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ABSTRACT We present predicted relative scattering losses
from sidewall roughness in a strip waveguide compared to
an identical waveguide surrounded by a photonic crystal with
a complete or incomplete gap in both 2d and 3d. To do so,
we develop a new semi-analytical extension of the classic
“volume-current method” (Green’s functions with a Born ap-
proximation), correcting a longstanding limitation of such
methods to low-index contrast systems (the classic method
may be off by an order of magnitude in high-contrast systems).
The resulting loss predictions show that even incomplete gap
structures such as photonic-crystal slabs should, with proper
design, be able to reduce losses by a factor of two compared
to an identical strip waveguide; however, incautious design
can lead to increased losses in the photonic-crystal system, a
phenomena that we explain in terms of the band structure of
the unperturbed crystal.

PACS 42.25.Fx, 42.70.Qs, 42.79.Gn

1 Introduction

In this paper, we present results on the analysis
of scattering losses from surface-roughness disorder for opti-
cal waveguides in photonic crystals with both complete and
incomplete bandgaps, and in particular for the two- and three-
dimensional structures of Fig. 1 compared to an isolated strip
waveguide. Moreover, we correct a longstanding limitation of
the standard “volume-current method” (Green’s function Born
approximation) and related techniques that model a perturba-
tion �ε in the dielectric constant as a current J ∼ �εE pro-
portional to the unperturbed field E in order to compute losses
[1–12]—this technique is in general only accurate for small
�ε and thus for surface roughness with low index contrast,
while we show that its use for high-contrast systems (e.g.,
photonic crystals) [6, 7, 10–12] can introduce errors of an
order of magnitude in the loss (depending on the polarization
and roughness statistics). Here, we extend the method to com-
pute the correct J for surface roughness with arbitrary index
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contrast, and in doing so enable quantitative predictions of
roughness losses with modest (personal-computer) resources;
the main previous alternative was brute force discretizations of
Maxwell’s equations [13–15] that become nearly prohibitive
in three dimensions because of the high resolution (or many
multipole moments [16–18], etc.) needed to capture small
imperfections. Given our semi-analytic tool, we present pre-
dictions of how the bandgap will affect roughness-induced
radiation and reflection loss, and show two significant results:
first, with a proper design, one can substantially reduce over-
all losses (by a factor of two) while keeping reflection loss
fixed (following a general theorem from [14]); second, an
incautious design can also substantially increase losses by in-
troducing new modes or “hidden” resonances via the bandgap.
We can now quantitatively distinguish these cases, permitting
future optimizations and potential experimental confirmation
in structures amenable to rapid fabrication.

Photonic crystals are periodic dielectric structures pos-
sessing a bandgap, a range of wavelengths in which light
cannot propagate in some or all directions, yielding unprece-
dented control over optical phenomena [19]. By introducing
linear “defects” into a crystal, one can produce a waveguide
structure in which light is confined to propagate along the
defect by the bandgap; or, in an incomplete gap structure
such as a photonic-crystal slab [20], light is confined in some
directions by the bandgap and in other directions by index-
guiding (“total internal reflection”) [21]. Such waveguides, in
an ideal system, are lossless, but in reality losses are intro-
duced by material absorption and fabrication disorder such
as surface roughness (which causes light to scatter into both
radiation and reflection). Surface roughness, in particular, is
known to be a primary source of loss in waveguides made
from high-index contrast materials, such as those required in
photonic-bandgap structures, because the scattering from a
small perturbation grows with the index contrast—thus, the
study of this loss is critically important, and is also chal-
lenging because high index contrasts prohibit most analytical
treatments and demand high resolution in brute-force simula-
tions of small perturbations.

It turns out that many classic semi-analytical methods,
such as perturbation theory and coupled-mode theories, re-
quire modification in the high-index-contrast, strongly peri-
odic systems now prevalent in nanophotonics [14, 22–25],
so it comes as no surprise that the volume-current method
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FIGURE 1 Strip waveguides surrounded by 2d-periodic photonic crystals
in 2d (left) and 3d (right) for both a rod crystal (top) and a hole crystal
(bottom). We will compare the losses due to surface roughness for the crystal
waveguide versus the isolated strip

is altered as well. Indeed, our corrections here also apply to
almost all other perturbative approaches when they are used
for small surface “bumps.” (There is one exception: 2d sys-
tems with TM polarization—E out of the plane—have fields
everywhere continuous so that the classic methods are cor-
rect.) Nevertheless, we show that the basic Green’s function
strategy is preserved: one finds an effective current J to rep-
resent a small imperfection, computes the power radiated by
this J in the unperturbed waveguide (a modest calculation that
does not require high resolution or sensitivity), and equates
this to the scattering loss. For uncorrelated roughness (or,
more precisely, disorder whose correlation function only de-
termines the local “bump” shape), the power from multiple
scatterers adds incoherently on average, so one obtains the
mean loss rate by multiplying the loss from one scatterer by
the average scatterer density and amplitude. An alternative
semi-analytical picture based on coupled-mode theory was
presented in [14], which was well-suited to deriving an analyt-
ical theorem stating conditions under which a photonic crys-
tal does not increase reflection loss (contradicting an intuitive
picture where the bandgap reflects radiation into reflection).
This previous work, however, did not analyze the radiative
loss in incomplete bandgap systems such as photonic-crystal
slabs, and presented quantitative predictions only for a two-
dimensional (2d) system in which brute-force simulation was
practical. Here, we confirm our earlier theorem by an inde-
pendent method, analyze situations with incomplete gaps and
where the photonic-crystal inadvertently introduces new re-
flection channels, and present numerical results in both 2d
and 3d. (In general, coupled-mode approaches could also be
used to predict disorder loss [14, 25, 26], but: (i) they require
many modes in order to capture the effect of a continuum of
radiation states, and (ii) the coupling matrix elements in many
coupled-mode and perturbation theories must also be modifed
[14] to use our new J for small, high-contrast bumps.) We also

discuss the impact of general scaling laws that obtain when
the crystal alters the group velocity vg of a mode (e.g., near
a band edge [19, 27]): absorption and radiation loss scale as
1/vg, and reflection loss as 1/v2

g , all other things being equal,
as was also pointed out in [12, 28].

In the following, we first review the standard volume-
current method and then describe its corrected form for bound-
ary perturbations in high-contrast systems. (Note: ε0 = µ0 =
1 units are used throughout.) Then, we evaluate the shape
dependence of the corrected form for typical types of surface
roughness. A check of the perturbation current J is performed
by using it to calculate frequency perturbations (rather than
loss), compared to a brute-force computation. Finally, we pre-
dict the relative roughness loss introduced by the bandgap in
the photonic-crystal structures of Fig. 1, rods in air and holes
in dielectric in 2d and 3d, in particular focusing on the case of
sidewall roughness [29]. We conclude with general consider-
ations of other loss mechanisms and scaling laws.

2 Corrected volume-current method

The volume-current method can be derived in a
number of ways; for example, it is equivalent to the first
Born approximation for the Green’s function of the perturbed
system in terms of the unperturbed one [2]. One can then
show that a small shift �ε in the dielectric constant ε can be
represented by a current J = −iω�εE in the scatterer (which
can be replaced by a point source if the scatterer is small) for an
unperturbed field E at a frequency ω (time dependence e−iωt ),
to first order in �ε. (In a waveguide, E is the unperturbed
waveguide mode’s field at the scatterer.)

For a “bump” in a high-index-contrast boundary with a
small volume �V and a shift �ε in the dielectric constant
ε, however, one cannot expand in �ε. The problem is not so
much that �ε is not a small parameter, but that the discontinu-
ities in E at high-contrast boundaries makes the product �εE
ill-defined [14, 22, 28, 30]. (Except for pure TM polarizations
in 2d, where the classic J is correct as mentioned above and
below.) Instead, the most useful viewpoint for our purposes is
based on the standard scattering theory for small scatterers at
long wavelengths (much larger than the scatterer diameter),
for which the quasi-static approximation can be made [31].
In this approximation, which is essentially first-order in �V
rather than �ε, one takes the local unperturbed electric field E
to be constant (except for boundary discontinuities) and solves
for the induced dipole moment p ∼ E · �V , and then writes
J ∼ p · δ(x) to replace the scatterer with an oscillating point
dipole. Below, we first consider the well-known situation of
a scatterer in a homogeneous background dielectric, and then
derive two corrections for a �ε due to a high-contrast sur-
face bump: the relationship p = αE�V is in general in terms
of a numerically computed polarizability tensor α, and the
relationship between J and p is altered on a surface.

2.1 Locally uniform media

For a large �ε, the discontinuous boundary con-
ditions on the interface-normal component of E (recall that
D⊥ = εE⊥ and E‖ are continuous) can no longer be neglected,
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and the field inside the scatterer must be solved via the static-
field boundary-value problem (assuming a constant incident
field given by the unperturbed E at the scatterer location).
Then, from the change in the field �E compared to the unper-
turbed field E, one finds �ρ = ∇ · �E and thus the induced
dipole moment p = ∫

r�ρdV = αE�V , where α is the po-
larizability tensor per unit volume. In particular, there is a
classic analytical solution for α in the case of a sphere of ε1

in a background of ε2 (�ε = ε1 − ε2), in which case [31]:

αsphere = 3�ε

3ε2 + �ε
. (1)

In the limit of �ε → 0, this gives p = �εE�V/ε2, and com-
paring with above we find that J is proportional to ε2p. The
reason for this is that the current J injects a free charge into
the system, but p is the total induced dipole moment (includ-
ing bound charge). Thus, since any free charge is reduced
(screened) by a factor of ε2, the current must be bigger than
p by a factor of ε2 to induce the same total dipole moment.
Therefore, the general relationship between J and E in a uni-
form background ε2 is:

J = −iωε2�V · (αE) · δ(x) (2)

and thus the αsphere solution gives the correct low-contrast
limit J → −iω�ε�V E · δ(x) from above. In the high con-
trast limit, however, α goes to a constant (= 3) and differs
greatly from the low-contrast approximation. In general ge-
ometries, one must compute the polarizability α numerically,
as described in Sect. 2.3, but this is a modest calculation.

A slightly modified relationship holds in the case of a
scatterer with a fixed 2d (xy) cross section with a small
area �A, such as a cylinder. In this case, we wish to re-
place the scatterer with a line current δ(x)δ(y), where the
current at any point along the line is given from the unper-
turbed field E at that point. For a field in the xy plane of
the cross section, the analysis is the same as above and we
get the the same formula (2) except that �V is replaced with
�A, and α is now the 2 × 2 polarizability tensor per unit
area, which in general must be computed numerically. For E
in the uniform-cross-section z direction, however, the prob-
lem can be solved analytically because E is continuous, and
one finds: Jz = −iω �A �εEz · δ(x)δ(y)—that is, the “stan-
dard” volume-current proportional to �εE, which is no sur-
prise since the lack of field discontinuities makes the standard
treatment valid.

2.2 Scatterers at interfaces

For surface roughness, we have not an isolated scat-
terer but rather a “bump” on an interface between two materi-
als ε1 and ε2 with the normal direction denoted x , as depicted
in Fig. 2. (Note that in the vicinity of a small bump, any smooth
interface can locally be treated as flat.) In this case, the un-
perturbed E is no longer approximately constant—rather, the
surface parallel and perpendicular components E‖ and D⊥ are
approximately constant in a small region. So, it is natural to
express the induced dipole moment p = ∫

r�ρ dV (where
�ρ = ∇ · �E as above) in terms of these quantities:

p = �V (α‖E‖ + γ⊥D⊥), (3)

FIGURE 2 A “bump” on the interface between two materials ε1 and ε2,
with x and y denoting directions perpendicular and parallel to the interface,
respectively. An applied electric field E, here in the y direction, will induce
a dipole moment via an induced charge density �ρ (blue/red denotes posi-
tive/negative �ρ) on the surface. We call this a “positive” bump because it
juts from ε1 into ε2, so �ε > 0 if ε1 > ε2

where α‖ and γ⊥are polarizability tensors. It is important to
note that a “positive” bump with �ε = ε1 − ε2 > 0 (as in
Fig. 2) will in general have different polarizability tensors α

and γ (in both sign and magnitude) than a “negative” bump
(where ε2 juts into ε1) with �ε = ε2 − ε1 < 0, which has
important consequences for scattered powers and perturbation
theory in the subsequent sections.

Just as in the previous section, p represents the total dipole
moment including all bound charges, whereas J injects only a
free charge, so we must compute the correction factor so that J
produces a total moment p. The correction is found by using
the standard method of images [31] to compute the bound
charges for a free charge q that approaches the interface,
and hence the relationship between free and bound dipole
moments for a point dipole that approaches the interface from
one side. This gives a current J‖ = p‖(ε1 + ε2)/2 and J⊥ =
p⊥ε, where ε is either ε1 or ε2 depending upon which side
of the interface J is on. In systems with sufficient symmetry
(e.g., a y = 0 mirror plane), the parallel and perpendicular
directions are principal axes (so that p‖ = α‖E‖ and p⊥ =
γ⊥D⊥), and the final expression for J is then simply:

J = −iω�V

(
ε1 + ε2

2
· α‖E‖ + εγ⊥D⊥

)

· δ(x). (4)

Note that we have the convenient property that we can place
J on either side of the interface (albeit with different val-
ues of J⊥) and get the same total p and thus the same far-
field scattered power. (A related property, important for the
perturbation theory of the next section, is that J · E is con-
tinuous across the interface.) Note also that this gives Eq. (2)
when ε1 = ε2.

As in the previous section, the treatment is slightly modi-
fied for the case of a scatterer with a fixed 2d (xy) cross section
of area �A. Again, for fields in the xy plane, one obtains the
same Eq. (4), except with �A instead of �V and polarizabil-
ities α and γ per unit area instead of volume. Just as before,
for E in the z direction, the field is everywhere continuous
and one analytically obtains the “standard” volume current
Jz = −iω�A�εEz · δ(x)δ(y).
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2.3 Computation of polarizability

In order to compute the polarizability tensors α

(or γ ), one need only solve the static-field boundary-value
problem for a given scatterer geometry and a fixed “external
field” E (or D) at infinity, with three computations (external
fields in three directions) to obtain all of the components of the
tensor. Very efficient methods, accurate to 5 decimal places
with modest computations, have been devised for this prob-
lem in the literature [32]. We used, however, a less efficient
method accurate to ∼2% that had the advantage of employing
a freely available software package—in particular, we solve
the vectorial Maxwell’s equations in a planewave basis by a
conjugate-gradient eigensolver approach [33]. This method
imposes periodic boundary conditions, so one must choose a
computational cell large enough that the boundaries are far
from the scatterer. It solves for the eigenmodes at a finite
frequency ω and wavevector k, but we obtained the ω = 0
static-field solution by taking the limit as k, ω → 0, where
the direction of k and the symmetry of the solution determine
the polarization of the “static” external field. Given the differ-
ence �E in the solutions for the cases with the scatterer and
without the scatterer, the induced dipole moment is computed
by p = ∫

r ∇ · �E, whence α = p/(E �V ).
For a scatterer diameter of 2a, we used a 40a × 40a super-

cell for scatterers with 2d cross sections and a 10a × 10a ×
10a supercell for scatterers with 3d cross sections, with res-
olutions of 40 and 10 pixels/a, respectively. Compared to the
analytical solutions for the polarizability of a dielectric sphere
and cylinder, and to a published solution for a dielectric square
[32], we obtained polarizabilities accurate to within 2% for
dielectric contrasts up to 16:1, an accuracy sufficient for our
purposes.

We analyzed both “positive” (ε1 juts into ε2) and “neg-
ative” (vice versa) bumps. The polarizabilities in these two
cases are not equal, but are related analytically: if we multi-
ply both ε1 and ε2 by any constant C , then α is unchanged and
γ (= α/ε) changes to γ /C . Thus, we need only consider the
polarizabilities as a function of τ = ε1/ε2, and a “negative”
bump corresponds to τ < 1.

The results for four basic scatterer shapes are shown as
a function of τ in Figs. 3 and 4: 2d (“ridge”) bumps formed
by a semicylinder of radius a or half a square of side 2a, and
3d bumps formed by a hemisphere of radius a or half a cube
of side 2a. These have sufficient symmetry that the polariz-
abilities are diagonal and we need only consider αyy and γxx.
(One computed �ρ for αyy with a positive semicylindrical
bump is shown in Fig. 2.) We found that the cylinder/sphere
and square/cube have polarizabilities that differ by at most
10% and 15%, respectively, which gives some indication that
the precise shape of the bump (for a fixed area or volume
and height/width ratio) does not have a large impact upon
the roughness loss. The solid lines are a least-squares fit to
functions of the following form:

α(τ ) = 2(τ − 1)

τ + 1

[

1 + τ − 1
τ

α∞/2−1 − 1
α0/2−1

]

, (5)

γ (τ ) = τ − 1

τ

[

1 + τ − 1
τ

α′∞/2−1 − 1
α′

0/2−1

]

, (6)

FIGURE 3 Polarizabilities per unit area for “2d bumps” of semicylindrical
(blue circle symbols) and half-square (red square symbols) shapes; αxx (filled
symbols) is the interface-parallel component and γyy (hollow symbols) is the
interface-normal component. Solid lines are least-squares fits to Eqs. (5)–
(6). τ > 1 (shaded) corresponds to “positive bumps” (lower-right inset) and
τ < 1 to “negative” bumps (upper-left inset)

where α0 and α∞ are fit parameters that (for α(τ )) physically
correspond to the polarizabilities when ε2 or ε1 are equiva-
lent to perfect metals, respectively (i.e., the τ → 0,∞ limits
of α are −α0, α∞). This form was chosen so that: (i) it has
the correct limit for τ → 1, in which case one must get the
standard volume current J ∼ �εE; (ii) it fits the known analyt-
ical formulas exactly for a cylinder, sphere, and ellipsoid; and
(iii) it has finite polarizability α for the “metal” limits. (The di-
vergence in γ for τ → 0 is a physical result of the fact that we
define it in terms of D⊥, which goes to 0 inside a metal.) The
fit parameters and maximum fit errors (for τ ∈ [1/16, 16])
are: cylindrical αyy has α∞ = 0.8510, α0 = 3.882, error <
2%; cylindrical γxx has α′

∞ = 3.905, α′
0 = 0.7669, error <

3%; square αyy has α∞ = 0.8214, α0 = 4.162, error < 3%;

FIGURE 4 Polarizabilities per unit volume for “3d bumps” of hemispher-
ical (blue circle symbols) and half-cube (red square symbols) shapes; αxx
(filled symbols) is the interface-parallel component and γyy (hollow sym-
bols) is the interface-normal component. Solid lines are least-squared fits to
Eqs. (5)–(6). τ > 1 (shaded) corresponds to “positive bumps” (lower-right
inset) and τ < 1 to “negative” bumps (upper-left inset)
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square γxx has α′
∞ = 4.082, α′

0 = 0.6804, error < 5%; sphere
αyy = αzz has α∞ = 1.220, α0 = 2.856, error < 1%; sphere
γxx has α′

∞ = 5.860, α′
0 = 0.5366, error < 3%; cube αyy = αzz

has α∞ = 1.398, α0 = 3.115, error < 1%; cube γxx has
α′

∞ = 6.361, α′
0 = 0.4376, error < 5%. These errors are com-

parable to the likely numerical error in the polarizabilities, and
in any case are small enough that the fits alone are suitable
for roughness-loss calculations (since they are swamped by
experimental uncertainty in the roughness shape, etc.).

2.4 Errors in J = �εE

It is instructive to compare the polarizability here
and the resulting current J from Eq. (4) with the simple
�ε E = 11E formula for a typical high-contrast interface of
ε = 12:1 (e.g., Si:air). In this case, for a semicylindrical bump,
then we get a surface-parallel (y) current proportional to 5.5Ey

for a positive bump and 19.4Ey for a negative bump; for the
normal (x) component, if we evaluate E on the side of the
bump, we get a current proportional to 1.64Ex for a positive
bump 61Ex for a negative bump. In other words, depending
upon the polarization, the “classical” volume current would
be off by a factor of 2–7, leading to an error in the scattered
power of 4–50!

Two factors can act to ameliorate this error in common
circumstances. First, for a cylindrical or “ridge” bump with
E oriented along the ridge (z), the classic �ε Ez is perfectly
correct as described in Sect. 2.2. Moreover, if the bump is very
wide and shallow (unlike here, where we assume the bump
width is comparable to its height/amplitude), the correct J
becomes ∼ �ε E for both surface-parallel polarizations, and
only the surface-normal polarization is incorrect in the classic
formula [22]. Thus, the magnitude of the error in practice will
depend both upon the field polarization at interfaces and on
the roughness statistics.

3 Perturbation theory

Before we apply the corrected volume currents
from the previous section to compute scattering loss, we first
consider their utility in another problem that gives us the op-
portunity to directly verify our results: the perturbation current
J is also used to compute frequency shifts of eigenmodes in
first-order perturbation theory. In particular, if E is the eigen-
mode of a structure at a frequency ω (and, in a periodic struc-
ture, at a Bloch wavevector k), then it is well known that a
small change �ε in the structure produces a shift �ω that is
approximately (to first-order in �ε) given by [1, 22, 26]:

�ω ∼= −ω

2

∫
E∗ · �εE
∫

ε |E|2 , (7)

where the integrals are over the volume (the unit cell for a pe-
riodic structure). (This equation assumes that the unperturbed
system is lossless, but can be used to compute e.g., absorption
loss: a small imaginary �ε gives an imaginary �ω, a decay per
time, and the decay per distance of a waveguide is �ω divided
by the group velocity.) Another formulation, however, is:

�ω ∼= − i

2

∫
E∗ · J

∫
ε |E|2 , (8)

where J is the volume current that appears in the Green’s
function for the scattering problem. J = −iω�εE for a small
�ε, as discussed above, in which case the two formulations
are equivalent. However, the formulation (8) is more general,
because it holds even for a boundary perturbation with a large
�ε in a small volume �V (assuming J is computed correctly
as in the previous section), in which case the �ω is correct
to first order in �V, whereas (7) is ill-defined because it
multiplies �ε by a discontinuous field [22]. A simple proof
of this generality follows the same procedure as in [22]: one
takes a small �V perturbation as the limit of a structure with
smoothed (continuous) boundaries. In a smoothed system, the
fields are continuous, �ε is small at any point, and (7) and (8)
are thus equivalent. Now, we replace J in the smoothed system
by a delta-function point source with the same integral, as
in the previous section, which is accurate to first-order in
�V . Then, we take the limit to the discontinuous system: the
limit of (7) is problematic because of the discontinuity, but
the limit of (8) is well-defined because E∗ · J is continuous
across the boundary (from Sect. 2.2). Maxwell’s equations
have a unique solution, so any well-defined limit must be
correct, and thus (8) is still valid (up to the first-order-in-�V
approximation that we made in the smoothed system).

In [22], we derived the correct perturbation theory for a
smooth boundary perturbation, one that is locally flat with
a shift amplitude �h, by a method involving anisotropic
smoothing of (7). We can now derive the same result via (8),
by computing the correct volume current using a procedure
like that in the previous section. The quasi-static dipole mo-
ment of a flat surface perturbation is easily solved analytically,
and one finds that J = �h(�ε E‖ − ε �(ε−1) D⊥)δ(x); when
plugged in to (8), this J gives exactly the surface-integral ex-
pression of [22, 30]. Our result is now more general, however,
because we can apply it to small “bumps” that are not locally
flat. (A similar application of J arises in coupled-mode theory
[14, 23].)

Moreover, Eq. (8) gives us a direct method to verify
both the J of Eq. (4) and the numerical polarizabilities
computed in Sect. 2.3: we simply compute the exact shift
�ω by a brute-force calculation and compare to the first-
order equation, where the latter should give the correct �ω for
small �V and must give exactly the correct slope d�ω/d�V
at �V = 0. In particular, we consider a 2d square lattice
(lattice constant a) of dielectric squares (side 0.3a, ε = 12) in
air (ε = 1) , with a semicylindrical bump on the right side of
every square (see insets of Fig. 5). This structure has a mirror
plane bisecting the square and the bump, and so we com-
pute two fundamental (lowest-ω) TE-polarized (E in plane)
modes at a Bloch wavevector kx = 0.6π/a (pointing towards
the bump): one mode which is even with respect to the mirror
plane (E mainly in the x direction) and one mode which is odd
with respect to the mirror plane (E mainly in the y direction).
The two frequencies vs. the area �A = πr2/2 of the bump
(where negative �A indicates a “negative,” inward bump) are
plotted in Fig. 5 as computed by a planewave method [33]
with 512 pixels/a resolution, along with the first-order pertur-
bation prediction from Eqs. (4) and (8) using the α and γ of
Fig. 3. (The even mode depends on α‖ and the odd mode de-
pends on γ⊥.) Several interesting features are apparent in this
plot. First, the ω curves have a kink in their slope at �A = 0,
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FIGURE 5 Comparison of J-based first-order perturbation theory (lines)
with exact numerical calculations (dots) for the frequency shifts of two modes
in a square lattice of square rods, due to a positive/negative bump in the rods,
vs. bump area. The first-order theory correctly predicts the discontinuous
slopes at �A = 0

which arises precisely from the fact that the polarizabilities α

and γ are different for positive and negative bumps. Second,
the exact ω curves become tangent to the perturbation-theory
curves as they approach �A = 0, which verifies that our per-
turbation theory, volume current, and polarizabilities are all
correct. Third, the perturbation theory is accurate for larger
values of �A with the odd mode—this is simply due to the fact
that the odd mode here lies at 1/10 the frequency of the even
mode (the wavelength is 10 times as large relative to �A).

4 Roughness losses in photonic crystals

As shown in Fig. 1, the photonic crystals that we
consider are a 2d-periodic array of dielectric rods in air and of
air holes in dielectric. The rods are in a square lattice with pe-
riod a, radius 0.2a, and ε = 12 (similar to Si or GaAs): in 2d,
this has a complete gap for the TM polarization (E out of the
plane), and in 3d there is a gap in the TM-like (odd-symmetry)
guided modes when the rods have a finite height 2a [20]. The
holes are in a triangular lattice with period a, radius 0.35a,
and ε = 12: in 2d, this has a complete gap for the TE polar-
ization (E in the plane), and in 3d there is a gap in the TE-like
(even-symmetry) guided modes when the dielectric has finite
height 0.5a [20]. Note that the gap in 3d is not a complete gap,
because there are still radiation modes that propagate above
and below the slab at all frequencies, which will lead to ver-
tical radiation loss from roughness in a waveguide. In 3d, we
will consider both a “membrane” structure where the crystal
is suspended in air (as often fabricated for the hole structure
[27, 34–37]) and a structure with a low-index (ε = 2.25 ∼ ox-
ide) substrate/superstrate both above and below the slab and
having the same 2d cross section (i.e., the crystal/waveguide
pattern extends into the substrate). The case of an asymmetric
substrate that lies only below the slab is discussed in Sect. 4.4.

4.1 Waveguide modes

In the rod structure, we form a waveguide by re-
moving a row of rods and replacing it with a dielectric strip

(with ε = 12 and 3d height 2a) (same material and height as
the rods) of width 0.25a [21], shown in Fig. 1 (top). In the
hole structure, we form a waveguide by first carving out an air
trench of width 2.2a along a nearest-neighbor direction, and
then putting a dielectric strip of width 0.6a in its center (with
ε = 12 and 3d height 0.5a), as in Fig. 1 (bot), using the design
from [38]; the width of the air trench is a critical parameter
to prevent surface states [19] at the crystal boundary from
intersecting the waveguide mode and reducing its bandwidth.
In both cases, we will then compare the roughness loss rate
to the loss rate for the same roughness in an identical isolated
strip waveguide.

The dispersion relations for the rod and hole waveguides
in 2d and 3d are shown in Figs. 6–9, as computed by an
iterative planewave-expansion method with Bloch-periodic
boundaries and a horizontal/vertical supercell [21, 33]. (These
plots are for the air-membrane structures, but the presence of a
low-index substrate/superstrate changes the curves only
slightly [20].) In both cases, the waveguide mode of inter-
est in the bandgap is essentially identical to the “straight-line”
dispersion relation of the isolated strip waveguide, “folded”
to fit in the Brillouin zone [14, 38]. The reason for this is that
the field patterns (shown as insets in Figs. 6–9) are strongly
localized in the strip, so that the crystal is only a small pertur-
bation. Because of this, the volume current J for roughness
on the surface of the strip is identical for the two cases, but its
radiation pattern differs markedly due to the bandgap.

However, in the 2d hole-crystal waveguide, there are two
more guided modes in the bandgap, labelled with red trian-
gles in Fig. 7, that do not correspond to any isolated strip-
waveguide mode. Rather, they are localized largely in the
air trench, and are analogous to Fabry–Perot resonant modes
between the two crystal “mirrors.” Because of the presence
of these modes, the conditions for the theorem of [14] are
violated—the crystal has introduced new reflection/loss chan-
nels, which has important consequences for the losses, below.
In the 3d hole-crystal waveguide, the 2d Fabry–Perot modes

FIGURE 6 TM dispersion relation of 2d strip-waveguide mode (circles),
waveguide width 0.25a, in a dielectric rod square-lattice photonic crystal
(inset). Continuum of modes propagating in crystal is shaded in blue, and Ez
of guided mode is inset (blue/white/red = positive/zero/negative)
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FIGURE 7 TE dispersion relation of 2d strip-waveguide mode (black cir-
cles), waveguide width 0.6a surrounded by 0.8a of air, in a triangular-lattice
air-holes-in-dielectric photonic crystal (inset). Continuum of modes propa-
gating in crystal is shaded in pink, and Hz of guided mode is inset (blue/white/
red = positive/zero/negative). Two Fabry-Perot like guided modes are shown
as pink triangles (hollow/filled triangles = same/opposite parity from strip
guided mode)

FIGURE 8 TM-like (vertically odd) dispersion relation of 3d strip-
waveguide mode (circles), waveguide width 0.25a, in a photonic-crystal slab
of dielectric rods suspended in air (inset). Horizontal/vertical cross sections
of Ez of guided modes are inset; note that the guided mode in the gap is
higher-order in the vertical direction

lie within the light cone and are therefore not guided, but will
still exist as leaky resonances. One possible way to eliminate
the Fabry–Perot modes would be to shift the crystal closer to
the waveguide from both sides, being careful not to bring the
crystal so close that the strip waveguide mode is substantially
altered.

4.2 Computing relative losses

We compute the relative loss rate, the loss rate of
the photonic-crystal waveguide divided by the loss rate of the

FIGURE 9 TE-like (vertically even) dispersion relation of 3d strip-
waveguide mode (circles), waveguide width 0.6a surrounded by 0.8a of air,
in a photonic-crystal slab of holes in a dielectric membrane (inset). Horizontal
cross section of guided-mode Hz is inset

isolated strip waveguide, giving an “apples to apples” measure
of the effect of the bandgap. Moreover, in this way we need
not specify an average amplitude �V of the roughness (which
would have to come from experiment)—rather, the roughness
amplitude cancels in the relative loss rate and we thus obtain
a universal, dimensionless, figure of merit for the waveguide.
As another advantage, if the field is mostly polarized along
one of the principal axes, as is often the case, then the effect
of the roughness shape (the polarizability) also cancels. The
precise computation is performed as follows.

Given the unperturbed waveguide mode’s electric field E
computed in the previous section, along with the polarizabil-
ities α and γ for a given bump shape, we find the volume
current J from Eq. (4). We consider two archetypical bump
shapes for sidewall roughness: a semicylindrical “ridge” that
runs the height of the slab (giving a line current), and a hemi-
spherical “point” bump (giving a point-dipole current). We
also consider the case of surface roughness in the crystal it-
self, and show that this makes a negligible contribution to the
loss. For each shape, using an FDTD calculation described be-
low, we compute the reflected power Pr radiating backwards
along the waveguide and the scattered power Ps radiating out-
ward, giving a total loss power P
 = Pr + Ps. This power is
averaged over all inequivalent positions of the bumps along
the waveguide sidewalls (both horizontally and vertically),
and over both “positive” and “negative” bumps. Because un-
correlated roughness adds incoherently, this average power,
multiplied by the average �V or �A would give the mean
loss power p̄
 per unit length. The power in the waveguide
then decays as exp(− p̄
z/P0) with distance z, where P0 is the
incident power of the unperturbed mode (with the same field
amplitude E as was used to compute J). However, we instead
compute the ratio of the loss rates for the waveguides with and
without the crystal, in which case the �V /P0 factor cancels.

To compute the Pr and Ps for a given J (i.e., the un-
perturbed Green’s function), we employ the finite-difference
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time-domain method (FDTD) with PML absorbing bound-
ary regions [39] and a resolution of 20 pixels/a in 2d and
10 pixels/a in 3d, with an anisotropic sub-pixel averaging
technique that increases the effective resolution [33, 40]. (A
multipole-based method to compute the Green’s function was
presented in [41].) Note that this resolution is at least an order
of magnitude less than what would be required to resolve a
specific bump shape with a realistic experimental amplitude:
we only need to resolve the unperturbed crystal, since all infor-
mation about the bump is contained in J. Our computational
cell is ten crystal periods along the waveguide direction and
nine periods perpendicular to it; having a sufficiently large cell
is important so that the radiated field is clearly distinguishable
from the field coupled into the waveguide. The main advan-
tage of FDTD is that we can compute the loss spectrum of the
entire gap bandwidth at once: we input a short Gaussian pulse
instead of a fixed frequency, and compute the flux spectrum
from the Fourier-transformed fields. This involves an approx-
imation, because we determine J from the eigenmode E at a
particular ω; the mode field pattern for the strip waveguide
varies slowly enough across the gap bandwidth, however, that
the error in the relative loss rate is typically observed to be
under 5%.

4.3 Discussion of results

In Fig. 10, we show the relative loss rate for the 2d
rod crystal compared to the isolated 2d strip waveguide, both
as total loss and divided into reflection and radiation loss. We
consider three cases: both the original parameters from Fig. 6
(waveguide width 0.25a), a slightly wider waveguide 0.3a,
and the waveguide with the crystal only on one side. In both
cases with a full crystal (complete gap), the radiation loss is
essentially eliminated within the bandgap, as expected—it is
only nonzero because of the finite crystal size. Moreover, as
predicted in [14], the reflection loss is the nearly the same with

FIGURE 10 Relative loss rates of 2d strip waveguide in rod crystal (inset)
compared to isolated strip waveguide, versus ω. Relative reflection (blue),
radiation (red), and total (black) loss rates are shown, for three structures:
waveguides of width 0.25a (hollow circles), width 0.3a (filled dots), and
width 0.25a with the crystal only on one side (×’s)

FIGURE 11 Relative loss rates of 2d strip waveguide in hole crystal (inset)
compared to isolated strip waveguide, versus ω. Relative reflection (blue),
radiation (red), and total (black) loss rates are shown, for two structures: the
crystal on both sides of the waveguide (hollow circles) and the crystal only
on one side (×’s)

the crystal as without it. With the half crystal, the radiation
loss is also reduced, but not to zero—this case is essentially
that of an antenna next to a mirror, which can either decrease
the radiation (as here) or increase it (as in a case below), de-
pending upon whether the reflection from the mirror interferes
constructively or destructively [42]. (Equivalently, the pres-
ence of the half-crystal alters the local density of states for
the radiation continuum on the other side of the waveguide.)
Given equal reflections and reduced or eliminated radiation,
the reduction in the total loss rate depends upon the fraction of
the loss that scatters into reflection, which depends sensitively
upon the waveguide geometry as well as the scatterer type.
Here, the bandgap reduces the width-0.25a loss by 20–30%,
and the width-0.3a waveguide loss is reduced by 20–50%.
The width-0.3a loss for surface roughness was also computed
by a brute-force simulation in [14] and the results were ∼40%
reduction in relative loss around mid-gap, which agrees with
our semi-analytical prediction here.

The relative loss for the 2d hole crystal, in Fig. 11, is quite
different from the rod case because of the additional Fabry–
Perot modes created by the bandgap. We show both a full
crystal as in Fig. 7 and also a half-crystal (on one side). In
the full crystal, the additional bandgap modes act to increase
the reflection compared to the isolated strip, and this increase
diverges at the zero group-velocity band edge of the upper
Fabry–Perot mode. In the half crystal, there are no Fabry–
Perot modes, but the radiation loss is increased relative to the
isolated waveguide, essentially by a constructive reflection off
the crystal, as discussed above (this could be changed into a
destructive reflection as above by shifting the crystal position).
For the full crystal, the radiation is eliminated in the bandgap
(other than a small spike where the zero group-velocity mode
persists long enough to radiate through the finite number of
crystal periods in the simulation), and thus there is a narrow
bandwidth where the overall loss rate is reduced by almost
60% relative to the isolated strip.



JOHNSON et al. Roughness losses and volume-current methods in photonic-crystal waveguides 291

FIGURE 12 Relative loss rates of 3d strip waveguide in rod crystal (in-
set) for ridge-bump and point-bump roughness compared to isolated strip
waveguide. Relative reflection (blue), radiation (red), and total (black) loss
rates are shown, for three cases: ridge bumps for a crystal suspended in air
(hollow circles) or with an ε = 2.25 substrate/superstrate (filled dots), and
point bumps for the crystal suspended in air (×’s)

In the 3d rod crystal, we analyze both the (impractical) air-
membrane structure and the ε = 2.25 substrate/superstrate
version, both relative to the isolated strip waveguide.
Figure 12 shows the relative loss for both “ridge” and “point”
roughness. In both structures, the reflection is again nearly
identical to that of the isolated strip, which must be the case
from [14] since this is a single-mode waveguide with a field
pattern close to that of the isolated strip (however, over a
short distance, leaky resonance modes can alter the reflection
somewhat). Because the bandgap is incomplete, however, it
only blocks some of the radiation (vertical radiation is not
blocked), and the radiation loss is reduced by 60–80% in the
gap for ridge bumps. As we see below, however, that argument
is a bit too simplistic—the crystal can alter the local density of
states above the light line and even increase the radiation loss,
so we were somewhat “lucky” with this structure. The total
loss, in this case, is therefore reduced by 20–40%. The pres-
ence of the substrate/superstrate only increases radiation loss
slightly, thanks to the strong field localization. Also shown are
the losses for point (hemispherical) bumps for the membrane
structure, in which case the crystal only reduces the radiation
loss by around 30%. The reason for this is twofold: first, a
point dipole (for a point bump) radiates more isotropically
than a line dipole (for a ridge bump), so the former has more
vertical radiation that is not blocked by the gap; second, a
point bump breaks the mirror symmetry of the crystal (except
for bumps exactly on the mid-plane) and therefore can couple
to the even-symmetry modes that have no bandgap at all [20].

Figure 13 shows the relative loss for “ridge” roughness in
the 3d hole crystal. We see a large increase in the radiation
loss around mid-gap—this is analogous to what happened in
the 2d case, except here the analogue of the 2d Fabry–Perot
modes lie above the light line, contributing as leaky reso-
nances to the radiation loss rather than reflection. Thus, we
see that in an incomplete gap such as the photonic-crystal slab
here, the effect of the crystal on scattering is not necessarily

FIGURE 13 Relative loss rates of 3d strip waveguide in hole crystal (inset)
for ridge-bump roughness compared to isolated strip waveguide. Relative
reflection (blue), radiation (red), and total (black) loss rates are shown, for
two structures: suspended in air (hollow circles) and with an ε = 2.25 sub-
strate/superstrate (filled dots)

beneficial because the radiation’s local density of states may
be either decreased (as for the rods) or increased (as here).
The reflection, at least, is roughly the same as for the strip
because the waveguide is now single-mode, as predicted by
[14], where the slight (10%) increase is due to a finite-size
effect from the leaky resonance mode. Nevertheless, there
is again a narrow bandwidth where the total loss rate is de-
creased by 50%, a reduction that we are hopeful might be
observable in experiment. Moreover, we emphasize that there
is no intrinsic reason that hole topology should have Fabry–
Perot modes/resonances while a rod topology does not—the
frequency (and existence) of such modes can be altered by
changing the distance of the crystal from the waveguide, just
as the existence of surface states is controlled by the crystal
termination. Finally, the substrate increases the radiation loss
more substantially than for the rod crystal, above, presumably
because the slab here is 1/4 as thick and thus more easily
affected by the substrate.

4.4 Other crystal loss mechanisms

Above, we presented the relative losses caused by
surface roughness on the waveguide with and without the
photonic crystal. However, in general one must also con-
sider whether the crystal itself introduces new loss mecha-
nisms, rather than simply altering the density of states for
the original roughness. In particular, there are two such new
loss mechanisms: surface roughness and disorder within the
crystal itself, and losses due to crystal asymmetry that up-
sets the bandgap confinement. Also, the crystal creates zero
group-velocity points, e.g. at the Brillouin-zone edge (more
prominent in waveguide modes that “see” the periodicity more
strongly), and this exacerbates losses of all kinds.

We studied the effect of surface roughness within the crys-
tal itself by the same volume-current technique, and found
that for equal amounts of disorder the contribution of crystal
roughness is negligible. In particular, for both the rod and
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hole structures, the E of the waveguide mode is smaller by
a factor of 10 or more at surfaces in the crystal (decaying
exponentially into the crystal) compared to at the surface of
the strip (except near the edges of the bandgap where con-
finement is lost). Thus, the current J is smaller by a factor of
ten or more, and consequently the radiated power should be
reduced by a factor of ∼102 (∼|J|2) for the same roughness.
Moreover, the reflected power (in a single-mode waveguide)
should be reduced by a factor of ∼ 104 because the coupling
of J back to the waveguide mode is proportional to |J∗ · E|2.
We confirmed these predictions by direct calculation, placing
a ridge-bump source at the nearest crystal interface, and the
radiation and reflection losses were smaller by a factor of al-
most exactly 102 and 104, respectively, compared to a bump
on the waveguide surface. Thus, the only way for the crystal
roughness to contribute significantly to the total loss in these
structures is if the crystal is an order of magnitude more rough
than the waveguide. (Of course, the contribution of the crystal
will also be larger in a different waveguide structure where
the field is not so isolated from the crystal.)

A second concern is that, in an asymmetric crystal struc-
ture, e.g., with a substrate below but not above the crystal,
the TE-like and TM-like polarizations are hybridized and the
bandgap (which is only for one symmetry in the structures
here) is destroyed [20]. In this case, the waveguide mode
becomes intrinsically leaky even for the perfect structure,
and this leakage loss can sometimes be substantial [43, 44].
Because this loss is intrinsic, unrelated to the roughness am-
plitude, however, we cannot include it in the dimensionless
measure of relative loss in the preceding section; rather, it
must be compared to actual experimental roughness losses of
an isolated strip waveguide in order to determine whether the
bandgap will be a benefit or a detriment. Ideally, of course,
one will fabricate a symmetric structure, either by a suspended
air membrane or by having both a low-index substrate and su-
perstrate as in the previous section.

Finally, there is the low group velocity that occurs at band
edges in photonic crystals. The scaling of the loss with the
group velocity vg, all other things (e.g., field patterns) as-
sumed equal, has been commented on before [12, 28] and
its derivation is recapitulated here. One derivation is based
on the coupled-mode theory of [14], which shows that the
lowest-order loss rate of a initial mode |i〉 to a final mode
| f 〉 is proportional to a matrix element | 〈i | �̂| f 〉 |2 for some
operator �̂ expressing the perturbation, essentially Fermi’s
golden rule [45]. Since the fields in this expression are nor-
malized to carry a fixed power, that means that the amplitude
|i〉 ∼ 1/vg and thus the loss goes inversely with the product
of the group velocities 1/(v(i)

g v(f)
g ). (The case where | f 〉 is

part of a radiation continuum is somewhat more complicated:
one integrates over the continuum multiplied by a density of
states, and 1/v(f)

g divergences are more generally Van Hove
singularities [46].) This means that there is a 1/vg divergence
whenever the initial or a (discrete) final mode approaches
zero group velocity, and a divergence as 1/v2

g for reflections
(initial = final) when the initial mode’s velocity goes to zero.
(One example of this is the coupling to the reflected Fabry–
Perot mode in Fig. 11.) A similar scaling was argued directly
from the Green’s functions in [12]. Thus, disorder-induced re-
flections are likely to be especially problematic in slow-light

waveguides (such as coupled-cavity waveguides [47]) [37].
Intrinsic loss mechanisms, such as material absorption, will
scale as 1/vg from Eq. (7). Note that these scalings are the
losses rates per unit distance; the loss rates per time, which
are more appropriate in many cases where the devices can be
shrunk proportional to vg [48], are multiplied by a factor of
vg and so are somewhat better.

5 Concluding remarks

In this paper, we have removed the limitations of
previous volume-current/Green’s-function methods, and in-
deed of most other perturbative methods, so that they can
now be applied to small surface imperfections with arbitrarily
high index contrasts. Moreover, we have argued for the util-
ity of a dimensionless figure of merit, comparing the losses
of one structure relative to another, that applies universally
to all systems with roughness of the given type regardless
of the amplitude (as long as it is weak). In applying these
approaches to two canonical photonic-crystal systems in 2d
and 3d, we have merely scratched the surface of what we
believe will be the wide applicability of this method. Indeed,
in three dimensions, one hardly has any alternative, because
brute-force methods with sufficient resolution to resolve the
shapes of small roughness “bumps” become excessively ex-
pensive in 3d. One exciting possibility that now lies open is
to design a photonic-crystal waveguide specifically to mini-
mize the roughness loss relative to a comparison structure, via
direct optimization over the waveguide parameters.

Even in the limited example structures and roughness
types considered here, however, a number of exciting results
emerge. Foremost among them is the prediction that structures
such as the strip waveguide in a suspended hole-slab mem-
brane, similar to designs already being fabricated [27, 34–37],
should exhibit a measurable reduction in roughness loss com-
pared to an isolated strip with comparable disorder. Moreover,
to the extent that realistic roughness resembles the uncorre-
lated ridge-bumps and point-bumps assumed here, we hope
that a quantitative match with the experimental loss spectrum
may be obtained. As we have emphasized before [14], a key
idea is to employ a waveguide structure that is directly com-
parable to a conventional waveguide in order to gauge the
effect of the bandgap, whereas with a waveguide of com-
pletely different mode structure it is more difficult to judge
the relative importance of a particular fabrication process and
alterations in the waveguide mode versus the intrinsic impact
of the bandgap.

Perhaps equally interesting is our quantitative explanation,
rooted in a direct consideration of the unperturbed band struc-
ture, of why a photonic crystal is not always an improvement
even for a similar waveguide mode. Rather, one must consider
whether the crystal introduces new guided modes (especially
ones with loss-enhancing low group velocity) or, in the case
of a crystal with an incomplete bandgap, whether the density
of radiating modes is substantially increased (e.g., by leaky
resonant modes “hidden” above the light line). These consid-
erations should form a useful guide to future photonic-crystal
designs. On the other hand, unless new guided modes are
introduced by the crystal, we have confirmed the prediction
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of [14] that the mere addition of a bandgap does not alter
reflection loss for equivalent waveguide modes.

An important topic for future research is that of correlated
disorder, in which one cannot simply sum the scattered pow-
ers incoherently from different positions. The corrections to
the volume current J will also be equally necessary in such
analyses, however (versus previous methods for correlated
roughness in non-periodic waveguides that were limited to
low index contrasts [4] or required brute-force computation
of many radiation states [26]).
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Pearsall, Appl. Phys. Lett. 77(13), 1937 (2000)
35 Y. Akahane, T. Asano, B.-S. Song, S. Noda, Appl. Phys. Lett. 83(8),

1512 (2003)
36 Y. Sugimoto, Y. Tanaka, N. Ikeda, Y. Nakamura, K. Asakawa, Opt.

Express 12(6), 1090 (2004)
37 Y. Tanaka, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, K. Inoue,

S.G. Johnson, Electron. Lett. 40(3), 174 (2004)
38 W.T. Lau, S. Fan, Appl. Phys. Lett. 81, 3915 (2002)
39 A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-

Difference Time-Domain Method. Norwood, MA: Artech, (2000)
40 R.D. Meade, A.M. Rappe, K.D. Brommer, J.D. Joannopoulos, O.L.

Alerhand, Phys. Rev. B 48, 8434 (1993). Erratum: S.G. Johnson, ibid.
55, 15942 (1997)

41 D.P. Fussell, R.C. McPhedran, C.M. de Sterke, Phys. Rev. E 70, 066608
(2004)

42 C.A. Balanis, Antenna Theory: Analysis and Design. New York: Wiley,
2nd ed., (1996)

43 Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, S. Noda, Appl. Phys. Lett.
82(11), 1661 (2003)

44 Y.A. Vlasov, N. Moll, S.J. McNab, J. Appl. Phys. 95(9), 4538 (2004)
45 C. Cohen-Tannoudji, B. Din, F. Laloë, Quantum Mechanics. Paris:
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