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We analytically and numerically find families of polychromatic partially spatially incoherent solitons in a non-

instantaneous Kerr nonlinear medium and analyze their coherence properties.

We find that the polychro-

matic incoherent solitons exist when higher temporal frequency constituents of the light are less spatially co-

herent than smaller temporal frequency constituents.
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1. INTRODUCTION

Optical spatial solitons made of incoherent light have
drawn considerable attention since the experimental ob-
servations of solitons made of spatially incoherent light!
and of white-light solitons.? In Ref. 1 the spatially inco-
herent quasi-monochromatic beam was generated with a
laser light that was passed through a rotating diffuser to
introduce spatial incoherence. In the subsequent
experiment,? optical spatial solitons made of temporally
and spatially incoherent light were demonstrated by use
of an incandescent light bulb as the light source. The key
requirement for the observation of these incoherent soli-
tons is the noninstantaneous response of the nonlinear
medium. The response time of the medium needs to be
much longer than the characteristic time of phase fluctua-
tions of incoherent light.!?

The experimental results in Refs. 1 and 2 were followed
by a flurry of theoretical studies of incoherent solitons.?~2!
Several theories for propagation of partially incoherent
waves in noninstantaneous nonlinear media were used
for the description of incoherent solitons. There are
three seemingly different approaches—the coherent den-
sity theory,* the modal theory,> and the mutual coherence
function theory®—that capture the essential physics in-
volved; these theories were later shown to be equivalent.”
An intuitive geometrical-optics approach useful for the
description of big incoherent solitons has also been
suggested.®  Recently, a statistical physics approach
based on a Wigner transform method was developed and
used to analyze modulation instability and spatially inco-
herent solitons.” For the study of various types of spa-
tially incoherent solitons in Kerr media,'*~® the modal
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theory® has been especially fruitful. However, all these
theoretical studies®2! have considered only spatially in-
coherent, but quasi-monochromatic (temporally coherent)
solitons. Hence these studies are not able to describe the
temporally and spatially incoherent solitons observed in
Ref. 2.

The dynamics of self-trapping of temporally and spa-
tially incoherent wave packets in noninstantaneous non-
linear media were recently studied numerically.?> The
characteristic features of the self-trapping process and
the properties of temporally and spatially incoherent soli-
tons were analyzed.?? Analytical results regarding such
incoherent wave packets were obtained only for the loga-
rithmically saturable (model) nonlinearity.?®

In this paper we present closed-form solutions repre-
senting a family of spatially incoherent solitons with a
discrete temporal power spectrum in a Kerr medium.
These polychromatic spatially incoherent solitons acquire
a quasi-continuous temporal power spectrum when the
characteristic width of the wave packet becomes suffi-
ciently large. We use this closed-form solution to nu-
merically identify temporally and spatially incoherent
solitons with a continuous temporal power spectrum.
The numerical procedure is based on the self-consistency
method described in Ref. 5. From our analysis it follows
that the polychromatic spatially incoherent solitons exist
when higher temporal frequency constituents of the light
are less spatially coherent than smaller temporal fre-
quency constituents.

2. EQUATIONS OF MOTION

Let us describe the physical system under consideration.
A light source emits spatially and temporally incoherent
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light continuously in time. Thus the incoherent wave
packet is a continuous wave (cw) and not pulsed. For ex-
ample, in Ref. 2 the light source was a quartz—tungsten—
halogen incandescent bulb. A beam made of such tempo-
rally and spatially incoherent light enters the
noninstantaneous nonlinear medium. The response time
of the medium is much slower than the characteristic
time of phase fluctuations upon the beam. Thus the me-
dium is unable to follow fast phase fluctuations of inco-
herent light, but responds to the time-averaged intensity
I. The time averages are taken over the response time of
the medium. The time-averaged intensity I, and hence
the induced index of refraction én(I), are in temporal
steady state: don(I)/dt = 0. Thus equations of motion
that describe the system need to describe the evolution of
spatial and temporal coherence properties of light along
the propagation (z) axis.

For the theoretical description of the problem, we use
the linear second-order coherence theory in the space—
frequency domain?* by adding a proper nonlinear term.?®
By assuming linear polarization of the light, we can de-
scribe the instantaneous electric field by a complex scalar
E(x,z,t). [Because we intend to analyze only (1
+ 1)D solitons in Kerr nonlinearity, only one spatial co-
ordinate x is considered. Namely, the propagation of (2
+ 1)D spatially incoherent beams in a Kerr medium
leads to collapse.?® Hence it is likely that polychromatic
spatially incoherent solitons in a Kerr medium would be
unstable as well.] The second-order coherence properties
of the light are described by the mutual coherence func-
tion in the space—time domain?*:

F(xl, 21, X9, 29; 7') = (E*(JCQ, 29, t2)E'(x1, 21, tl)>E )
1

where (...) denotes the time average and 7 = t; — ¢5. In
the space—frequency domain, the coherence properties
are described by the mutual spectral density
I',(x1, 21, x9, z9) that is defined as the Fourier trans-
form of ['(xy, 21, Xo, 29; D%

[(xq, 21, X9, 295 7)

1 o
= —f dol ,(x1, 21, X2, 29)exp(—iwT). (2)
27 Jo

We are interested in the correlation statistics of the field
between points at the same transverse cross section of the
beam, i.e., the points for which z; = z,, and the spatial
coordinates x; and x5 differ. The correlation statistics in
this plane are described by the mutual spectral density
B, (x1, x9,2) = T'(x1, 2, x9, 2). Under the paraxial
approximation, the evolution of B ,(x{, x4, 2z) is governed

by an integrodifferential equation®:

JB, i ( 92 9

RN (S — Bw
Jz 2km &xl (93622
ik,
= n—{ﬁn[l(xh z)] = on[l(xy, 2)}B (21, %2, 2), (3)
0

where I(x, z) = 1/27,"dwB ,(x, x, z) denotes the time-
averaged intensity. The refractive index is n%(I) = n?
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+ 2n¢én(I), where ny and én(I) denote the linear and
nonlinear contribution, respectively; k&, = wnq/c.

In deriving the propagation equation [Eq. (3)] we as-
sumed that the medium is dispersionless, i.e., that the
linear part of the refractive index n is independent of fre-
quency. Because the coupling term én([) is independent
of time dén(I)/dt = 0, and because Eq. (3) is in the fre-
quency domain, we can include dispersion by substituting
ng — no(w). In this paper, we neglect the effect of dis-
persion, which enables us to perform analytical calcula-
tions. Because the light is not pulsed, but continuously
emitted in time (cw), and because dén(I)/dt = 0, disper-
sion is negligible if ny(w) does not vary significantly over
the frequency range.

The mutual spectral density contains information on
the spatial coherence properties and the intensity profile
at frequency w. The intensity profile at frequency o is
I,(x,z)=B,(x, x, z), whereas the spatial coherence
properties are described in terms of the complex coher-
ence factor at frequency w?*:

Bw(xI’ X2, Z)

[B(x1, %1, 2)Bo(xs, x5, 2)]2

4)

Iu'w(xl> X2, Z) =

The quantity u,(x;, x4, 2) is also referred to as the spec-
tral degree of coherence at frequency w, or complex degree
of spatial coherence at frequency .

For the study of Kerr nonlinearity, it is convenient to
rewrite the equation of motion [Eq. (3)] in a different
form. We use the coherent-mode representation of mu-
tual spectral density?* and write B,(x;, x5, z) as a su-
perposition of modes®2427;

N

®

Bw(xlr X9, Z) = E )\mwumw(xla z)um“’*(x2, Z) (5)
m=1

Here u,,“(x, z) denote the spatial profiles of the guided
modes of the self-induced waveguide at frequency . The
modes are mutually incoherent, that is, the excitation of
one mode is uncorrelated, on the average, with the exci-
tation of some other mode. In Eq. (5), \,, denotes the
time-averaged mode-occupancy coefficients.” Generally,
for every frequency w, there are N, = 0 different modes,
i.e., given the frequency o, the index m runs from 1 to
N,. Because B ,(x;, x9, z) must obey the evolution
equation [Eq. (3)] by insertion of Eq. (5) into Eq. (3), it fol-
lows that each mode u,,”(x, z) must obey the following
evolution equation:

U, (x, 2) oy  26n(Dk,?
— + 2ik,, +
ox? Jz ng

u,,” =0.(6)

The time-averaged intensity in terms of modes is I(x, z)
= (2m) o dwS )\, u, (x, 2)|2.

Equation (6) is derived to be equivalent to Eq. (3) in the
following sense.” Given some initial conditions
u,“x,z=0), from Eq. (5) we know the initial mutual
spectral density B,(x{, x5, 2 = 0). By using the evolu-
tion equation for the modes [Eq. (6)], we can find the mode
profiles u,,“(x, z) after some propagation distance z; from
these mode profiles, by invoking Eq. (5), we can recon-
struct the mutual spectral density B, (x;, x2, z). We
could have obtained the same value B (x;, x5, 2) by us-
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ing Eq. (3) directly and evolving mutual spectral density
from the same initial condition B (x;, x9, z = 0) up to
the propagation distance z. In other words, the two ap-
proaches, the modal approach given by Eq. (6) and the
mutual spectral density approach given by Eq. (3), are
equivalent.” In fact, Eq. (6) is an extension of a fruitful
multimode approach utilized for the description of spa-
tially incoherent, but temporally coherent, solitons.?’
This extension allows for a broad frequency power spec-
trum, and we use it to describe polychromatic spatially in-
coherent solitons in a Kerr medium.

3. PARTIALLY SPATTIALLY INCOHERENT
SOLITON WITH A DISCRETE
TEMPORAL SPECTRAL DENSITY IN A
KERR MEDIUM

In this section we present the closed-form solitary-wave
solution of Eq. (6) that represents a family of (1 + 1)D
polychromatic partially spatially incoherent solitons in a
Kerr medium. The nonlinear response of the medium is
2noon(I) = nol, ie., n2(I) = ny2 + nyl. The temporal
spectral density of this soliton(s) is discrete, that is, this
soliton is constructed from a number of partially spatially
incoherent quasi-monochromatic waves that are propa-
gating at different carrier frequencies: q, @500, ON
where N, denotes the number of frequency constituents
within the beam.

For the purposes of this section, it is convenient to re-
write Eq. (6) so as to describe only evolution of light in a
Kerr medium 2n,6n(I) = nyl and with a discrete tempo-
ral power spectrum:

Pu,(x, 2) I, nok; 2
— + 2ik;—— I(x, z)u,’ =0, (7
ax? z no?
where
xz)—EE)\fht (x, 2)|2. (8)
j=1 m=1

In Eq. (7), the index j denotes the frequencies w; — j, &;
= now;/c. Theindexjruns from 1to N;. The indexm
runs from 1to N;, where N; = N o, denotes the number of
different mutually incoherent modes at a particular fre-
quency w;. If N;=1, ie, if the beam is constructed
from just one frequency, Eq. (7) represents the Manakov
system of N; (j = 1) equations.?® Hence, for Ny> 1, Eq.
(7) can be regarded as a generalization of the Manakov
set of equations, which includes the possibility of evolving
light with a number of different frequencies.

We seek soliton solutions in the form u,/(x, 2)
= p,/(x)exp(ix,/z), where v,/(x) represents the spatlal
proﬁle of the mth mode at frequency w;, and «,,’ is the
propagation constant of this mode. When u,(x, z)
= v,/(x)exp(ik,/z) is inserted in to Eq. (7), we obtaln a
Schroedinger-type equation for the modal functions

v, (x):

2. 2
V! (%) . nak;
dx n

Ix)v,’ =0, (9
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where

N
I(x) EE N | 7 ()2 (10)

The potential in this Schroedinger equation is determined
by the intensity profile I(x), which is, in turn, determined
by the modes v,/(x) themselves. In other words, for the
soliton to exist, the self-consistency loop must be closed.

Let us present a closed-form soliton solution of Eq. (7).
This soliton draws on the closed-form solutions for the
partially spatially incoherent, but temporally coherent,
solitons found by Carvalho et al. in Ref. 14. Here we
identify a family of polychromatic spatially incoherent
solitons with the intensity profile

I(x) = I,sech?(x/x). (11)

Thus every soliton within the family has an intensity pro-

file that is secant hyperbolic squared. The frequencies

that constitute this polychromatic soliton are specified by

the following relation (see Ref. 14):

c|lj+1)
Xo

1/2
. j=1L2.N,. (12

noly

When the expressions for the intensity profile and the fre-
quencies (k; = ngw;/c) from Egs. (11) and (12), respec-
tively, are inserted into Eq. (9), it follows that the propa-

gation constants arel*
mZ 1 mZ 1/2 1
K, = — =

2 kj.?COZ

nyly
JJ+1)

m=12,..7j, (13)

2
nogXo

whereas the mode profiles v,/(x) must obey'*
d?v,/

m + [j(j + 1)sech®(x/xo) — m?]v,/ = 0.
X/X(

(14)

From Eq. (13) it follows that the number of modes that
are used to describe the mutual spectral density at a fre-
quency w;is N; = j. 4 Furthermore, from Eq. (14) it fol-
lows that the proﬁles of the modes v,,/(x) are given by the
Legendre polynomials [see Egs. (4) and (6) in Ref. 14]:

vl (x) ij(tanhi>. (15)
Xo

Most importantly, from Ref. 14 it follows that the modal
weights \,,/ corresponding to each frequency w; can be ad-
justed so that

N;
2 N[V, ()2 = I sech?(x/x), (16)

m=1

where I; is determined by the power contained within the

frequency constituent of the beam. Equation (16)
means that the modal weights \,;/ at every frequency w;
can be adjusted so that the 1ntens1ty profile of every fre-
quency constituent of the beam is sech?(x/x,). This is a
consequence of a particular choice of total intensity profile
[Eq. (11)] and the choice of frequency constituents w; [Eq.
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(12)]. To obtain the total intensity profile from the
modes, we must perform a sum of Eq. (16) over all fre-
quencies w; [see Eq. (8)]:

Ny N;

I(x) = 2 2 N | v ()2 = 2 I; sech?(x/x).
Jj=1 m=1

17

Because we started the calculation by assuming that the
intensity profile is I(x) = I, sech?(x/x,) [see Eq. (11)], the
only remaining condition that needs to be satisfied for the
self-consistency loop to be completed, that is, for Eq. (10)
to hold, is

f
> I =1, (18)
i=1

Thus in Egs. (11)—(18) we have constructed an analytical
solution representing a family of polychromatic partially
spatially incoherent solitons in a noninstantaneous non-
linear Kerr medium. Because every frequency constitu-
ent has an intensity profile that is = sech®(x/x,), the num-
ber of frequency constituents within the soliton depends
on our choice. Namely, we can choose Ny to be arbitrarily
large and then choose the peak of intensity profile at fre-
quency w;, thatis, I; = 0 almost at will, because only the
COI’ldlthIl of Eq. (18) needs to be satisfied. For example,
we can construct a soliton with two frequencies, say wq
and wg, by putting all the power within these two con-
stituents, which means that I, + I = I,; in this case all
other values are I; = 0 forj # 2 andj # 6. It should be
noted that the construction of these spatially incoherent
solitons with discrete temporal power spectrum by a com-
bination of quasi-monochromatic solitons found by Car-
valho et al.'* corresponds to the linear superposition prin-
ciple for partially spatially incoherent solitons described
in Ref. 21.

For the sake of the clarity of the exposition, let us ex-
plicitly write down the polychromatic spatially incoherent
soliton constructed from four frequencies, wy, w3, w4,
and wj, given by Eq. (12). Denoting S = sech(x/xy) and
T = tanh(x/xy), the normalized profiles

)\mj 1/2
Uyl (x) = (—) V! () (19)
I
are as follows'*:
Forj = 2, 792(x) = 82, 712(x) = ST;
5.3 15 3
for j = 3, v = —S?,
or j 3°(x) 6
-~ 3 \/gSZT
2°(x) = 2 ,
_ 1
2 (x) = ZS(4 — 582,
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For j = 4,

~ 4 7 4
Vy (x) = gs )
3
Tyt(x) = ZﬁSST,

V2
wtx) = 876 - 157,

1
1(x) = ZST(4 - 782).

Forj = 5, vsP(x) = —— 8?5,

=5 \/53 2
V3 (x)=¥S (8 —987%),

V7
750(x) = 7SZT(z - 382,

1
7.5(x) = —S(8 — 2852 + 215%).

These modes induce the potential I(x) that traps them:

5 J
Z 2_ N | v (20)]2

I(x)

I|F1;mj(x)|2

ﬁM&

2

= Iy + I3+ I, + I5)sech?(x/x()
= I, sech?(x/x,), (20)

ie, Iy + I3+ I, + I5=1I,, which is a particular case of
Eq. (18).

The spatial coherence properties at frequency w are de-
scribed in terms of the complex coherence factor w, at fre-
quency o [see Eq. (4)]. The complex coherence factors
no(x, 0) are plotted in Fig. 1 at frequencies wy, w3, wy,
and ws. Evidently, the characteristic width of the com-
plex coherence factor is smaller at larger frequencies.
This is attributed to the fact that the number of modes at
frequency w; is N; = j, that is, N; increases with the in-
crease of frequency w;, and generally the multimode spa-
tially incoherent soliton is more spatially incoherent if the
number of excited modes is larger.® This means that, for
this soliton to exist, the spatial correlation distance must
decrease with the increase of frequency.

Let us show that, in the limit of big incoherent
solitons,® the discrete temporal power spectrum of the
polychromatic soliton becomes quasi-continuous. Sup-
pose that we use light with the temporal power spectrum
restricted to the interval [Q i, Qnaxl- From Eq. (12) it

follows that only a certain number of frequencies w;,
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1.0

0.5 e
S
5
=
0.0
-0.5 L 1 1 1

-5 -3 -1 1 3 5
X/,
Fig. 1. Complex coherence factors u,(x, 0) of the spatially inco-
herent soliton with the discrete temporal power spectrum. The
function u,, is plotted for frequencies w;, wherej = 2, 3, 4, 5 [see
Eq. (12)]. The characteristic width of w,(x, 0) is evidently
smaller at larger frequencies (wy; < w3 < w4 < w;).

=1 j=10 1—20

l
° M7 \\\\\\\\\\\\

«— A=700 nm

JHW\\ W
ST Y

x, (m)

Fig. 2. Frequencies w; [see Eq. (12)] versus the characteristic
width x,. Two horizontal dashed lines show the frequencies
Qoin and Q... Four thin horizontal lines represent the fre-
quency values corresponding to 400, 500, 600, and 700 nm. Two
vertical dotted lines are placed at x, = 10 and 70 um. We can
see that the number of w; values within the interval [Q;n ,Qmax]
increases with the increase of x,. The separation between ad-

jacent frequencies decreases with an increase of x.

where j = joinsJmin T Loeess Jmin T Jiotal» are within the in-
terval [Qin, Qmaxl- This is pictorially presented in Fig.
2, which shows w; versus x,. For Fig. 2, Q.
= 294 X 10 Hz (O, = 4.41 X 10" Hz), which corre-
sponds to a 641-nm (427-nm) vacuum wavelength. The
strength of the nonlinearity is n,l, = 0.0004. If x,
= 10 um, there is just one frequency w; (the one for
J = 2) within the interval [Q ., Qmaxl; the interval
[Qmin > Qmax] is shown as two dashed horizontal lines.
However, if x, = 70 um, there are seven frequencies w;
(the ones for j = 14,15,...,20) within the interval
[Qmin > Qmax]- Given the parameters ny and I, both j i
and ji., increase with the increase of the characteristic

width of the soliton (see Fig. 2). As x, increases, the
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spacing between adjacent frequency constituents is ap-
proximately

C
T — (21)

! xo\n210

We can see that the separation between adjacent frequen-
cies that constitute the frequency power spectrum de-
creases with the increase of the characteristic width x of
the soliton. When we sufficiently increase x, the width
wj1 — w; becomes sufficiently small, and the discrete
spectrum can be regarded as quasi-continuous. Thus, in
the limit of big incoherent solitons, our solution repre-
sents the polychromatic incoherent solitons, with the
quasi-continuous spectrum of light in the Kerr-like non-
linearity.

4. TEMPORALLY AND SPATTALLY
INCOHERENT SOLITON WITH A
CONTINUOUS TEMPORAL SPECTRAL
DENSITY IN A KERR MEDIUM

In this section we find a temporally and spatially incoher-
ent soliton with a continuous temporal spectral density in
a Kerr medium by using numerical methods. The tem-
poral power spectrum of this soliton is broad, and there-
fore it represents a white-light soliton, such as the one ob-
served in Ref. 2. Equation (6) is solved self-consistently
by use of the method described in Ref. 5. The temporal
power spectrum of this soliton is spanned in the interval
[Qmins Omaxl- For the purposes of numerical calcula-
tions, the frequency-domain interval is discretized on a
uniform grid of N, points. The frequencies from the grid
are

1
w; = (J — E)Aw, J=12,.,Ng,

where

A0 = (Qpax — Qin)/Ny. (22)

In fact, because we discretize the frequency domain, we
are actually solving the discretized equation [Eq. (7)] nu-
merically. However, by gradually reducing the separa-
tion between the frequency constituents Aw, we check
whether the soliton found numerically converges to the
continuous spectral density soliton as Aw — 0. In that
sense, the numerically found soliton solution of Eq. (7)
represents the soliton solution of Eq. (6).

Let us present the white-light soliton in a noninstanta-
neous Kerr medium. The induced nonlinearity at the
peak of the soliton is nyI; = 0.0004, and the soliton width
isxy = 10 um. The temporal power spectrum is rectan-
gular (i.e., the spectral density is uniform) within the in-
terval [ Qs Qnax] = [2.94, 4.41] X 10°Hz. The width
of the temporal power spectrum is (Qp . — Quin)/
o, = 0.4; w, denotes the central frequency w, = (Q .
+ Q2. For the numerical calculations, the
frequency-domain interval is divided into Ny = 81 fre-
quency constituents, i.e., the grid refinement is Aw/w,
= 0.005. Because the same features of the white-light
soliton are observed as the grid refinement is gradually
reduced from Aw/w, ~ 0.04 down to Aw/w, = 0.005, we
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conclude that the numerically found solution represents
the spatially and temporally incoherent soliton, with a
truly continuous spectral density.

Figure 3 shows the intensity profile I(x) of this soliton.
It differs slightly from the sech®(x/x,) intensity profile of
the analytically obtained polychromatic soliton. Figure 4
shows the complex coherence factor at the representative
frequencies Q,, ®., and Q... We can see that the
width of the complex coherence factor, which corresponds
to the spatial correlation distance [ (w),2* is smaller for
higher frequencies. The same feature is observed in the
analytic example above (see Fig. 1). The intensity profile
at a particular frequency o,

Ny
I(x) = (2m) 7 2 Mplunl?, (23)
m=1

is displayed in Fig. 5 at three representative frequencies
Qins 0., and Q... We observe that the intensity pro-
file I ,(x) is more narrow, with larger peaks at higher fre-
quencies. This differs from the discrete spectral density
soliton studied in Section 3. Namely, for that soliton

1_ i
NQ
~
g 05 ]
0 1 . 1 " 1

-40 -20 0 20 40
x (Wm)

Fig. 3. Normalized intensity profile I(x)/I, of the incoherent
white-light soliton in a noninstantaneous Kerr medium.

(%, 0)

x (Lm)
Fig. 4. Complex coherence factors u,(x, 0) of the incoherent
white-light soliton for three representative frequencies ;.
(solid curve), w,. (dotted—dashed curve), and Q,,, (dotted curve).
The functions u,(x, 0) are narrower at larger frequencies.
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L) (a.u.)

x (wm)
Fig. 5. Intensity profiles I ,(x) of the incoherent white-light soli-
ton at three representative frequencies ,;, (solid curve), w,
(dotted—dashed curve), and Q,,,, (dotted curve). The functions
I ,(x) are more narrow with higher peaks at larger frequencies.

v, (%)

v, (%)

1 1 : 1 1 n 1 n 1 1
-60 -40 -20 0 20 40 60
x (um)
Fig. 6. Two excited modes v,“(x) and v{“(x) at three frequen-
cies O, (solid curve), w, (dotted—dashed curves), and €, (dot-
ted curves). The modal structure is similar at every frequency
® € [QuinsOmax]- The only difference is that the modes at

lower-frequency constituents are more stretched than the modes
at higher frequencies.

Imj(x) = le(x), for any choice of frequencies w; and wy,
which was a consequence of a particular choice of the in-
tensity profile [Eq. (11)], a particular choice of frequency
constituents [Eq. (12)], and a particular choice of modal
weights [Eq. (16)].

The observation from Fig. 5 regarding the intensity
profiles at various frequencies of the continuous spectral
density soliton can be explained as follows. Let us as-
sume that the mth mode v,,“(x) is excited at all frequen-
cies w € [Qpin, Omaxl- This mode satisfies the same
equation for each w, but with different coefficients that
depend on frequency [e.g., see Eq. (6)]. Consequently, the
profiles of the modes will have the same topological struc-
ture (e.g., see Fig. 6). However, modes corresponding to
higher frequencies are less stretched than the modes cor-
responding to lower frequencies as is illustrated in Fig. 6.
This is explained as follows. All frequency constituentsof
the beam are within the same induced waveguide, and
the characteristic width of this waveguide is measured by
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each frequency constituent in terms of its own character-
istic length scale—the wavelength. Consequently,
higher-frequency constituents (smaller wavelengths) ef-
fectively see a larger induced waveguide and the modes
corresponding to higher frequencies will be less stretched,
and more concentrated at the center of the soliton, than
the modes corresponding to smaller frequencies (see Fig.
6). The same observation is via Eq. (23) reflected into the
intensity profiles I,(x) (see Fig. 5). To be precise, we
should say that this argument is valid when the spectral
density is rectangular, i.e., when the power within differ-
ent frequency constituents is equal. However, if this is
not the case, all conclusions hold for the normalized func-
tions jw(x) =1,(x)/fdxI,(x) and normalized modes
U ?(x) = v, °(x)/(J daI ()2,

For the numerically obtained soliton above, the number
of excited modes at each frequency wis N, = 2; these are
the two lowest modes u“(x, z) and u,“(x, z) per each w.
The explanation provided above clearly explains the pro-
files of the modes u,,“(x, z) (see Fig. 6) and functions
I, (x) (see Fig. 5). The same behavior of the profiles
I,(x), but less pronounced, is observed in white-light soli-
tons in saturable nonlinearity of the type sn(l) = —1/(1
+ I).25 Furthermore, the dynamical self-trapping of an
incoherent wave packet (white-light quasi-soliton) in Kerr
media has also revealed that, during the self-trapping
process, the functions I ,(x) that are initially the same for
each frequency tend to evolve into profiles equivalent to
the one presented in Fig. 5.2°

5. CONCLUSION

In summary, we have presented a family of closed-form
soliton solutions representing partially spatially incoher-
ent solitons with a discrete temporal power spectrum in a
noninstantaneous Kerr medium. Spectral density of
these solitons becomes quasi-continuous as the size of the
soliton is sufficiently increased. By using this solution as
a starting point, we have numerically identified tempo-
rally and spatially incoherent soliton with a broad and
continuous temporal power spectrum. From both the
analytical family of solitons and the numerically identi-
fied soliton, it follows that higher temporal frequency con-
stituents of the light are less spatially coherent than
smaller temporal frequency constituents. For future re-
search we foresee the study of interactions of incoherent
white-light solitons. Spatially incoherent, but temporally
coherent, dark solitons have already been studied experi-
mentally and theoretically.?>° However, the problem of
dark white-light solitons is yet unexplored. The problem
of spectral density at the darkest spot of a dark white-
light soliton seems intriguing in view of the recent study
of universal pattern of colors near an isolated phase
singularity.3!

*E-mail: hbuljan@techunix.technion.ac.il.
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