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The classical treatment of plasmonics is insufficient at the nanometer-scale due to quantum mechanical
surface phenomena. Here, an extension of the classical paradigm is reported which rigorously remedies this
deficiency through the incorporation of first-principles surface response functions—the Feibelman d
parameters—in general geometries. Several analytical results for the leading-order plasmonic quantum
corrections are obtained in a first-principles setting; particularly, a clear separation of the roles of shape,
scale, and material is established. The utility of the formalism is illustrated by the derivation of a modified
sum rule for complementary structures, a rigorous reformulation of Kreibig’s phenomenological damping
prescription, and an account of the small-scale resonance shifting of simple and noble metal nanostructures.
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Classical treatments of plasmonics require specification of
just two elements: geometry, involving shape and scale, and
dielectric environment, supplied through local bulk dielectric
functions. In the deep subwavelength regime, i.e., in the
nonretarded limit, even the element of scale is rendered
superfluous by scale-invariant governing equations. As the
geometric scale is reduced further, below10–20nm inmetals,
toward the intrinsic quantum mechanical length scales of the
plasmon-supporting electron gas, the classical approach
inevitably deteriorates, as established by numerous experi-
ments [1–10]. The main shortcomings of the classical
approach can be divided into three categories [11], resulting
from the neglect of (i) spill-out of the conduction electron’s
wave function beyond the material boundaries [12], (ii) non-
locality, i.e., the momentum dependence of the bulk response
functions [13], and (iii) incomplete accounting of internal
electron dynamics, especially surface-enabled plasmon
damping by electron-hole pair creation [10,14]. In the
subnanometer domain, additional shortcomings are expected
to materialize, e.g., due to size quantization [15,16] and the
breakdown of jellium treatments [17,18]. Jointly, these short-
comings and their impact on plasmonic observables (modal
spectrum, field enhancements, local density of states, etc.)
motivate and define the field of quantum nanoplasmonics
[12,13,17].
While time-dependent density-functional theory (TDDFT)

[19], in principle, can bridge the gap between classical and
quantum nanoplasmonics, its explicit application is, in
practice, limited to few-atom clusters and systems of high
spatial symmetry due to computational constraints. A sizable
fraction of nanoplasmonic structures of interest [20–22],
thus, fall in a region which is simultaneously inaccessible
to conventional, explicit TDDFT and beyond the validity of

classical plasmonics, roughly spanning characteristic geo-
metric scales L ∼ 2–20 nm. In this Letter, we provide a
simple and general answer to the central question raised by
this dichotomy: namely, what are the leading-order non-
classical corrections to classical plasmonics at small L? We
find that the three main shortcomings—spill-out, nonlocality,
and incompleteness—can be simultaneously overcome by
extending the applicability of Feibelman’s d parameters [11]
to general geometries; an approachwhich is partly inspired by
a recent computational development [23]. Our simultaneous
account of all three shortcomings is crucial; previous efforts to
alleviate a solitary deficiency, e.g., nonlocality within the
hydrodynamic model (HDM) [24–27], are limited in scope
and accuracy due to an arbitrary allocation of focus among
nonclassical mechanisms of comparable magnitude.
The results presented here demonstrate that the leading-

order spectral corrections to classical plasmonics appear as
products ofmaterial-dependent surface response functions—
the Feibelman parameters d⊥ and d∥ (see Fig. 1)—and a

novel set of geometry-dependent perturbation factors, Λð1Þ
⊥

and Λð1Þ
∥ , which exhibit a 1=L scale dependency. The

resulting formalism, which amounts to a perturbation
expansion of a generalized nonretarded boundary integral
equation (NBIE), is simple and amenable to analytical
treatments, yet rigorous and model independent. The
approach instates a natural partitioning of optical and
electronic aspects, thereby indicating an advantageous divi-
sion of labor in quantum nanoplasmonics between the
condensed matter and optics communities.
Feibelman d parameters.—The classical local response

(LR) description of light scattering at an interface, say, a
planar interface at x ¼ 0 separating metallic (x < 0) and
dielectric (x > 0) regions with LR bulk dielectric functions
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εmðωÞ and εdðωÞ, respectively, implies that the induced
charge density, ρðrÞ, is confined strictly to the interface
such that ρðrÞ ¼ δðxÞσðy; zÞ. The classical treatment
consequently amounts to a monopole approximation of
the nonsingular quantum mechanical ρðrÞ, see Fig. 1. As
demonstrated in Feibelman’s seminal work on planar semi-
infinite systems [11], the first-order extension of this
zeroth-order multipole expansion naturally introduces
two auxiliary quantities, d⊥ and d∥, which parametrize
the first moments of the induced charge and current density,
JðrÞ. A self-contained introduction to their properties is
provided in the Supplemental Material (SM) [28]. In brief,
they represent model-dependent (e.g., TDDFT or HDM)
surface-response functions, and provide the leading-order
corrections to classicality. Formally, for an external exciting
potential ϕextðrÞ ¼ eikyþkx oscillating at frequency ω, they
follow directly from the induced dynamic quantities ρðrÞ ¼
ρðxÞeiky and JðrÞ ¼ JðxÞeiky [44]:

d⊥ ¼
R
∞
−∞ xρðxÞ dxR
∞
−∞ ρðxÞ dx ; d∥ ¼

R
∞
−∞ x ∂

∂x JyðxÞ dxR
∞
−∞

∂
∂x JyðxÞ dx

: ð1Þ

Both quantities define a characteristic length scale of the
dynamic problem: the centroid of induced charge (d⊥) and
of the normal derivative of tangential current (d∥) [45].
Equivalently, they can be cast as derivatives of moments of
the nonlocal dielectric tensor εðr; r0Þ of the semi-infinite
planar system, see SM [28]. Notably, d∥ vanishes for neutral
strictly planar interfaces [44,46], leaving d⊥ as the main
quantity of interest for intrinsic quantum mechanical cor-
rections; nevertheless, d∥ is retained since it facilitates

treatment of surface roughness [47], excess surface charge,
e.g., due to adsorption, and semiclassical accounts of bound
screening [48]. Lastly, thed parameters are implicit functions
of bothk andω; the kdependence, however, isweak [23] and,
furthermore, contributes only at second order in deviations
from classicality, as observed first by Apell and Ljungbert
[49,50]. Crucially, this facilitates a mapping of local (k → 0)
d parameters of planar interfaces to general, curved geom-
etries. This freedom of mapping is the central notion which
allows the ensuing considerations [51].
Governing equations.—The classical NBIE [52–54]

amounts to the solution of a scalar integral equation in
an unknown surface charge density σðr;ωÞ over a (possibly
disconnected) surface domain r ∈ ∂Ω, separating an
interior metallic domain Ω, with outward normal n̂, from
an exterior dielectric domain. It constitutes a natural point
of departure because it explicates the distinct and
decoupled roles of material and shape as well as the
scale-invariance of classical nonretarded treatments. The
extension to account for surface contributions due to d⊥
and d∥ follows by including two distinct polarizable
boundary layers, see SM [28], one carrying a dipole density
πðr;ωÞ≡ d⊥ðωÞσðr;ωÞn̂ and one carrying a surface cur-
rent Kðr;ωÞ≡ sðωÞE∥ðr;ωÞ proportional to the tangential
electric field E∥ ≡ ðI − n̂ n̂ÞE and a surface conductivity
sðωÞ≡ iε0ðεd − εmÞωd∥ðωÞ. The integral equation consis-
tent with these additional terms is derived in the SM [28],
and yields a generalized NBIE (ω dependence implicit)

ΛσðrÞ ¼ P
Z
∂Ω
½n̂ · ∇gðr; r0Þ�σðr0Þ d2r0

þ d⊥ lim
δ→0þ

Z
∂Ω
½n̂ · ∇∇0gðrþ δn̂; r0Þ · n̂0�σðr0Þ d2r0

− d∥

Z
∂Ω

∇2
∥gðr; r0Þσðr0Þ d2r0; ð2Þ

with scalar Coulomb interaction gðr; r0Þ≡ 1=2πjr − r0j,
Cauchy principal value P, surface Laplacian ∇2

∥, and
dimensionless eigenvalue Λ≡ ðεd þ εmÞ=ðεd − εmÞ para-
metrized by the frequency-dependent LR bulk dielectric
functions of the constituent materials. Equation (2)
may equivalently be written in operator form as Λjσi ¼
ðKþ dαVαÞjσi, with operators K and dαVα (implicitly
summed over α ¼ f⊥; ∥g) acting on ket states
hrjσi≡ σðrÞ. The classical operator K is scale invariant,
cf. its nondimensionalized form. Accordingly, the classical
eigenproblem Λð0Þjσð0Þi ¼ Kjσð0Þi is solely shape depen-
dent, and its dimensionless eigenvalues Λð0Þ constitute
plasmonic shape factors. Conversely, the nonclassical
operators Vα exhibit an inverse scale dependency ∝1=L,
thereby, introducing scale-invariance breaking of magni-
tude dα=L. Even so, for small but non-negligible breaking,
the spectral properties remain expressible in terms of shape
factors, as we demonstrate in the following.

(a) (b)

FIG. 1. Surface features in quantum plasmonics. (a) Schematic
of equilibrium and induced densities, nðrÞ and ρðrÞ, (distinct
scales) plotted along a coordinate line, rn̂, normal to an
n̂-oriented surface ∂Ω which delimits the ionic boundary of a
metallic domain Ω, see inset. Both nðrÞ and ρðrÞ may extend
beyond ∂Ω; d⊥ is the centroid of ρðrÞ. (b) The leading-order
differences between classical [local response, εm;d; induced
surface density σð∂ΩÞ] and quantum accounts [nonlocal re-
sponse, εðr; r0Þ; induced density ρðR3Þ] of the plasmonic re-
sponse of a surface may be bridged by introducing nonclassical
contributions due to surface dipole and current densities, πðrÞ
and KðrÞ, proportional to the Feibelman parameters d⊥ and d∥,
respectively, which originate from a dipole expansion of ρðrÞ.
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Nonclassical geometry-dependent corrections.—The

eigensolutions fΛð0Þ
n ; jσð1Þn ig of K, and their associated

surface potentials jϕð0Þ
n i≡ ð2ε0Þ−1gjσð0Þn i [with hrjgjr0i≡

gðr; r0Þ] form a biorthogonal basis over ∂Ω such that

hϕð0Þ
n jσð0Þn0 i ∝ δnn0 [53]. In seeking the leading order cor-

rections to Λð0Þ due to dαVα, we may consequently apply
perturbation theory around these classical eigensolutions.
Specifically, writing the perturbed eigenvalue Λ as
(eigenindex n implicit)

Λ ¼ Λð0Þ þ Λð1Þ
α dα þOðd2αÞ; ð3aÞ

introduces geometry-dependent perturbation factors Λð1Þ
α ≡

hϕð0ÞjVαjσð0Þi=hϕð0Þjσð0Þi which simplify to (see SM [28])

Λð1Þ
⊥ ¼ ðΛð0ÞÞ2 − 1

2ε0

hσð0Þjσð0Þi
hϕð0Þjσð0Þi ; ð3bÞ

Λð1Þ
∥ ¼ 2ε0

h∇∥ϕ
ð0Þj∇∥ϕ

ð0Þi
hϕð0Þjσð0Þi : ð3cÞ

We note the following features of Λð1Þ
⊥;∥: (i) their unit is

inverse length, i.e., they represent effective wave numbers
analogous to k in the planar semi-infinite system; (ii) non-

dimensionalization reveals a factorizable form Λð1Þ
α ¼

~Λð1Þ
α =L in terms of a dimensionless shape factor ~Λð1Þ

α and

a characteristic scale 1=L; and (iii) Λð1Þ
⊥ < 0 and Λð1Þ

∥ > 0,
see SM [28].
The perturbation result for Λ, Eqs. (3), allows a con-

comitant spectral statement. Specifically, for a classical
eigenfrequency ωð0Þ ≡ ωðΛð0ÞÞ, the first-order spectral
correction ω≡ ωð0Þ þ ωð1Þ þO(ðω − ωð0ÞÞ2) follows by
expanding Eq. (3a) around ωð0Þ

ωð1Þ ¼ Λð1Þ
α dð0Þα

∂
∂ω ðΛ − Λð1Þ

α dαÞð0Þ
≃ Λð1Þ

α dð0Þα

ð ∂
∂ωΛÞð0Þ

; ð4Þ

here, the second approximate equality neglects the
dispersion of dαðωÞ, i.e. a pole approximation, and the
superscript (0) indicates evaluation at the classical fre-

quency ωð0Þ, such that, e.g., dð0Þα ≡ dαðωð0ÞÞ. The result is
particularly elucidating for the lossless homogeneous
electron gas (HEG) in vacuum [εd ¼ 1, εmðωÞ ¼
1 − ω2

p=ω2, and ωð0Þ ¼ ωp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ Λð0ÞÞ=2

q
], reducing there

to ωð1Þ ¼ 1
4
Λð1Þ
α dð0Þα ω2

p=ωð0Þ. Since Λð1Þ
⊥ < 0 resonances

consequently redshift (blueshift) if dð0Þ⊥ > 0 (< 0), paral-
leling the results of the planar interface. Conversely, the

sign of dð0Þ∥ indicates shifting in the opposite direction

since Λð1Þ
∥ > 0.

In systems of sufficiently high symmetry, the perturba-
tive results, i.e., Eqs. (3), coincide with exact solutions of
Eq. (2) since first- and higher-order corrections to jσi ¼
jσð0Þi þ jσð1Þi þ � � � vanish by symmetry constraints.
Table I lists exact analytical results for a number of such
sufficiently symmetric systems, derived using suitable
modal expansions of the Coulomb interaction, see SM
[28]. The results for the half-space and sphere reproduce
the special cases previously obtained by Feibelman [11]
and Apell and Ljungbert [49,50], respectively. The general-
ity of the present approach additionally allows the deriva-
tion of new analytical results, here exemplified for the
cylinder, slab, and gap geometries. The utility and univer-
sality of the present approach is further illustrated by the
fact that Eqs. (3) and (4), and Table I, in particular, readily
reproduce all known first-order HDM results [55,56] when
the HDM approximation of the d parameters is employed
[57], i.e., when dHDM∥ ¼0 and dHDM⊥ ðωÞ¼−β=ðω2

p−ω2Þ1=2
with β2 ≡ 3

5
v2F [11].

In less symmetric geometries, analytical solutions cannot
generally be obtained. Regardless, the classical NBIE
operator K can be discretized by the boundary element
method [54] allowing the numerical calculation of the

nonclassical shape factors ~Λð1Þ
α ¼ Λð1Þ

α L via Eqs. (3).
Figure 2 presents the results of such a calculation, here,
for the dipolar modes of experimentally relevant geometries
over a range of aspect ratios a=b, specifically for cubes,
pills, spheroids, and triangles. The former three reduce to
spheres at aspect ratios a=b ¼ 2, 1, and 1, respectively.
Interestingly, though the a=b dependence of the classical
dipole eigenvalue Λð0Þ is qualitatively similar across the

TABLE I. Analytical eigenvalues Λ≡ Λð0Þ þ d⊥Λ⊥ þ d∥Λ∥ of
Eq. (2) valid to all orders in dα. The metallic geometries (and
associated geometric length scales) are indicated schematically in
gray; the relevant eigenindices are, from top to bottom, wave
number k, symmetric (upper sign) and antisymmetric (lower sign)
charge density parity, polar angular momentum l, azimuthal
angular momentum m, and dimensionless axial wave number
~k≡ kR. Km and Im denote modified Bessel functions.

Geometry Λð0Þ Λ⊥ Λ∥

0 −k k

∓e−kt −ð1∓e−ktÞk ð1�e−ktÞk

�e−kt −ð1∓e−ktÞk ð1�e−ktÞk

−
1

2lþ 1
−

2lðlþ 1Þ
ð2lþ 1ÞR

2lðlþ 1Þ
ð2lþ 1ÞR

~k½Kmð~kÞImð~kÞ�0
ðΛð0ÞÞ2−1

2Kmð~kÞImð~kÞR
2Kmð~kÞImð~kÞ

m2þ ~k2

R
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considered shapes, e.g., monotonically decreasing with

a=b, the corresponding dependence of Λð1Þ
α is markedly

dissimilar for distinct shapes. In this sense, nonclassicality
constitutes a stronger probe of local geometric features than
its underlying classical correspondent.
Breaking of classical complementarity.—The classical

NBIE naturally leads to a nonretarded spectral sum rule
for the resonances of complementary geometries (i.e., of
interchanged material regions) [59]. Concretely, the equi-
modal (i.e., of identical modal pattern) eigenvalues of a
region Ω and its complement Ω∁ ≡R3nΩ, denoted Λð0Þ and
Λð0Þ;∁, respectively, are interrelated by Λð0Þ ¼ −Λð0Þ;∁, since
Ω and Ω∁ are distinguished in the NBIE only by the sign of
the surface normal n̂ [59]. This is the classical statement of
complementarity in the small-scale limit. The present
extension of the NBIE allows a refinement of this statement;
specifically, it follows from the absence of an n̂ dependence

in Eqs. (3) thatΛð1Þ
α ¼ Λð1Þ;∁

α (this fact is exemplified, e.g., by
the slab and gap results of Table I). Consequently, classical
complementarity is broken in the sense

Λþ Λ∁ ¼ Λð1Þ
α ðdα þ d∁αÞ þOðd2αÞ; ð5Þ

withdð∁Þα evaluated atωð∁Þ. For theHEG invacuum, this entails

a modified sum rule ω2þðω∁Þ2≃ω2
p½1þ1

2
Λð1Þ
α ðdαþd∁αÞ�.

This new finding establishes that classical complementarity
is generically broken, even in the small-scale limit; it is
attained only approximately in an intermediate domain

bounded by large- and small-scale breakings due to retarda-
tion ð∝∼LÞ and nonclassical surface effects ð∝∼ 1=LÞ. A prior
HDM study of the slab-gap system exemplifies a special case
of this result [60].
Surface-enhanced plasmon decay.—Finally, we discuss

the size-dependent decay of plasmons. Equation (4)
directly facilitates a rigorous treatment of this aspect; in
particular, splitting the imaginary part of a resonance
frequency Imω≡ − 1

2
ðγð0Þ þ γð1ÞÞ into a classical part

γð0Þ due to bulk absorption and a nonclassical part γð1Þ
due to surface-enabled absorption, we find (assuming
Reω ≫ γð0;1Þ)

γð1Þ ≃ −2
Λð1Þ
α Im dð0Þα

Re ð ∂
∂ωΛÞð0Þ

≃ −
1

2

ω2
p

Reωð0Þ Λ
ð1Þ
α Im dð0Þα ; ð6Þ

specializing at the last equality to the HEG in vacuum. This
result generalizes the well-known phenomenological
Kreibig approach often adopted in nanospheres, which
takes γð1Þ ∼ vF=R [61,62] extending its applicability to
arbitrary geometries [63]. Similarly, it provides a first-
principles alternative to the recently proposed diffusive
HDM [64].
These considerations are further expounded in Fig. 3

for HEGs of Wigner-Seitz radius rs ¼ 2 and 4 (qualita-
tively representative of Al and Na, respectively) and Ag.
Figure 3(a) depicts TDDFT calculations of d⊥ (adopting a
local exchange-correlation potential [66]). For Ag, the 5s
orbitals are treated at the TDDFT level, while d-band
screening is included via Liebsch’s semiclassical screening
approximation (SSA) (see SM [28]) [67], which necessi-
tates inclusion of nonzero d∥ values [48]; associated bulk
properties are taken from measured data [68]. The spectral
size dispersion of plasmons due to these d parameters is
explored in Figs. 3(b)–3(c) for a sphere, cube, and triangle,
obtainedby numerical solution ofEq. (3a)with shape factors
from Table I and Fig. 2. The inverse scale proportionality
ωð1Þ ∝∼ 1=L of Eq. (4) is clearly displayed for both real and
imaginary parts regardless of material, being only slightly
modified at the smallest considered scale due to spectral
dispersion of dα. The rs ¼ 4 nanosphere is compared with
explicit TDDFT calculations of Reω by Weick et al. [65];
excellent agreement is observed (enduring at even smaller
radii as well, see SM [28]). In the HEGs, all considered
geometries incur redshifting Reω since d⊥ðωð0ÞÞ > 0;
conversely, the interplay between d⊥ and d∥ manifests itself
as a blueshift for the Ag sphere and cube. In contrast, the Ag
triangle redshifts since Ag’s d-band screening is reduced at
the lower resonance frequency of the triangle, tending there
to a HEG-like response in dα. We note that the definiteness
of this last prediction hinges on the fidelity of the SSA
which, despite its merits, has shortcomings (see SM [28]);
this notwithstanding, it plainly illustrates that this key

(a) (b) (c) (d)

FIG. 2. Aspect ratio dependence, a=b, of the shape factors,

Λð0Þ, −Λð1Þ
⊥ a, and Λð1Þ

∥ a (the latter two normalized by the length
L ¼ a) for four canonical geometries: (a) cubes of side a and
edge- and corner-rounding 2b, (b) cylindrical pills of length a,
diameter b, and butt-rounding b, (c) spheroids with principal axis
a and b, and (d) equilateral triangles of height b, side a, and edge-
and corner-rounding ≈ 0.165a. A dipole mode is considered in
all cases; its induced dipole is along a in (a)–(c) and along the
triangle altitude in (d). Rounding is intramural and of cylindrical
and spherical kind with inscribed diameters equaling the speci-
fied rounding value.
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characteristic, the nonclassical shift’s sign, generally may
exhibit both material and shape dependence.
Conclusions and outlook.—In this Letter, we have

demonstrated that the rich interplay between scale,
shape, and material in quantum nanoplasmonics can be
understood quantitatively through just five parameters: L,
~Λð1Þ
α , and dα. These parameters are the natural nonclassical

extensions that complement the bulk dielectric functions
and modal shape factor, εm, εd, and Λð0Þ, of classical
plasmonics. They originate physically from dynamic sur-
face dipole and current densities, πðrÞ and KðrÞ, propor-
tional to the Feibelman d parameters, see Fig. 1(b).
Together, they provide a general and first-principles
approach, which transparently and accurately separates
the distinct roles of shape, scale, and material down to
the nanometer scale.
Several aspects remain open for exploration: for in-

stance, the retarded generalization of this approach follows
by including the same boundary terms πðrÞ and KðrÞ,
allowing immediate incorporation, e.g., in retarded boun-
dary element methods. Another contiguous application lies
with coupled nanostructures, with implications, e.g., for
plasmon rulers [69,70]. Nonclassical modifications to
scattering properties [71] and their concomitant impact
on classical sum rules and scattering limits [72] poses a
separate open question. Moreover, beyond the perturbative

treatment emphasized here, new phenomena without a
classical equivalent emerge, such as the Bennett mode
[73] which corresponds to poles of d⊥ [74]. Finally, the
approach extends to several novel plasmonic platforms,
such as highly doped semiconductors [75]—it may trans-
late to 2D plasmonics as well, e.g., enabling analytical
insight in the plasmonic properties of zigzag- vs armchair-
terminated graphene nanostructures [76] through analo-
gous nonclassical edge densities.
In conclusion, we hope these results will renew interest in

the Feibelman d parameters as a general tool and funda-
mental platform in the field of quantum nanoplasmonics.
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