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We present a quantum model of two-level atoms localized in a three-dimensional lattice based on the
Hopfield polariton theory. In addition to a polaritonic gap at the excitation energy, a photonic band gap opens
up at the Brillouin zone boundary. Upon tuning the lattice period or angle of incidence to match the photonic
gap with the excitation energy, one obtains a combined polaritonic and photonic gap as a generalization of Rabi
splitting. For typical experimental parameters, the size of the combined gap is on the order of 25 cm−1, up to
105 times the detuned gap size. The dispersion curve contains a branch supporting slow-light modes with
vanishing probability density of atomic excitations.
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I. INTRODUCTION

Photonic crystals �PhCs�—systems in which the index of
refraction varies periodically on the scale of light—are
known to have an extraordinary ability to control the flow of
light.1–3 While the underlying index of refraction in conven-
tional PhCs is often taken to be the bulk value, interesting
effects can occur when the underlying medium possesses
resonances at wavelengths comparable to the lattice spacing;
for instance, one can dramatically widen the photonic band
gap by tuning the band gap frequency �e.g., by changing the
lattice period� to match the resonance frequency. Such “reso-
nant PhCs” can be realized using cold atoms in optical
lattices,4–6 PhCs made from polaritonic materials,7 and
multiple-quantum-well arrays.8–10 Here, we will concentrate
on the first class of resonant PhCs, originally analyzed by
Deutsch et al.,5 who modeled the atoms in a one-dimensional
�1D� optical lattice as a set of classical polarizable planes and
showed that the interaction of the resonances with the peri-
odicity of the system gives rise to a photonic band gap. Sub-
sequently, van Coevorden et al.6 extended this study to three
dimensions by solving Maxwell’s equations in a lattice of
resonating point dipoles using a t-matrix analysis.

In this paper, we present a simple three-dimensional �3D�
quantum mechanical model of an atomic PhC in which the
elementary excitations are polaritons: coherent superposi-
tions of atomic excitations and photons. Several features of
previous classical models appear naturally and with some-
what simpler interpretations in the quantum model. For in-
stance, we show that the resonance-induced band gap arises
as a generalization of Rabi splitting in a microcavity. Our
model also exhibits the important “Bragg resonant” modes
first studied in one dimension by Deutsch et al., who identi-
fied them with the standing electromagnetic wave that sup-
ports the optical lattice.5 Here, the Bragg resonant modes
generalize to a family of modes occupying the boundary of
the first Brillouin zone �BZ� and attached to the dispersion
curve associated with atomic excitations; near the BZ bound-
ary, they possess low group velocity but involve little exci-
tation of the underlying medium, unlike states in “slow-
light” systems.12

II. MODEL HAMILTONIAN

Consider N localized two-level atoms of the same type in
a fully filled 3D cubic lattice at sites r�i with lattice period �.

To facilitate calculation, we enclose the lattice in a periodic
electromagnetic cavity of volume V, which reproduces the
physical behavior inside a sufficiently large lattice. The
Coulomb-gauge Hamiltonian is

H = �
i

�bi
†bi + �

k��

�c�k��ak��
† ak�� −

e

mc
�

i

A� �r�i� · p� i, �1�

where � is the energy difference between the atomic levels,
bi

†��1��0�i and bi��0��1�i are the level raising and lowering
operators for atom i, and ak��

† and ak�� are creation and anni-

hilation operators for photons with wave vector k� and polar-

ization �. A� �r�� is the vector potential,

A� �r�� = �
k��

�2��c

V�k��
�ak��eik�·r� + ak��

† e−ik�·r��êk��, �2�

where êk�� is the unit polarization vector for ak��
† .

Let us suppose that the average number of atomic excita-
tions in the system at any time is much less than N. In that
case, the atomic excitations are approximately bosonic, in
the same sense that spin waves are bosons.13 Therefore, the
two photon polarizations, which excite orthogonal atomic
states, decouple for each k. We thus drop the � label, with
the understanding that the dispersion relations we will later
obtain are doubly degenerate. This is also consistent with the
weak polarization dependence obtained by van Coevorden et
al.6 In contrast, polarization effects play an important role in
conventional PhCs,3 as well as multiple-quantum-well reso-
nant PhCs,8–10 due to the finite size of the scattering centers.

We can treat the r�i in Eq. �1� as numbers �perfect lattice
positions� rather than operators, since the electronic wave
functions are typically much narrower than the lattice spac-
ing. At each site, the momentum operator is

p� i =
i

�
m�x�01�bi

† − bi�, x�01 � �1�x��0� . �3�

Let us also define momentum-space excitation operators
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bq� =
1

�N
�

i

e−iq� ·r�ibi, bq�
† =

1
�N

�
i

eiq� ·r�ibi
†, �4�

where the wave vectors q� are restricted to the first BZ, cor-
responding to the fact that an excitation “wave” has no
meaning between lattice points. As explained above, these
are approximately bosonic: 	bq� ,bq��

† 
��q�q��.
Substituting Eqs. �2�–�4� into Eq. �1�, we obtain the mi-

croscopic polariton Hamiltonian first derived by Hopfield13

in the context of crystalline solids:

H = �
q�
��bq�

†bq� + �
G�

�c�q� + G� �a
q�+G�
†

aq�+G�

− �
G�

iCq�+G� 
�bq�
†aq�+G� − a

q�+G�
†

bq��

+ 	bq�
†a

−�q�+G� �
†

− a−�q�+G� �bq�
�� , �5�

where G� run over all reciprocal lattice vectors, and

Cq�+G� =� 2��N

�q� + G� �V
�x01, �6�

where � is the fine structure constant. The atom-photon in-
teraction consists of two parts. The first part, on the second
line of Eq. �5�, describes the lattice absorbing a photon with

wave vector q� +G� to create an atomic excitation with wave
vector q� and the reverse process of destroying an excitation
to emit a photon. The remaining interaction terms describe
the creation and annihilation of associated pairs of photons
and atomic excitations. The usual way to diagonalize Eq. �5�
is to introduce polariton operators �q� �Refs. 13 and 14� for
each reduced wave vector q� as linear combinations of bq�,

b−q�
† , aq�+G� , and a

−q�+G�
† �for all G� �. Stipulating that these act as

decoupled lowering operators for H, one obtains the polar-
iton energies as solutions of a �2n+1�� �2n+1� eigenvalue
problem for each q� , where n is the number of BZs included
in the calculation. Higher BZs were first included into the
Hopfield theory by Knoester and Mukamel14 in their calcu-
lation of polariton-mediated intermolecular forces in solids.
There, the photons in the higher BZs were taken to be de-
coupled from the atomic excitations, which was appropriate
since the BZ energy was many orders of magnitude larger
than �. In our system, the two energies are comparable, and
we must incorporate the interaction up to at least the second-
order zones.

It simplifies the calculations to drop the “counter-rotating”
interaction terms in Eq. �5� describing the creation and anni-
hilation of pairs. This is physically justifiable even though
the discarded terms have the same coupling strength Cq�+G� as
the remaining interaction terms, because the pair creation
and annihilation process is a quantum mechanical fluctuation
of the “vacuum” with a finite energy gap �+�c�q� �. For � and
�c�q� �, both on the order of eV, and lattice periods at optical
wavelengths, Cq� �10−4 eV��+�c�q� �. Such fluctuations are
thus extremely rare and have a negligible effect on particle
energies. The interaction terms describing the conversion of

a real photon into an atomic excitation, and vice versa, re-
main important: Since the existing particle possesses energy,
these processes involve a much smaller energy fluctuation.
The approximation holds provided we look at values of �q� �
comparable to both � /�c and the BZ energy, which is exactly
the regime we are interested in.

The Hamiltonian now decouples into N independent
pieces, H=�q�Hq�, one for each reduced wave vector:

Hq� = �bq�
†bq� + �

G�
�c�q� + G� �a

q�+G�
†

aq�+G�

− �
G�

iCq�+G� �bq�
†aq�+G� − a

q�+G�
†

bq�� . �7�

This says that each photon mixes with all other photons hav-
ing wave vectors that differ by a reciprocal lattice vector, as
one expects of a PhC system. Here, the mixing is mediated
by the atom-photon interaction. Since Eq. �7� has the qua-
dratic form �ij	i

†Hij	 j, it can be diagonalized as �nEn�n
†�n,

where the � are boson operators defined by �n=� jwj
*n	 j, En

is the nth eigenvalue of H, and wn is the corresponding ei-
genvector. We can thus obtain the polariton energies Eq�

n by
including a finite number of BZs in the sum and diagonaliz-
ing the associated matrix.

III. BAND STRUCTURE

Figure 1 shows the polariton dispersion curves along the
	100
 direction for a blue-detuned optical lattice. The inter-
action opens up two energy gaps in the polariton spectrum:
an indirect “polaritonic gap” 
pol at � due to the repulsion
between the bare dispersion curves and a photonic band gap


pbg at �c�Q� �, where Q� is the BZ boundary. We have also
calculated the density of polariton states; after integrating
over all angles, we find that the density of states is enhanced
near the band edges but remains nonzero at all energies be-
cause the exact sizes and positions of the gaps vary with
angle. The system therefore does not possess a complete gap,
essentially because of the weakness of the electromagnetic

x01 = 2Å
x01 = 1Å
x01 = 0Å

q

(cm−1) ∆pol

∆pbg

k − ε/h̄c (cm−1)

E−ε
h̄c

50250-25-50

50

25

0

-25

-50

FIG. 1. �Color online� Single-polariton dispersion for a 3D cu-
bic lattice along 	100
 in the extended zone scheme, with �=3 eV
and three different coupling strengths, associated with the param-
eters x01=0 �noninteracting�, 1 Å �CQ�0.18 meV�, and 2 Å �CQ

�0.35 meV�. The vertical dashed line indicates the BZ boundary at

�Q� �=1.000 25� /�c. The graphs are generated numerically from Eq.
�7�, summing over 125 BZs.
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interaction. The gap sizes vary continuously as we change
the lattice period a, and thus V �keeping N and all other
parameters constant�. As shown in Fig. 2, the gaps meet and
become significantly enhanced when the BZ boundary inter-
sects the crossing point of the bare dispersion curves.

To understand the nature of the spectrum at the BZ

boundary, consider a photon with wave vector k� =Q� along
one of the faces of the cube. There is another such photon,

with wave vector Q� +G� � lying on the opposite face, such that

�Q� �= �Q� +G� ��. �When Q� lies on an edge or corner of the BZ
boundary, there are more partners; we will not consider these
cases, but they can be treated in a similar fashion.� The two
photons mix strongly since they have the same energy, so we
can neglect the other photon states and use the effective
Hamiltonian

H̃Q� = � bQ�

aQ�

aQ� +G� �
�

†

� � − iCQ� − iCQ�

iCQ� �c�Q� � 0

iCQ� 0 �c�Q� �
�� bQ�

aQ�

aQ� +G� �
� . �8�

Thus, the polariton energies at the BZ boundary are

E
Q�
0

= �c�Q� � ,

E
Q�
±

=
� + �c�Q� �

2
±�� � − �c�Q� �

2
�2

+ 2C
Q�
2

. �9�

These are exactly the energy levels resulting from Rabi split-
ting of a two-level atom interacting with two counterpropa-

gating photon states with wave vectors ±Q� , with an effective

cavity size V /N. In the exactly tuned case �=�c�Q� �, EQ
± has a

special significance: As shown in Fig. 2�b�, these are the
upper and lower edges of the band gap. The resonant en-
hancement of the band gap in this system is thus a manifes-
tation of the Purcell effect.15 Intuitively, we can imagine en-
closing a single atom in a microcavity with the dimensions
of the unit cell; if the cavity walls are mirrors, the atom sees
a lattice of atoms similar to the one considered here.

We have checked Eq. �9� against numerical solutions of

Eq. �7� including the 125 lowest BZs for various values of Q�

along the BZ boundary up to 40° from the 	100
 direction.
For �=3 eV and x01=2 Å, the error is always less than
0.02 cm−1, 3 orders of magnitude smaller than the maximum
gap size.

The size of the gaps in the exactly tuned limit can be

estimated by substituting �=�c�Q� �� into Eq. �9�:


 � �2C�/�c� =�4�x01
2 �4

�2��c�2 . �10�

For �, �c�Q� ��3 eV and x01�2 Å, 
 /�c�25 cm−1

��10−4��, in agreement with Fig. 2�b�. We can also obtain
limiting expressions for the gaps when they are significantly

decoupled. Consider �Q� ��� /�c, as in Fig. 2�a�. Away from
the BZ boundary, we can neglect the effect of photons in
higher BZs, and the effective Hamiltonian matrix is
H= 	� ,−iCq� ; iCq� ,�c�q� �
, with eigenvalues

Eq�
± =

� + �c�q� �
2

±�� � − �c�q� �
2

�2

+ Cq�
2. �11�

The contribution to the indirect polaritonic gap from the
large-q branch of the dispersion curve, which is truncated at
the BZ boundary, is obtained from the large-q expansion of

Eq. �11� evaluated at q� =Q� . The contribution from the small-
q branch cannot be found by setting q� =0 in Eq. �11� due to
our preceding approximations, so we instead calculate an
upper bound on it by evaluating it at the minimum, �q� �
=� /2�c. The resulting polaritonic gap is


pol� �
4C�/�c

2

�
+

C
Q�
2

�cQ
. �12�

With the same lattice parameters, 
pol� �10−3 cm−1

��10−8��. From the large-�Q� � expansion of Eq. �9�, the pho-

tonic band gap is 
pbg� =C
Q�
2

/�c�Q� �, strictly smaller than Eq.
�12�. Therefore, the effects of the polaritonic interaction are
very small when the system is detuned.

This model can also be used to study the quasi-1D geom-
etry considered by many authors, in which atoms are trapped
along periodically stacked infinite sheets. Consider a 3D lat-
tice in which the lattice spacing in one of the directions, �1,
is much larger than the spacing in the other two directions.
The relevant wave vectors, lying on the BZ boundaries clos-

est to the origin, have magnitude �Q� 1�=� /�1 and point in the
direction of stacking. In this regime, this model can be di-
rectly compared with the semiclassical analysis of Deutsch

q q
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(b)(a) 50
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0
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FIG. 2. �Color online� Single-polariton dispersion along 	100
,
with �=3 eV, x01=2 Å, and different lattice periods: �a� �Q� �
=1.000 25� /�c and �b� �Q� �=� /�c. Plots �c� and �d� show the corre-
sponding overlaps of the polariton with the bare excitation,
�0�bq��q�

†�0�, for the polaritons on the dispersion curve leading to the

purely photonic state at q� =Q� 	indicated with arrows in �a� and �b�
,
which have no atomic component.
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et al.5 For instance, the semiclassical theory predicts band

gaps from E−
�cl� to � and from �c�Q� 1� to E+

�cl� for blue-detuned
lattices. A short calculation, using Eqs. �15�–�19� of that pa-
per, yields

E±
�cl� �

� + �c�Q� �
2

±�� � − �c�Q� �
2

�2

+ 2
3�2c�


2�Q� 1�
, �13�

where 
 is the surface density along each sheet and
�� �E±−�� /� is the linewidth of the atomic transition. Using
the golden rule prescription for the natural linewidth,11

�= �4��3x01
2 � / �3�3c2�, this reduces to Eq. �9� with CQ

2 re-

placed by CQ
2 ·� /�c�Q� 1�. The band gaps predicted by the

semiclassical and quantum mechanical theories are thus

similar for ���c�Q� 1�, which is also the regime where the
band gaps are significant. In the exactly tuned case, the re-
sults are identical, and one obtains


1d = 2�x01
��
 . �14�

Actual 1D and/or two-dimensional �2D� lattices are more
problematic since each atomic excitation is coupled to pho-
tons with a continuum of wave numbers in the transverse
direction, which smears out the gaps. One might avoid this
using an actual cavity in the transverse direction, making the
electromagnetic field effectively 1D and/or 2D.

IV. SLOW POLARITON MODES

The energy EQ
0 in Eq. �9� corresponds to a polariton cre-

ated by the operator �aQ
† −aQ+G�

† � /�2. This remains an exact
polariton state when we include higher BZs in the effective
Hamiltonian. �In fact, there is a family of such states for each
pair of BZ boundaries.� These “purely photonic” polaritons
are reminiscent of “dark states” in electromagnetically in-
duced transparency �EIT�,12 since Eq. �8� is identical to the
EIT effective Hamiltonian with the atomic excitation and
two photon modes acting as the levels of the � system. In
EIT, a dark state arises: a coherent superposition of atomic
levels that does not couple to the radiation. The analog in our
case is a noninteracting photonic state, with no atomic com-
ponent. Its classical limit is a standing electromagnetic wave
commensurate with the lattice. Since the laser light that sup-
ports the lattice always falls exactly on the BZ boundary,5 the
stability of the optical lattice relies on the existence of such
standing wave modes; other modes are Bragg reflected away.
In a sense, the lattice “selects” the standing wave modes
from the incoming laser light. Similar modes have been ob-
served in other resonant PhC systems.8–10 We have shown
here that in the self-consistent limit of complete quantum
coherence and low excitation density, this selection takes
place at the quantum state level. Only the purely photonic
polaritons can support a macroscopic population, since they
are the only elementary excitations of the interacting system
with zero atomic component.

In the 3D system, there is a family of purely photonic
polaritons everywhere on the boundary of the first BZ. Re-
markably, these states are attached to the slow, “atomic”

branch of the dispersion curve. These appear to be analogs of
the slow, nondegenerate, longitudinal electromagnetic modes
that appear in the classical t-matrix calculation of Coevorden
et al.6 Our model shows that the photonic component along
this branch goes continuously from nearly zero to unity as
we approach the BZ boundary, as shown in Figs. 2�c� and
2�d�. Therefore, by exciting polaritons over the range

� � − �c�Q� �
�c

� �
CQ�

�c
� 10 cm−1 �15�

around wave vector Q� , one could create a wave packet that
propagates slowly but has low atomic excitation density.

V. CONCLUSION

We have presented a quantum model for an atomic lattice
that applies directly to optical lattices filled with cold atoms,
containing behavior similar to other resonant PhC systems.
The system possesses two gaps �polaritonic and photonic� at
each angle and can be tuned so that the gaps meet to create a
combined gap orders of magnitude larger than the individual
detuned gaps, in a process analogous to microcavity Rabi
splitting; however, there does not exist a complete gap. The
quantum analysis yields a branch of the dispersion curve that
has low group velocity and atomic component vanishing at
the BZ boundary.

These effects could be explored with alkali atoms held in
a cubic lattice made by near-IR light, by introducing a probe
beam at an angle to the axis of the lattice. One should choose
an atomic transition � such that 1��� /��c��3, where � is
the lattice period, and use probe wave vectors with magni-
tude lying in the range 
 /�c�10 cm−1 around �q� �=� /�c, at
an angle cos−1���c /��� to a lattice axis �Fig. 3�. Although
the present theory applies to an infinite lattice, the predicted
frequency shifts may be observable close to the atomic reso-
nance, even in a lattice of about 100 atoms on a side.

We have treated the atomic positions as fixed, as would be
the case for a strongly confining optical lattice where the rate
at which each atom tunnels to a different lattice site is neg-
ligible compared to the radiative lifetime. The presence of

(cm−1)

kx (103cm−1)

∆/h̄c

100806040200

100

10

1

0.1

0.01

FIG. 3. �Color online� Photonic gap at wave vectors

Q� = 	kx ,� /� ,0
 along the BZ boundary for �=3 eV, x01=2 Å, and
� /�=0.9� /�c=1.4�105 cm−1 �red detuned�. The dashed lines
show ky vs kx for the surface �k��=� /�c and the BZ boundary; here,
the ordinate is not drawn to scale. The gap is largest at the intersec-

tion of the two surfaces, i.e., �Q� �=� /�c.

CHONG, PRITCHARD, AND SOLJAČIĆ PHYSICAL REVIEW B 75, 235124 �2007�

235124-4



nonzero hopping amplitudes would add an imaginary part to
the polariton energies, proportional to the tunneling rate. The
size of the band gaps would be reduced by the corresponding
amount.

Finally, it is interesting to note that the gap in Eq. �10�,
which scales as � relative to the photon energy, is O�10−2� �
for x rays. Aspects of this theory might thus be applicable to
crystalline solids in the x-ray regime, where a similar

effect—super-radiant scattering enhancement due to nuclear
resonances—is known to exist.16
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