,10]. In this Letter, we prove fundamental upper
bounds on σext=V for small metallic particles of any shape,
we show that previous work on maximizing particle
scattering [10–14] (including “superscattering” [15–17])
was a factor of 6 or more from these bounds, and we
employ a combination of analytical results and large-scale
optimization (“inverse” design) to discover nearly optimal
particle shapes. Most previous work in this area was
confined to spheres [10,12,16,18,19] or a few high-
symmetry shapes [11,13–15,17], whereas we optimize
numerically over shapes with ≈1000 free parameters
(and prove our theorem for completely arbitrary shapes)
over the visible spectrum, and we also consider coated
multimaterial shapes. We find that the optimal σext=V is
invariably obtained for subwavelength particles where
absorption dominates and the quasistatic approximation
applies. We can then apply a little-known eigenproblem
formulation of quasistatic electromagnetism in terms of
“resonances” in the permittivity ϵ (not in the frequency ω)
[20–24], and we employ various sum rules of these
resonances [20,25,26] to derive a bound on the cross
section. Surprisingly, very different optimized shapes (such
as ellipsoids or “pinched” tetrahedra) exhibit nearly iden-
tical σextðωÞ spectra (greatly superior to nonoptimized
particles) once σext is averaged over incident angle, a result
we can explain in terms of the quasistatic resonances.
Finally, we explain how our bounds provide materials
guidance in various wavelength regimes, with potential
applications ranging from cancer therapy [1–3] and

plasmonic biosensors [4–6,27] to next-generation solar
cells [28] and optical couplers [29].
Some previous bounds on optical properties of dilute

particle suspensions have been derived [30–34]. Purcell
derived a sum rule limiting the integral over all frequencies
of extinction by spheroids [35]. The limit has been
extended to a variety of materials and structures [30–33],
but is geometry dependent and difficult to apply as a
general rule. Alternatively, many authors have bounded the
effective “metamaterial” permittivity of composite media
[36–39], a related but not identical problem. The methods
presented here, applied to the effective permittivity of a
lossless dielectric, are able to reproduce the well-known
Hashin-Strikman bounds [40,41] of composite theory.
A single numerical optimization conceptually demon-

strates many key findings for nanoparticle extinction. To
illustrate, we design a silver particle, for maximum fre-
quency- and angle-averaged extinction cross section per unit
volume, σext=V, over a 33 nm bandwidth at center wave-
length λ ¼ 437 nm (Q ¼ 13). We do not impose quasistatic
conditions a priori; we employ the full Maxwell equations.
Ultimately, the optimizations always converged to very
small, essentially quasistatic sizes, and there is reason to
believe that such quasistatic sizes may be globally optimal
for metals. For quasistatic particles (size approaches 0), σ=V
is a constant. As the particle size increases and moves away
from the quasistatic limit, the number of surface modes
increases proportional to the surface area, so σ=V decreases.
Further size increases reach the geometric-optics limit,
where σ=V → 0 as V → ∞.
We employed a number of techniques to make the

optimization tractable. To quickly solveMaxwell’s equations,
we used a free-software implementation [42,43] of the
boundary-element method [44]. Angle averaging is essen-
tially free with such a solver. In many applications, the figure
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of merit is a frequency-averaged extinction, defined by the
integral σext ¼

R
σextðωÞHΔωðωÞdω. We efficiently compute

this integral by contour integration, which for a LorentzianH
of bandwidth Δω reduces to a single scattering problem at a
complex frequency ω0 þ iΔω [45–47]. For optimization, the
particle shapewas parametrized by the zero level set of a sum
of spherical harmonics [48], i.e., rðθ;ϕÞ ¼ P

lmclmYlmðθ;ϕÞ
(restricting us to “star-shaped” structures). Given the gradient
of the objective with respect to these ≈1000 degrees
of freedom (efficiently computed by an adjoint method
[49–51]), we employ a free-software implementation [52]
of standard nonlinear optimization algorithms [53] to find a
local optimum from a given starting point. We also optimized
the few degrees of freedom of coated spheres and ellipsoids
for the sake of comparison.
Figure 1 depicts the optimal particles and their respective

extinction spectra. The optimal designs were in the quasi-
static limit, with dimensions ≈10 nm. A 10 nm size is not
uniquely optimal, but is rather the size at which performance
is dominated by quasistatic response. Doubling the size is
clearly worse (≈2%), whereas a tenfold size reduction is
better by only 0.2%, within the meshing error. Furthermore,
our calculations do not account for the quantum plasmonic
properties of very small particles, which would tend to
decrease performance below 10 nm dimensions [54].
We see that uncoated ellipsoids provide significant gains

over coated spheres, which already provide a substantial
response [1,3,10,55] (coated ellipsoids showed no further
benefit). This suggests a principle that tuning resonances by
geometrical deformation rather than by coatings enhances
performance. Oblate (“pancake”) ellipsoids are superior to
prolate (“rod”) ellipsoids, because they couple to two of the
three polarizations of randomly oriented incident waves. In
themuch larger spherical-harmonicsdesignspace, theoptimal

structure turned out to be a “pinched” tetrahedron (PT),which
can be conceptualized as pinching a sphere towards the four
centroidsof thefacesofan inscribed tetrahedron.Surprisingly,
themuch larger design space yielded a structure that was only
2%better than the best ellipsoid. The two structures havevery
different responses for a given incidence angle and polariza-
tion; only when averaged over angle and polarization do the
responses become nearly identical. Also shown in Fig. 1 are
the imaginary parts of the charge densities for resonant
incident waves, explained below. Intuitively, the ellipsoid
and PT are better than a coated sphere because the opposing
surface charges have larger spatial separations.
The nearly identical spectra for the spheroid and PT can

be explained by a fundamental restriction on quasistatic
eigenmodes, which are prevented from fully coupling to
external radiation. In the quasistatic limit, the incident field is
locally constant and the response of the system is determined
by induced charge densities at the surfaces. One can
construct the fields from the homogeneous Green’s functions
of the induced surface charges σðxÞ. For a surface S, the
surface integral equation for the charge density is [20–24]:

ΛσðxÞ−
Z
S
n̂ðxÞ ·GEðx−x0Þσðx0ÞdS0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
K̂σ

¼EincðxÞ · n̂ðxÞ; (1)

where Λ ¼ ðϵint þ ϵextÞ=2ðϵint − ϵextÞ relates interior and
exterior permittivities, the electrostatic Green’s function
GEðxÞ ¼ x=4πjxj3, and EincðxÞ · n̂ðxÞ is the normal com-
ponent of the incident field at x (boldface indicates vector
quantities). As distinguished from the resonant frequencies of
Maxwell’s equations, there are resonantpermittivities ϵint=ϵext
for the quasistatic integral equation. These are negative, real-
valued permittivities ϵn at which self-sustaining charge
densities existwithout external fields, for specific eigenmodes
σn satisfying K̂σn ¼ λnσn, where K̂ is theNeumann-Poincaré
integral operator defined by Eq. (1). The eigenvalues λn lie in
the interval [−1=2, 1=2] [23,24,56], such that ϵn < 0. The left
eigenvectors of K̂, denoted τn, have the same eigenvalue
spectrum as the σn (i.e., K̂†τn ¼ λnτn) and provide the
orthogonality condition hσn; τmi ¼

R
S σnτmdS ¼ δmn [23].

Equation (1) is valid for linear, isotropic, and non-
magnetic materials. Its generalization to multiple surfaces
takes Λ to a diagonal matrix [57]; the eigenmode decom-
position of K̂ imposes strict requirements on the allowable
form of the matrix, such that each interface must separate
the same materials. Thus, Eq. (1) is valid for arbitrarily
many interacting objects, possibly coated or holey (e.g.,
torii), as long as there are only two permittivities.
The eigenmodes of K̂ contribute to absorption and

scattering through α, the particle’s polarizability per unit
volume V, which relates the incident field to the dipole
moment by pl ¼ V

P
mαlmE

inc
m . Decomposing the charge

density as a superposition of eigenmodes, σ ¼ P
ncnσn,

solving for cn via Eq. (1) and for the dipole moment via
p ¼ R

S xσdA, yields

400 420 440 460 480 500
0

0.1

0.2

0.3

0.4

0.5

Wavelength, λ (nm)

σ ex
t / 

V
  (

nm
−

1 )

pinched
tetrahedron

ellipsoid

coated
sphere

FIG. 1 (color online). Angle-averaged extinction cross section
per unit volume of computationally optimized Ag particles,
designed for λ0 ¼ 437 nmandΔλ ¼ 33 nm.Anellipsoid provides
almost twice the extinction of an optimally coated sphere, but
optimizing over≈1000 spherical harmonics basis functions yields
only a 2% further improvement, due to fundamental limits on
the eigenvalue distribution. Surface coloring depicts the charge
density on resonance, where ϵAgð437 nmÞ ≈ −5.5þ 0.7i. Particle
dimensions are ≈10 nm.
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αlm ¼
X
n

plm
n

Ln − ξðωÞ ; (2)

where plm
n ¼ hσn; xlihτn; n̂mi=V is the dipole strength of

each mode, Ln ¼ 1=2 − λn is the depolarization factor, and
ξðωÞ ¼ −ϵint=ðϵint − ϵextÞ represents the relative properties
of the interior and exterior materials.
The distribution of eigenmodes, and therefore the

induced susceptibility, is restricted by two crucial sum
rules. The first is the f-sum rule [25,58], limiting the total
dipole strength for uncoated particles:

X
n

plm
n ¼ δlm: (3)

The total dipole strength of coated particles is reduced by the
metallic volume fraction f [58]. The second sum rule [26,58],
applicable for coated and uncoated particles, states that the
weighted average of the depolarization factors must be 1=3:

hLni ¼
P

npnLnP
npn

¼ 1

3
; (4)

where pn denotes
P

lp
ll
n .

A sphere has a depolarization factor of 1=3, leading to a
“plasmon” resonance at ϵ ≈ −2 (ξ ¼ 1=3). Equation (4)
dictates that the average depolarization factor of every
structure must equal that of the sphere. Although it was
exploited for composites with certain symmetries [59,60],
this general property has not been widely recognized and is
very important in limiting possible extinction rates.
The average extinction of randomly arranged particles is

proportional to the imaginary part of Trαlm [9], which is
given by Eq. (2):

σext
V

¼ 2π

3λ

X
n

Im

�
1

Ln − ξðωÞ
�
pn: (5)

A resonance occurs for Ln ¼ ξrðωÞ, where r and i sub-
scripts denote real and imaginary parts, respectively. For
particles in vacuum with susceptibility χðωÞ ¼ ϵðωÞ − 1,
ξðωÞ ¼ −1=χðωÞ. Only metals, with ϵrðωÞ < 0, can
achieve 0 < ξr < 1, and therefore exhibit quasistatic sur-
face-plasmon modes. The second sum guarantees that
(except in the case ξr ¼ 1=3) a particle cannot have all
of its dipole strength on resonance; there must always be a
counterbalancing dipole moment such that hLni ¼ 1=3.
For a given material parameter ξrðωÞ, we can show that

the optimal distribution of eigenmodes has at most two
distinct depolarization factors, L1 and L2. We have rigor-
ously derived the exact locations of the two eigenvalues
[58], but for relevant materials a simple solution suffices:

ðL1; L2Þ ¼

8>><
>>:

ðξr; 1Þ 0 < ξr < 1=3

ð0; ξrÞ 1=3 < ξr < 1

ð0; 1Þ ξr < 0 or ξr > 1;

(6)

which corresponds to placing as much of the dipole moment
as possible on resonance (L ¼ ξr), and the rest of the dipole
strength at the opposite boundary to satisfy the second sum
rule. Equation (6) is exact for ξi ¼ 0 (both a low-loss χi ¼ 0
and infinite-loss χi → ∞ limit), but is also very accurate
(error < 10−3) otherwise. With Ln given by Eq. (6), we can
solve for pn from Eqs. (3) and (4). Plugging Ln and pn into
Eq. (5) yields theupper limit to the extinctionper unit volume:

σext
V

≤
2π

3λ

8>>>><
>>>>:

2χ3rð1þχrÞþχ2i ð3þ2χrþ4χ2rÞþ2χ4i
χiðχ2iþð1þχrÞ2Þ 0 < − χr

jχj2 <
1
3

3χi − χr
χi
jχj2 1

3
< − χr

jχj2 < 1

χi
�
2þ 1

χ2iþð1þχrÞ2
�

else;

(7)

which provides a limit for any possible susceptibility,
independent of geometry. Ideal scatterers are uncoated, and
have metallic permittivities with small imaginary parts (as in
Ref. [19]) and very negative real parts; for ϵi ≪ jϵrj, Eq. (7)
simplifies to

σext
V

≤
4π

3λ

ϵ2r
ϵi
þOðϵiÞ; (8)

where the “O” notation indicates the asymptotic scaling of the
higher-order term.
Equations (7) and (8) represent fundamental limits to

quasistatic particle extinction. Figure 2 illustrates these limits
by normalizing them relative to the value of extinction on
resonance, σres ¼ 2π=3λξiðωÞ, and comparing them to ellip-
soid limits computed through nonlinear optimization [52].
The structural eigenmodes were computed with boundary-
element method software [61]. σext=σres can be thought of as
the number of fully coupled polarizations; only at ξr ¼ 1=3
(ϵr ≈ −2) can full coupling to all three polarizations occur.
Thus we see why ellipsoids perform very well, and why the
optimal structure of Fig. 1 barely outperformed the ideal
ellipsoid: in many cases, full coupling to two polarizations
closely approaches the ideal performance. This is exactly true
for ϵr → −∞, one of the cases in which ellipsoids reach the
upper bound. The other three cases are ϵr ¼ −2, ϵr ¼ −1,
and ϵr ¼ 0, for which a sphere, infinite cylinder, and
infinitely thin disk are optimal, respectively. In each case,
the spheroid depolarization factors [9] are identical to those of
the optimal general shape, given by Eq. (6).
Included in Fig. 2 are optimizations at other permittiv-

ities (assuming the complex permittivity of Ag); there is a
family of “pinched tetrahedron” structures that emerge as
superior design choices over ellipsoids. It is important to
note that spheres are not globally optimal, as the normali-
zation factor σres is a function of ϵr. The inset shows the
absolute extinction, which scales as ϵ2r=ϵi.
The limits of Eqs. (7) and (8) may appear to contradict

arguments in coupled-mode theory (CMT) [16,62], but in
fact do not. CMT predicts σext ∼ λ2 scaling only when
radiation loss dominates over absorption loss; when
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absorption dominates, CMT predicts σext ∼ V=λ, as in
Eqs. (7) and (8). Absorption loss dominates for
ð2πa=λÞ3 ≪ ϵi (Refs. [18,63]), which is satisfied by all
quasistatic metallic particles in the visible and infrared.
Figure 3 shows the depolarization factor distributions of

the ideal pinched tetrahedron and ellipsoid structures, as
well as nonideal structures. We see that the dipole moments
are largely concentrated at the desired permittivity, except
as required to keep the centroid of Ln equal to 1=3. The
tetrahedra have the off-resonance dipole moments distrib-
uted closer to the boundary Ln ¼ 1 than ellipsoids, explain-
ing the slightly superior performance.
Figure 4 illustrates the general utility of the bounds of

Eq. (7). For a given permittivity, a maximum extinction per
unit volume can be computed independent of structure. This
has important implications for material selection, which
varies by application and frequency. Although the bounds
are quasistatic, as discussed earlier the quasistatic boundmay
be globally optimal. Indeed, the infrared extinction limits are
3 orders of magnitude larger than the best nonquasistatic
particles investigated to date [7]. Although the bounds are for
a single frequency, through complex-frequency calculations,
or known material quality factors (geometry-independent
[64]), rational design for any bandwidth is possible.
Wecancompareourstructures to recentlyproposed“super-

scattering” structures [15–17]. Of primary importance is the
figure of merit (FOM). For applications, volume or weight is
the relevant normalization. Normalizing by λ2, as in [15–17],
favors larger particles approaching wavelength scale. A
smaller particle with larger σext=V likely cannot extinguish
a full squarewavelength.Yet a dilutemixture of such particles

could, with much smaller volumes. As an example, two
quasistatic nanoellipsoids, with an 8:1 major to minor axis
ratio can achieve the sameσext=λ2 as the single particle in [16],
while requiring1=270thof thevolume.Asingle“channel” ina
nonsphericalstructurecanextinguishmuchmorestronglythan
multiple channels in a spherical structure.
Small, absorbing nanoparticles show promise for a variety

of scientific and technical applications. Experimentally
approaching the limits derived here would already represent
a significant achievement. A possible further improvement
could come from harnessing exotic material systems [55,66],
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where geometry-dependent material resonances cannot be
modeled with bulk permittivities.
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