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Integer and Fractional Angular Momentum Borne on Self-Trapped Necklace-Ring Beams
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We present self-trapped necklace-ring beams that carry and conserve angular momentum. Such beams
can have a fractional ratio of angular momentum to energy, and they exhibit a series of phenomena
typically associated with rotation of rigid bodies and centrifugal force effects.
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Many nonlinear-wave systems can be described by the
cubic nonlinear Schrödinger equation (NLSE). Solitons in
the �1 1 1�D self-focusing version of this equation are
stable, displaying interesting physics and applications, yet
solitons of �2 1 1�D NLSE are highly unstable [1]. Recent
papers [2,3] have proposed self-trapped �2 1 1�D beams
that propagate in a stable fashion in a self-focusing Kerr
medium: the necklace-ring beams. Necklace beams are
shaped like rings whose thickness w is much smaller than
their radius R and whose intensity is azimuthally peri-
odically modulated (Fig. 1). Such beams exhibit stable
self-trapped propagation for many �.50� physical diffrac-
tion lengths [2,3], even though circular �2 1 1�D solitons
are inherently unstable in self-focusing Kerr media [1]. In
necklace beams, it is the interaction between the spots that
stabilizes the structure as a whole. As shown in [3], an
isolated individual spot is highly unstable. Furthermore,
removing a single spot from the necklace renders the en-
tire necklace unstable. Necklace beams can be thought of
as a superposition of two rings carrying equal but oppo-
site topological charge. For such a superposition to exhibit
stable propagation, the thickness of the ring must be sig-
nificantly smaller than its radius, and the thickness must
be larger than the azimuthal period. Moreover, the ring
has to propagate as one entity, or else the spots walk off
each other. In contrast to necklace beams, a single charge-
carrying (ring) beam is highly unstable in any self-focusing
medium: In a Kerr material it disintegrates, while in satu-
rable nonlinear media it breaks into a number of solitons
that can interact with one another [4] or fly off like free
particles [5]. This behavior occurs also in quadratic media
[6]. Yet necklace beams stay intact and display stable prop-
agation, in Kerr as well as in saturable self-focusing media,
if their parameters are chosen properly [2,3]. The stabil-
ity of self-trapped necklaces (with properly chosen param-
eters) is unique in soliton science: A superposition of
bound solutions (the rings with equal but opposite charge
that make up the necklace) is stable, but its individual con-
stituents are unstable [7]. Experiments with self-trapped
necklaces have already been reported [8]. Here, we present
self-trapped necklace beams that carry angular momentum.
It is a rare case of self-trapped scalar bright beams that
carry angular momentum [9]. In contrast to all known soli-
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tons, the angular momentum borne on such necklaces can
be a noninteger multiple of the energy. We demonstrate
angular momentum and centrifugal force effects.

Solitons that carry angular momentum have been stud-
ied in many systems: vortex solitons [10], 3D spiraling of
solitons [11], composite solitons [12], quadratic solitons
[13,14], and ring solitons in Kerr [15] and cubic-quintic
[9] media. Experiments involving transfer of angular mo-
mentum carried by light to other forms of angular momen-
tum have been performed [16]. The angular momentum of
optical beams is typically associated with azimuthal phase
modulation of exp�iMu� [17], which provides angular ve-
locity to every part of the beam with respect to the beam
center. The field of solitons is continuous wherever the
amplitude is nonzero, that is, everywhere except for the
origin. This is because a field discontinuity where the am-
plitude is nonzero renders the soliton highly unstable, even
in a self-defocusing medium. For this reason of stability,
for all vortex solitons [having exp�iMu�], M is an integer
[14]. For the same reason, for all other forms of single
solitons carrying angular momentum, Mu is an integer. In
the �2 1 1�D cubic self-focusing NLSE,

i
≠c

≠z
1

1
2

Ω
≠2c

≠r2 1
1
r

≠c

≠r
1

1
r2

≠2c

≠u2

æ
1 jcj2c � 0 ,

(1)

FIG. 1. A rotating necklace with integer L�E. We launch
a necklace close to the self-trapped shape. It “breathes” for
a short distance, until it reaches the equilibrium shape. This
necklace slowly rotates as it propagates. Every necklace slowly
expands as it propagates; nevertheless, as seen here, this does
not stop the rotation. The input shape is �c�r, u, z � 0� �
sech�r 2 6.83� cos�4u� exp�iu�. Dark means high intensity.
© 2001 The American Physical Society
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the energy is E �
RR
jcj2 dx dy and the angular mo-

mentum is Lẑ � i
2

RR
r 3 �c=c� 2 c�=c� dx dy.

Generically, any beam that can be written as c�r , u� �
f�r� exp�iMu� has L�E � M. Since definitions of
neither L or E depend on the nonlinearity, this holds for
all nonlinearities. Thus, all optical solitons found so far
carry an integer L�E. The angular momentum carried by
such a beam, when averaged over the number of photons,
is exactly Mh̄ per photon [17]. If the light is circularly
polarized, the total angular momentum is modified by the
spin contribution of 6h̄ per photon.

The fact that L�E is an integer can be intuitively
understood by comparison with quantum mechanics
(QM). All (paraxial) optical solitons are described by
a Schrödinger-type equation. In QM, the solutions of
this equation have a quantized angular momentum which
is an integer multiple of h̄, and the total probabilityRR
jcj2 dx dy is normalized to 1. In classical opticsRR
jcj2 dx dy is the total power, which is proportional

to the average number of photons. The quantization
of L in QM resembles the fact that L�E is an integer
for all solitons found thus far of a classical �2 1 1�D
normalized NLSE. But L�E is an integer for solitons not
due to quantization reasons, but because a noninteger L�E
typically leads to a field discontinuity where the intensity
is nonzero; such a discontinuity is thought to be unstable in
self-focusing/defocusing media. Here we find self-trapped
structures carrying noninteger L�E yet stably propagating
for many diffraction lengths: necklace-ring quasisolitons
that carry noninteger per-photon angular momentum.

Consider a necklace beam whose input shape is approxi-
mately c�r , u, z � 0� � f�r� cos�Vu� [18], and add to it
angular momentum by multiplying it by exp�iMu� (V, M
integers). As long as M is reasonably smaller than V, we
find (numerically) that this necklace is stable for more than
50 diffraction lengths LD [19]. After 50 LD we reach our
computational limits, but it is plausible that the necklaces
are stable for much larger distances. Such shapes have
L�E � M. Since the symmetry between the spots must be
preserved in a stable propagation, the angular momentum
is manifested by the rotation of the entire necklace as it
propagates (Fig. 1). We find numerically that quantization
of L�E means that, for a necklace whose parameters are
all fixed (except for its M), only certain angular velocities
v are allowed; these v’s are given by �M�R2. Two
necklaces that differ only in their radii (have the same M)
differ in their v’s by a squared ratio of their radii. The fact
that the allowed L�E’s are quantized shows a connection
between solitons and bound states in QM. Both of these
systems are described by very similar wave equations and
display several similar properties. The fact that some wave
quantities that relate solitons and particles are necessarily
quantized in optics was not appreciated so far.

Self-trapped necklace beams slowly expand as they
propagate [3,4]. The expansion is a consequence of the
net radial force exerted on each spot in the necklace.
However, even though the necklace slowly expands,
the dynamics is very different (and much slower) than
diffractive dynamics: It is uniform and it preserves the
shape of the necklace. Once angular momentum is added
to a necklace beam, it expands faster. The expansion is
still highly dominated by the internal dynamics of the
necklace. Nevertheless, for two necklaces that differ only
in their M’s, the one with larger M expands noticeably
faster. This implies that what we observe is actually a
centrifugal force in a solitonic system. Furthermore, as a
necklace beam expands, its L and E are conserved, im-
plying that v (the angular velocity) cannot be conserved.
This is similar to a skater on ice: If she extends her hands
while rotating, her v decreases. We observe this with
necklace beams (Fig. 2). Analytically, the angular phase
has to be conserved; otherwise, because v is quantized,
the phase would discontinuously jump from, say, exp�iu�
to exp�i2u�, which is not physical in the continuous
evolution describing the necklace propagation. Thus, as
the necklace expands, vR2 is conserved. Our numerics
confirm this prediction. One can develop a moment of
inertia formulation for this system. The moment of inertia
for necklaces is I � ER2. Since L � Iv and E and L
are conserved, v has to go down with R2. This is the first
prediction of a “skater on ice” effect, which is so obvious
in Newtonian mechanics but is unobserved yet in solitonic
systems: the slowing down of angular velocity due to
conservation of energy and angular momentum.

Given that, in analogy to QM, only integer L�E values
are allowed, we recall that there are objects that carry
angular momentum (in the form of spin) in multiples of
h̄�2 also. However, such spin is an internal degree of
freedom and cannot be reproduced as a manifestation
of a spatial property of a wave function. Neverthe-
less, even in QM, the expectation value of angular
momentum can be a noninteger multiple of h̄. We
build on this idea to construct stable self-trapped
beams that carry noninteger L�E. The necklaces de-
scribed above have c�r , u, z � 0� � f�r� �exp�i�V 1

M�u	 1 exp�2i�V 2 M�u	��2. To create a necklace

FIG. 2. The rotation angle of the expanding necklace of
Fig. 1, as a function of the propagation distance. This particular
necklace expands significantly as it propagates. The solid line
represents the true instantaneous angle of rotation (measured
numerically), whereas the dashed line represents what the
instantaneous angle of rotation would have been if the angular
velocity were a conserved quantity.
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carrying noninteger L�E, we launch c�r , u, z � 0� �
f�r� �exp�i�V 1 M�u	 1 exp�2i�V�u	��2, as in Fig. 3.
Such a necklace has L�E � M�2. For an odd M, this
necklace has a noninteger L�E. Its intensity is given by
f2�r� �1 1 cos��M 1 2V�u	��2. In contrast to necklaces
that have an even number of spots [3,4], a necklace that
carries noninteger L�E has an odd number of spots.
Furthermore, in a necklace with an integer (or zero) L�E,
adjacent spots are mutually p out of phase (this is why
such necklaces expand). This is not the case here since
there is an odd number of spots. In order to preserve
symmetry between the spots, the angular momentum is
manifested in rotation of the necklace, and v � M��2R2�;
thus v is twice slower than for the corresponding neck-
laces of the previous paragraphs, keeping M and other
parameters fixed. Our numerics confirm this prediction,
and these necklaces are as stable as the usual necklaces:
for many tens of LD’s. We investigate the stability of
these necklaces using the same methods as in [2,3].

Another surprising feature is that, although the proba-
bility to find photons is not azimuthally symmetric (hence,
the nonuniform azimuthal intensity), the local expectation
value of L�E is azimuthally symmetric [20]. That is, we
calculate analytically the ratio L�u��E�u� at z � 0 and
find this ratio to be independent of u, both in the case of
the necklace with an even number of pearls (when it equals
M) and in the case of a necklace with an odd number of
pearls (when it is M�2). Because these necklaces rotate as
rigid bodies we expect the L�u��E�u� not to change sig-
nificantly during propagation. Thus, in a necklace with
an odd number of spots, each photon contributes exactly
Mh̄�2 the expectation value of the total angular momen-
tum. One might think that a noninteger per-photon angular
momentum is because different regions of the beam have
different ratios of L�u��E�u�, but this is not the case; since
the shape of each spot is fixed as the necklace propagates,
each part of the beam has the same angular velocity with
respect to the center of the necklace.

Next, we construct a necklace carrying an arbitrary
real per-photon angular momentum. Consider a necklace
with c�r , u, z � 0� � f�r� �a exp�iMu� 1 b exp�iNu� 1

c exp�2iPu� 1 d exp�2iQu��; it has L�E � �a2M 1

b2N 2 c2P 2 d2Q���a2 1 b2 1 c2 1 d2�, which can
take any real value. Not all such necklaces are stable, but

FIG. 3. A necklace with L�E � 1�2. This necklace slowly
rotates as it propagates. The input shape is approximately
c�r, u, z � 0� � sech�r 2 6.83� �exp�i4u� 1 exp�2i3u���2.
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one can construct necklaces that are stable for many LD’s.
Setting N � P, M, and Q to have similar values as N
and P, b to be similar to c, and a, d ø b, c, the necklace
looks like a “usual” necklace, but with its envelope
slightly azimuthally modulated. Small azimuthal pertur-
bations do not destabilize necklaces: we find many such
necklaces that are stable for more than 20LD , which is
plenty for experimental observations. In Fig. 4, we show
a necklace that has d � 0, N � P � 8, M � 15, a � 1,
b � 7, and c � 8. Therefore, L�E � 235�38 for this
necklace. As shown in Fig. 5, this necklace indeed has a
shape similar to a usual necklace, but with a small azi-
muthal perturbation. It is interesting to note that in these
necklaces the angular momentum is not manifested just in
rotation of the necklace, but also in circulation of the mod-
ulation of the azimuthal envelope (Fig. 4): Neighboring
spots exchange energy and perform a circulation of energy
around the necklace, and this is the primary means of
transporting the angular momentum upon the propagating
beam. The reason for this distinctly different behavior
of this necklace from the necklaces with integer or M�2
L�E values is symmetry. For a necklace with integer or
M�2 L�E, the symmetry between the spots is conserved.
Thus, if a symmetric necklace is to stay stable, the only
way the angular momentum can be manifested is the
rotation of the necklace as a whole (Figs. 1 and 3). In
contrast, for a necklace described in this paragraph, the
symmetry between spots is broken. Thus, spots are
allowed to exchange energy and thereby carry angular
momentum without a significant rotation of the necklace.
Indeed, the frame of the necklace appears stationary
(Fig. 4), yet the spots circulate the energy in a preferential
direction corresponding to the sign and value of L�E.

The necklace of Figs. 4 and 5 has L�u��E�u� which
depends on u. Since in this necklace the spots are not

FIG. 4. A necklace with L�E � 235�38. This necklace is
stable for 8LD . Necklaces with better stability are such that
the energy exchange between the spots is slow, so it is not
visible in a gray-level figure: for example, a necklace with
L�E � 261�1634 that is stable for at least 50LD .
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FIG. 5. Azimuthal intensity profile of the necklace of Fig. 4.

“rigid” as with the necklaces from Figs. 1 and 3, different
parts of the necklace can have different angular velocities.
Thus, the noninteger L�E of these beams does not imply
that the angular momentum per photon is a noninteger
multiple of h̄. This is in contrast with the M�2 case, where
the angular momentum per photon is h̄M�2 everywhere.

Note that all necklaces described here are indeed self-
trapped. If we start with a shape that is close to the equi-
librium necklace shape, as long as this necklace is stable,
both L and E are conserved: the L and E carried away
by radiation are negligible compared to the initial L and
E values. The self-trapped necklace conserves its initial
L�E to even much better accuracy, although a tiny frac-
tion of L and E is carried away through radiation.

To the best of our knowledge the necklaces described
here are the only self-trapped shapes that have a non-
integer per-photon angular momentum (in units of h̄).
Necklace beams can be constructed in many nonlinear
wave equations. For example, one might think about
converting the fractional angular momentum per particle
carried by a necklace with L�E � M�2 into the angular
momentum carried by the spin. This will imply rotation
of the polarization state in optics, or spin-orbit interaction
in a coherent system, such as a Bose-Einstein condensate.
Such a conversion should be even more interesting when
the necklaces are made of few photons only [21] (as op-
posed to a macroscopic number of photons [22]). Another
exciting possibility is to investigate atomic necklaces in
Bose-Einstein condensates.

We acknowledge enlightening discussions with Pro-
fessor Meir Orenstein of Technion, Israel. This work
was supported by the MURI Project on Optical Spatial
Solitons.
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