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Abstract Plasmon resonances and extraordinary light scatter-
ings of a nanoparticle with radial anisotropy are studied and
summarized. The coupling between localized surface plasmons
and far-field quantities is discussed. It is found that the presence
of radial anisotropy redistributes the localization of plasmons
and also results in certain novel phenomena in the far zone,
which provide the possibility of scattering control such as elec-
tromagnetic transparency, enhanced scattering cross section, etc.
The nonlinear optical response is explored in order to yield
deeper physical insight into the interaction between plasmons
and incident light.

Nondissipative damping in the dipolar mode in a radial
anisotropic sphere when the transversal permittivity �t = �2:1

is near the surface plasmon resonance with positive �r (Ae < 0)
at different scales.
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1. Introduction

Light scattering by arbitrary three-dimensional (3D) ob-
jects is a topic of interest in many scientific communities,
e.g., astrophysics, atmospheric physics, remote sensing,
electromagnetics, and photonics. Scattering from isotropic
homogeneous spheres was first formulated by Lorentz [1]
and Mie [2], which set the foundations of many follow-
ing investigations for particular shapes or more complex
media. Some peculiarities of light scattering for isotropic
materials were found recently for the case of weakly dissi-
pating materials near plasmon resonance frequencies. For
these isotropic materials, the classical Rayleigh scattering

does not hold and can be replaced by anomalous light scat-
tering [3]. This anomalous light scattering is associated
with complex patterns of near and far fields, in contrast to
that of Rayleigh scattering. It also demonstrates an extraor-
dinary scattering effect [4], which is similar to quantum
scattering by a potential with quasi-discrete levels exhibit-
ing Fano resonances [5]. Another interesting effect refers
to active random isotropic media which support optical
light enhancement [6].

Light diffraction and scattering by anisotropic particles
is a field of particular interest due to vast technological
and biological applications. Many solid materials in nature
are anisotropic, e.g., polar crystallites made of orientational
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molecules are generally both anisotropic and collective. The
anisotropy stems from the lack of symmetry in the local
atomic environment whilst the collectivity is caused by the
dense grouping of molecules. Such anisotropy can be easily
established from composite crystals [7], graphitic multi-
shells [8], or spherically stratified media [9], and indeed
found in membranes containing mobile charges [10]. Basi-
cally, there are two anisotropies, i.e., Cartesian anisotropy
and radial anisotropy. Mie theory has been extended to
treat Cartesian anisotropic particles in different 3D geome-
tries, such as spheres, ellipsoids, and arbitrary shapes. In
the case of arbitrary 3D Cartesian anisotropic particles,
numerical solutions are more powerful since extended an-
alytical solutions in this regard can only study spherical
cases [11]. However, the anisotropic response of a spheri-
cal particle made of crystalline materials [12] has received
less attention in spite of its importance for the technologies
of embedding of artificial particles and biomedical detec-
tion. Recently, scattering of light by Cartesian anisotropic
particles has been analyzed in [13, 14], but the material
is primarily characterized in rectangular coordinates and
treated by a differential theory.

Another special interest presents the spherical parti-
cles with radial anisotropies [15–17]. Especially in medical
applications and bio-engineering, the light scattering by
radial anisotropic particles provides insight into the de-
tail of interaction of embedded/injected bioparticles with
the microwave and/or optical illumination by external de-
vices [18–20], which could help to locate some abnor-
mal proteins [21]. It is expected that molecules in spher-
ical particles with radial anisotropy are at least partially
oriented with respect to the normal direction to the sur-
face [22–24]. Such orientation of molecules can be easily
included into the theory considering the particle as a uniax-
ial anisotropic medium with the principal optical axis along
the local normal direction to the surface. The complex di-
electric/magnetic tensorial components �r (�r) and �t (�t)
correspond to the parameters normal to and tangential to
the local surface (local optical axis [25]), respectively. This
problem can be investigated systematically on the basis of
the exact solution of Maxwell’s equations, which presents
the modification of the Mie theory to the diffraction by an
anisotropic sphere, including both electric and magnetic
anisotropy ratios. Note that the anisotropy and the material
parameters involved are described in spherical morphology
in which the local bx, by, and bz are replaced by br, b�, and b�.

Such radially anisotropic materials are receiving great
attention recently from both scientific and engineering
communities. It has been reported that the classic spher-
ical cloak [26] can be realized by materials with radial
anisotropy using a coordinate transformation [27], which
were primarily presented in the optics limit or static cases.
More recently, high-order transformations for spherical in-
visible cloaks have been proposed which would improve
the invisibility performance and/or alleviate the material
parameter restriction [28–30]. However, it is noted that the
parameters of radially anisotropic materials used in classic

spherical cloaks are position dependent, leading to different
eigenmodes from those with position-independent parame-
ters. The light scattering by such radially anisotropic mate-
rials can be quite unusual [31], because of the anisotropy,
and the nonlinear effects are also controllable via the radial
anisotropy [32–34].

Thus, the purpose of this review paper is to provide
the targeted audience with a mini-summary of both the
Cartesian and the radial anisotropic effects on the scatter-
ing patterns, energy localization, and other extraordinary
physics phenomena, on the basis of exact and compact solu-
tions for light scattering by spherical particles with uniaxial
anisotropy defined in rectangular and spherical coordinates,
respectively. Note that we only discuss spherical particles
throughout. This review is organized as follows: in Sect. 2,
we will quite briefly discuss the anomalous scattering in
the presence of no anisotropy, whose coefficients will be
compared with the radial anisotropic case; in Sect. 3, a gen-
eral numerical algorithm is reviewed for the anisotropy in
Cartesian coordinates, which can model arbitrary shapes; in
Sect. 4, the theoretical characterization of electromagnetic
wave interactions with a single radial anisotropic sphere
is reviewed and the role of radial anisotropy in anoma-
lous light scattering and surface plasmonics is presented; in
Sects. 4 and 5, a core-shell system in which one layer is oc-
cupied by a radial anisotropic medium is investigated where
the scattering reduction, near-field perturbation, and nonlin-
ear response are discussed; a short conclusion is provided
in Sect. 6.

2. Preliminaries

A spherical particle can be used as a lens for focusing laser
radiation. It has potential applications in high-density data
storage and high-resolution optical lithography for nanode-
vice fabrication. The problem of electromagnetic scattering
by isotropic spherical particles has been well established by
Mie theory [35], which indicates that a small transparent
particle can lead to a strong field enhancement as a near-
field lens. In the near field of the particle, the energy flux
would be localized in the area below the diffraction limit,
which is employed for applications in optical devices and
nanopatterning [36–40].

For an optically large transparent sphere (the radius
a � �), geometrical optics [41] can be used for the ray
tracing and one can consequently determine the field inten-
sity distribution in the vicinity of the particle [42]. In order
to include the diffraction and aberration, a Bessoid integral
can be used to give a more accurate picture of the fields of
a big particle [43]. Nevertheless, a detailed calculation can
be performed by Mie theory in this case.

When the particle size is sufficiently small compared
with the incident wavelength, Rayleigh scattering domi-
nates and the far field is 1-shaped. However, Rayleigh
scattering does not hold in the case of small particles near
plasmon resonance frequencies. An easy proof can be found
in the expression of the Rayleigh scattering cross section
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(SCS): the denominator contains a term of � + 2, mean-
ing that SCS will diverge if Re[�] = �2 and Im[�] ! 0.
Under such a circumstance, anomalous scattering replaces
Rayleigh scattering, and a two-fold process comes into play:
(1) transformation of incident light into localized plasmons,
resulting in dissipative damping, and (2) transformation of
localized plasmons into scattered light, leading to radiative
damping. Owing to the radiative damping, the scattering has
finite values even at exact plasmon resonances. However,
the Rayleigh scattering approximation is valid only when
this radiative damping is negligibly smaller than the dissipa-
tive damping. If the radiative damping becomes dominant,
anomalous scattering occurs instead of Rayleigh scattering,
which results in giant optical resonances, enhanced scatter-
ing cross sections, and a complicated energy distribution.
For small-sized plasmonic spheres, there are two primary
scattering coefficients involved, i.e., a1 (electric) and bl
(magnetic) within the framework of Mie theory:

al =
<(a)
l

<(a)
l + i=(a)

l

; bl =
<(b)
l

<(b)
l + i=(b)

l

; (1)

where

<(a)
l = n 0l(q) l(nq)�  l(q) 

0

l(nq) ; (2)

=(a)
l = n�0l(q) l(nq)� �l(q) 

0

l(nq) ; (3)

<(b)
l = n l(q) 

0

l(nq)�  0l(q) l(nq) ; (4)

=(b)
l = n�l(q) 

0

l(nq)� �0l(q) l(nq) : (5)

In the formulas above, n =
p
� denotes the relative refrac-

tive index of the sphere at radius a and q = k0a is the
so-called size parameter. Here,  l(x) =

p
�x=2Jl+1=2(x),

�l(x) =
p
�x=2Nl+1=2(x), and the prime indicates differ-

entiation with respect to the entire argument. Now, one can
easily see that if the particle is not at its resonance,< << =
holds in Eq. (1), so that only the dipole mode (l = 1) needs
to be considered, which is the basis of Rayleigh approxima-
tion. If the particle is at resonant frequency, < >> = holds
in Eq. (1), and then the amplitudes of al and bl will be cut
off at 1, resulting in a finite large SCS instead of infinity
produced by Rayleigh approximation. The scattering, ex-
tinction, and absorption SCS normalized by �a2 (the cross
section of the sphere) are

Qsca =
2

q2

1X
n=1

(2l + 1)
�jalj2 + jblj2� ; (6)

Qext =
2

q2

1X
n=1

(2l + 1)<[al + bl] ; (7)

Qabs = Qext �Qsca : (8)

Surprisingly, the resonant peak value of the quadrupolar
contribution prevails over that of the dipolar contribution
as shown in Fig. 1, which is in contrast to the conclusion of

Figure 1 Extinction SCS (Qext) versus frequency for a metal
sphere at the size parameter (a) q = 0:5, (b) q = 0:3 (reprinted
with permission from [45]). The permittivity of a Drude sphere is
� = 1� !2

0=!
2, and !sp = !0=

p
3 denotes the dipolar resonant

frequency at q ! 0. The numbers 1 and 2 correspond to dipole
and quadrupole contributions to the extinction SCS, respectively.

Rayleigh scattering. The scattering of arbitrary spherically
symmetric resonant objects can also be studied by coupled-
mode theory [44].

An even more fascinating effect was found in the vicin-
ity of the quadrupolar resonance, where high sensitivity of
the angular distribution of scattered light can be seen for
Drude materials with weak dissipation. A very small varia-
tion in the incident light frequency changes the scattering
diagram from forward scattering to backward scattering, as
shown in Fig. 2.

In this case the localized plasmons (polaritons), excited
by the incident light in the scattering particle, are equivalent
to the quasi-discrete levels in the Fano resonance, while
the radiative decay of these excitations plays exactly the
same role as tunneling from the quasi-discrete levels in the
quantum problem. As a result, the resonance may have a
typical N-shaped line with a local maximum, correspond-
ing to constructive interference of different eigenmodes,
and a local minimum, corresponding to destructive interfer-
ence. In particular, the destructive interference may result
in considerable, or even complete, suppression of the scat-
tering along any given direction. Thus, the famous Fano
resonance [46] was, in fact, hidden in the exact Mie solu-
tion.

3. Classification of anisotropy

The presence of anisotropy in the particle will further com-
plicate the extraordinary scattering properties as well as
beam steering. In recent years, there has been an increas-
ing interest in characterizing interactions between elec-
tromagnetic fields and anisotropic media, owing to their
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Figure 2 (online color at: www.lpr-journal.org) The angular
dependence of light scattering that follows from the exact Mie
solution. The dielectric function was described by the Drude
model with weak dissipation: =!p = 10

�3. The radius is a =

0:083�, much smaller than the wavelength. Scattering diagrams
in (a) and (b) are defined in the standard way [35] for linearly
polarized (red lines) and nonpolarized (blue lines) radiation. In
the vicinity of the quadrupole resonance, a fast change of the
scattering diagram from forward scattering to backward scattering
can be seen within a small variation of frequency. One can see
asymmetric forward (blue) and backward (red) scattering profiles
associated with the Fano resonance (c).

promising applications in the design and analysis of various
novel microwave devices [47–49], subwavelength imag-
ing [50, 51], negative refraction [52–54], and transforma-
tion optics [26, 55, 56]. There are two types of anisotropies
existing in natural and artificial engineered materials: (1)
Cartesian anisotropy (CA); (2) radial anisotropy (RA).

3.1. Cartesian anisotropy of spheres

When the spherical particles possess Cartesian anisotropy,
the material parameters are defined as

� =

24 �1 �i�2 0

i�2 �1 0

0 0 �3

35 ; (9)

� =

24�1 �i�2 0

i�2 �1 0

0 0 �3

35 ; (10)

where the unit dyad is bI = bxbx+ byby+ bzbz. Such a bounded
medium with a spherical surface forms a spherical particle

of Cartesian anisotropy. To characterize its wave interaction,
an analytical method based on multipole expansion [11]
has been established by extending Mie theory in isotropic
cases to the uniaxial case. Another analytical approach of
a dyadic Green’s function (DGF) was also investigated
even for spherically multilayered structures of anisotropic
spheres [57], which is capable of dealing with arbitrary
layer number and arbitrary incidences, i.e., plane wave, dis-
tributed currents, point source, etc. Those analytical meth-
ods are of theoretical and technical importance, whereas
they lack robustness in studying arbitrary anisotropic parti-
cles in noncanonical shapes or degenerate band edge (DBE)
crystals. The unit DBE cells require anisotropic materials
as their building blocks [58–60]. Such ensembles can be
realized by sapphire and quartz, or by engineered uniax-
ial layers constructed from textured alternating stacks of
two different isotropic dielectrics [61], e.g., Al2O3 and
BaTiO3. In this connection, numerical algorithms come
into play. Specifically, numerical approaches have been
proposed based on the method of moments (MoM) [62],
the finite-difference time-domain method [63], transmis-
sion line modeling [64], the combined field integral equa-
tion [65], the coupled dipole approximation method [66],
the integral equation [67], and spectral domain Fourier
transformation [68].

Given a three-dimensional arbitrarily shaped isotropic
object, the scattered electric and magnetic fields can be
expressed as

E = Einc +Es
1 +E

s
2 ; (11)

H =H inc +Hs
1 +H

s
2 (12)

or

E = Einc � i!A�rV � 1

�0
r� F ; (13)

H =H inc � i!F �rU +
1

�0
r�A ; (14)

where Es
1 and Hs

1 are the fields generated by the electric
charges and electric currents only; Es

2 and Hs
2 the fields

generated by the magnetic charges and magnetic currents
only; A (F ) corresponds to the magnetic (electric) vector
potential to be expressed in terms of the electric (magnetic)
polarization current Jep (Jmp); and V (U ) corresponds to
the electric (magnetic) scalar potential to be expressed in
terms of the bounded electric (magnetic) charge density �eb
(�mb). If the surface bounded electric (magnetic) charges
�eb (�mb) are present on the boundary, the contributions
due to surface integrals must be added into V and U .

By expressingEs
1;2 andHs

1;2 in terms of corresponding
polarization currents and bound charge densities, solutions
to the total scattered fields can be written using a dyadic
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Figure 3 Building blocks and flowchart of solving electromag-
netic scattering for arbitrary CA objects.

Green’s function in free space ( bG0(r; r
0) [69]:

E = Einc � i!�0

�bI +
1

k2
rr

�
�
Z
V

Jep (r
0) bG0 (r; r

0) dv0

r�
Z
V

Jmp (r
0) bG0 (r; r

0) dv0 ; (15)

H =H inc � i!�0

�bI +
1

k2
rr

�
�
Z
V

Jmp (r
0) bG0 (r; r

0) dv0

r�
Z
V

Jep (r
0) bG0 (r; r

0) dv0 : (16)

Note that the relationships between (Einc; H inc) and
(P ; M ) can be established from the top and bottom blocks
in Fig. 3. Consequently, it means that (Einc; H inc) can
be further expressed in terms of (Jep; Jmp) via the sec-
ond block in Fig. 3. Eventually, it appears that the un-
knowns are polarization currents Jep and Jmp, which can
be represented by Galerkin’s method with RWG basis func-
tions [70, 71].

It should be noted that MoM is usually implemented
together with other integral methods, e.g., MoM-VIE
(volume integral equation) [72], MoM-CG-FFT [73, 74],

MoM-FMM (fast multipole method) [75], and MoM-VSIE
(volume-surface integral equation) [76]. That is because
the electric and magnetic integral equations (13) and (14)
cannot be solved analytically for anisotropic scatterers in
noncanonical shape via the vector potential formulation.
The MoM technique can be applied to obtain a numerical
solution of the integral equations. First, the inhomogeneous
scattering problem will be modeled by dividing the medium
into many small cells. If the cell is small enough, the ma-
terial within the cell can be assumed to be homogeneous.
Constitutive properties at the centroid of a cell are assigned
to the entire cell. Adjacent cells may possess different con-
stitutive properties to model the inhomogeneity. As electro-
magnetic waves propagate through cells, bound charges and
polarization currents may exist inside the cells, and bound
surface charges may exist on the cell boundaries. Within
the cell, RWG basis functions will be introduced so that the
unknown quantities in the integral equations are expanded
in terms of these basis functions. Galerkin’s testing proce-
dures are used to transform the original integral equations
to a MoM matrix equation. The MoM matrix equation can
easily be solved to recover the original unknown quantities.
A numerical solution of the original integral equations is
then established.

To explicitly demonstrate the role of anisotropy in the
far-field scattering, we consider an example of a perfectly
conducting (PEC) sphere coated by a uniaxial CA shell
whose material parameters take the form of

� = �t(bxbx+ byby) + �zbzbz ; (17)

� = �t(bxbx+ byby) + �zbzbz ; (18)

which correspond to the reduced case of �2(�2) = 0,
�1(�1) = �t(�t), and �3(�3) = �z(�z) in Eqs. (9) and (10).

From Fig. 4, it can be seen that the effect of the electric
anisotropy ratio Ae = �t=�z upon SCS is quite pronounced
in the far-field diagrams compared with the curve corre-
sponding to the case ofAe = 1 (red lines). It is of particular
interest to present the significance of the case whenAe < 1.
On the E-plane, less-than-unity Ae (blue curve) will result
in a dramatic decrease of far-field SCS at � � 55� (the
drop is larger than 30 dB compared with either of the other
two cases). In contrast, on the H-plane, less-than-unity Ae

enhances SCS significantly in the vicinity of � at 108� (the
increase is larger than 30 dB with respect to either of the
other two cases).

3.2. Radial anisotropy of spheres

In addition to the Cartesian anisotropy (CA), there is an-
other important type of anisotropy, i.e., radial anisotropy
(RA). The material tensors in general are given as

� = �0

24�r 0 0

0 �t 0

0 0 �t

35 ; (19)
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(a) E-plane (b) H-plane

Figure 4 (online color at: www.lpr-journal.org) The effect of anisotropy ratio in bistatic scattering cross sections of a uniaxial-coated
PEC sphere: (a) E-plane SCS and (b) H-plane SCS. The radius of the PEC core (ac) and the thickness (d) of the lossless uniaxial shell
are chosen to be ac = 0:2� and d = 0:25�, respectively. The material parameters of the anisotropic coating are assumed to be �t = 4�0

and �z = 2�0. Three electric anisotropy ratios are considered in particular where the transversal permittivity is fixed at �t = 2�0: (1)
Ae = 2 (black); (2) Ae = 1 (red); (3) Ae = 0:5 (blue).

Figure 5 The transformation
model between CA and RA
for graphite. The dielectric ten-
sor of graphite in (a), which is
depicted by Eq. (17), is trans-
posed to the spherical geome-
try (b).

� = �0

24�r 0 0

0 �t 0

0 0 �t

35 ; (20)

where the unit dyad is I = brbr + b�b� + b� b�.
The transformation from CA to RA is illustrated in

Fig. 5, provided that the dielectric continuum is preserved.
Obviously, this procedure becomes more rigorous when
the inner radius r is much larger than the thickness of
graphite R� r. Otherwise, angular nonlocality and radial
inhomogeneity may arise (which are beyond the scope of
the current review), though the major nonlocality arising
from the curvature/bending has already been included in
Eqs. (19) and (20). Alternatively, such RA can be straight-
forwardly pictured either by a bundle of conducting strings
diverging from a point uniformly in all directions or by a
spherically stratified medium with two alternating isotropic
layers of different permittivities and permeabilities. If the
parameters of those two isotropic materials are assumed
to be (�1; �1) and (�2; �2), the ‘effective’ components in
Eqs. (19) and (20) can be modeled as

�r =
2

��11 + ��12

; �t =
�1 + �2

2
(� = � or �) ;

(21)
provided that each layer is sufficiently thin.

The research interest in this area of RA was recently
initiated by chemists and biologists, and many pioneering
works have contributed to the investigations of the heat
transfer/absorption in graphite [77], electroencephalogra-
phy (EEG) [78, 79], biological cell membranes [10], and
cloaking [26]. It is now important and necessary to charac-
terize how RA particles interact with waves so as to provide
more physical insight into the phenomena such as invisibil-
ity, enhanced surface plasmon resonance, and extraordinary
scattering.

There is a limited literature regarding the electromag-
netic characterization of the scattering properties of RA
particles or coated RA particles. This is due to the fact that
their local optical axes are along the radial direction normal
to the spherical surface, meaning that it is difficult to study
these systems by Mie theory or existing numerical methods
for CA particles. Here, we will discuss the approach based
on modified spherical vector wave functions (MVWFs)
and/or Debye potentials for the scattering problems of RA
particles. Different eigenmodes in inhomogeneous and ho-
mogeneous RA particles are analyzed, and their far-field
patterns near surface plasmon resonances are examined.

Let us first study the electromagnetic formulation of
a single RA sphere. A more general case was considered
in [80] and, if the off-diagonal parameters are zero, Er
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and Hr are not coupled, as Eq. (3) in [80] shows where
the notation is a bit different. It thus implies that TE/TM
decomposition can be applied to the study of such uniaxial
RA materials characterized by Eqs. (19) and (20). In what
follows, we expressB andD in terms of the following two
sets of scalar Debye potentials:

BTM = r� (br TM) ; (22)

DTE = �r� (br TE) ; (23)

BTE =
1

i!

�r� ���1 � r � (br TE)�� ; (24)

DTM =
1

i!

�r� ���1 � r � (br TM)
��
; (25)

where  TE and  TM denote potentials for TE and TM
modes with respect to br in the spherical coordinate system:

�r
�t

@2 TM
@r2

+
1

r2 sin �

@

@�

�
sin �

@ TM
@�

�
1

r2 sin2 �

@2 TM
@�2

+ !2�0�0�t�r TM = 0 ; (26)

�r
�t

@2 TE
@r2

+
1

r2 sin �

@

@�

�
sin �

@ TE
@�

�
1

r2 sin2 �

@2 TE
@�2

+ !2�0�0�r�t TE = 0 : (27)

We apply the variable separation

 = R(r)�(�)�(�) (28)

to those partial differential equations above, and we have
the resultant equations

�r
�t

d2

dr2
+
�
k20�r�t �

�

r2

�
R = 0 ; (29)

1

sin �

d

d�

�
sin �

d�

d�

�
+

�
�� �

sin2 �

�
= 0 ; (30)

d2�

d�2
+ �� = 0 ; (31)

where � and � are integration variables. Following Eq. (31),
one has � = m2 (m = integer) and � = ejm�. Eq. (30)
is an equation for spherical harmonics, where we should
put � = l(l + 1) (l � jmj). By introducing a new variable
� = cos �, Eq. (30) transforms to

d

d�

�
(1� �2)

d�

d�

�
+

�
l(l + 1)� m2

1� �2

�
� = 0 ; (32)

which leads to the associated Legendre function � =
Pm
l (cos �). The major task is in solving the radial com-

ponent in Eq. (29). We need to rewrite it as�
d2

dr2
+

�
k20�t�t �

�t
�r

l(l + 1)

r2

��
R = 0 ; (33)

which is seemingly unsolvable in a conventional way. How-
ever, if we group �t=�r and l(l + 1) into one term, then it
can be rewritten as v1(v1 + 1) = l(l + 1)�t=�r, leading to�

d2

dr2
+

�
k20�t�t �

v1(v1 + 1)

r2

��
R = 0 : (34)

Eq. (34), in fact, falls into the definition of spherical
Bessel functions except that the order is no longer an integer.

Finally, one has R(r) = jv1(ktr) =
q

�ktr
2 Jv1+1=2(ktr)

for Eq. (26), in which kt = k0
p
�t�t and v1 = [l(l+1)Ae+

1=4]1=2 � 1=2. Similarly, one can obtain the radial compo-

nent R(r) = jv2(ktr) =
q

�ktr
2 Jv2+1=2(ktr) for Eq. (27),

in which v2 = [l(l + 1)Am + 1=4]
1=2 � 1=2. Ae = �t=�r

and Am = �t=�r correspond to electric and magnetic
anisotropic ratios, respectively.

Subsequently, the electromagnetic fields can be ex-
panded as

Er =
!

ik2t

�
@2

@r2
+ k2t

�
 TM ; (35)

E� =
�1

�0�tr sin �

@ TE
@�

+
!

ik2t r

@2 TM
@r@�

; (36)

E� =
1

�0�tr

@ TE
@�

+
!

ik2t r sin �

@2 TM
@r@�

; (37)

Hr =
!

ik2t

�
@2

@r2
+ k2t

�
 TE ; (38)

H� =
!

ik2t r

@2 TE
@r@�

+
1

�0�tr sin �

@ TM
@�

; (39)

H� =
!

ik2t r sin �

@2 TE
@r@�

� 1

�0�tr

@ TM
@�

: : (40)

Note that the potentials above carry SI units [81]. If one
utilizes the potentials in Gaussian units [35], there will
be a normalization factor ik2t =! to be multiplied with
Eqs. (35)–(40).

The following formulation is very standard, which is
analogous to the derivation in isotropic cases, i.e., applying
boundary conditions and solving for scattering coefficients.
Eventually, we obtain all four scattering coefficients (the
first two for scattered waves and the last two for transmit-
ted waves):

al =

p
�t=�tjl(k0a)j

0

v1(kta)� j0l(k0a)jv1(kta)

h
(2)0
n (k0a)jv1(kta)�

p
�t=�th

(2)
l (k0a)j0v1(kta)

Tl ;

(41)

bl =

p
�t=�tj

0

l(k0a)jv2(kta)� jl(k0a)j
0

v2(kta)

h
(2)
n (k0a)j0v2(kta)�

p
�t=�th

(2)0

l (k0a)jv2(kta)
Tl ;

(42)
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Figure 6 (online color at: www.lpr-journal.org)
Surface plasmon resonance for dipole mode (a)
and far-field scattering cross section Qsca (b) at
various anisotropy ratios with negative �t and
negative �r (Ae > 0) (reprinted with permission
from [31]).

cl =
ip

�t=�th
(2)
l (k0a)j0v1(kta)� h

(2)0

l (k0a)jv1(kta)
Tl ;

(43)

dl =
i
p
�t�t

h
(2)
l (k0a)j0v2(kta)�

p
�t=�th

(2)0

l (k0a)jv2(kta)
Tl ;

(44)

Tl =
i�l(2l + 1)

l(l + 1)
: (45)

Note that there is a typo in the numerator of Eq. (40) in [81].
For far-field patterns of RA spheres, an and bn are needed,
which can be rewritten in an analogy with Eqs. (1)–(5) in
isotropic cases

Al =
<(A)
l

<(A)
l + i=(A)

l

; Bl =
<(B)
l

<(B)
l + i=(B)

l

; (46)

where

<(A)
l = nt 

0

l(q) v1(ntq)� �t l(q) 
0

v1(ntq) ; (47)

=(A)
l = nt�

0

l(q) v1(ntq)� �t�l(q) 
0

v1(ntq) ; (48)

<(B)
l = nt l(q) 

0

v2(ntq)� �t 
0

l(q) v2(ntq) ; (49)

=(B)
l = nt�l(q) 

0

v2(ntq)� �t�
0

l(q) v2(ntq) : : (50)

Here, �l(x) =
p
�x=2Nl+1=2(x) is the Neumann function,

q = k0a presents the so-called Mie size parameter, a is
the radius of the RA sphere, and all the primes indicate
differentiation with respect to the entire argument. It can
be seen that Eqs. (47)–(50) for RA cases are similar to
Eqs. (2)–(5) for isotropic cases.

Now, we would like to study the effect of anisotropy
upon the scattering by an RA sphere near the surface plas-
mon resonance. Here, we just assume that the RA sphere
has only an electric anisotropy ratio, meaning that Am = 1.
There are two categories to be investigated: (1) Ae > 0;
(2) Ae < 0. In both cases, the transverse permittivity
(�t = �2:1) is near the surface plasmon resonance.

In Fig. 6a, the variation of the surface plasmon res-
onance against the size parameter is well pronounced

Figure 7 (online color at: www.lpr-journal.org) Scattering am-
plitude A1 in Eq. (46) for dipolar resonance in an RA sphere near
the surface plasmon resonance with negative �t and positive �r
(Ae < 0).

at different anisotropy ratios when size parameters are
small enough, and the far-field patterns are influenced
consequently as shown in Fig. 6b. However, the positive
anisotropy ratio near the surface plasmon resonance has no
impact on the volume resonance when q is large.

The situation of an RA sphere near the surface plasmon
resonance at Ae < 0 actually requires that �r > 0, which
presents extraordinary scattering phenomena. In Fig. 7a, we
first compare two particular cases corresponding to Ae > 0
and Ae < 0, near the surface plasmon resonance. In the
first case (Ae = 1) we can see the usual surface plasmon
resonance, while in the second case (Ae = �1) we can
see that the plasmon resonance disappears and a small shift
of the resonant value of the first volume resonant mode
appears. What is more important, it can be observed that
the maximum amplitude of this first volume resonance is
not equal to one. In Fig. 7b, we focus on the second case
under different scales of the negative Ae. When Ae ! �1
(blue line in Fig. 7b), one can see a more pronounced effect
in the amplitude damping, which is reflected in the nonzero
absorption cross section Qabs in Fig. 8a. When Ae ! 0�

(green line in Fig. 7b), even the lost plasmon resonance
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Figure 8 (online color at: www.lpr-journal.org) Scattering ef-
ficiencies of an RA sphere of the same type as Fig. 7b but with
small positive �r (Ae ! �1).

Figure 9 (online color at: www.lpr-journal.org) Scattering ef-
ficiencies of an RA sphere of the same type as Fig. 7b but with
large positive �r (Ae ! 0

�).

returns, as one can see in Fig. 7b. Thus, it is natural to see
that in the case of Ae ! 0� the nondissipative absorption
(see Fig. 9a) will become less and less pronounced since
the amplitude damping is being recovered.

Formally, such nondissipative absorptions in Fig. 8a
and Fig. 9a, which have no imaginary parts in permittivi-
ties, look similar to the effect in dissipative homogeneous
media, which has an imaginary part in �. From the physics
of plasma we know the situation of Landau damping [82],
where the wave dissipates in a collisionless plasma. The
physical reason for Landau damping is related to the shift
of resonant frequencies of electrons moving at different
velocities. Averaging the dielectric permittivity of plasma,
where the particle velocities have a Maxwellian distribution
function, one formally obtains the nonzero imaginary part
of �. The situation of an RA particle at the surface plas-
mon resonance is quite similar. Here, energy at resonant
frequencies of plasmonic oscillations and volume oscilla-
tions is redistributed due to the interaction with the radial

field oscillations. The total effect formally looks like the
absorption within the nondissipative particle. The formal
mathematical reason for this effect is related to the behavior
of the arbitrary-order spherical Bessel function obtained
from Eq. (34). With Ae < 0, the order of this function be-
comes negative. As a result, this function consists of both
real and imaginary parts, which produces the mentioned
unusual absorption effect.

The radar backscattering is also examined to character-
ize the role of the anisotropy ratio. It is found that in the
category of Ae < 0, the backscattering is highly oscillatory
at Ae ! 0� when q increases.

However, if the material parameters in Eqs. (19) and
(20) are position independent as a classical spherical cloak
(a � r � b) suggests, i.e., �r = �r =

�
b

b�a

� �
r�a
r

�2
and

�t = �t =
b

b�a [26], the eigenmodes will be different from
those in Eq. (34) since Eq. (33) becomes�

d2

dr2
+

�
k20�t�t �

n(n+ 1)

(r � a)2

��
R = 0 : (51)

Therefore, we have R(r) = jn(kt(r � a)), whose order
of the spherical Bessel function is an integer again. The
field representations can be formulated in a similar way as
in [81] in terms of TE and TM potentials except that the
difference is now in the argument of the spherical Bessel
function instead of its order.

4. Towards light control in
coated RA particles

Light control in three-dimensional (3D) photonic crystals
is very attractive because they can potentially provide a
complete photonic band gap, which can be used to design
light-guiding devices. The complete gap in isotropic pho-
tonic crystals exists in a diamond structure and inverse-opal
face-centered-cubic structure [83, 84]. Therefore, the inves-
tigation of anisotropic or even gyrotropic materials seems
promising [85]. As is mentioned, RA opens up a way of
bending the light and further hiding the coated object [86].
However, such RA needs position-dependent parameters
both in permittivity and permeability tensors, resulting in
the great difficulty of realizing such particular parameters.
Instead, we will revisit the invisibility of a homogeneous
RA shell, whose parameters are constant and independent
of the radius [87]. The formulation of a coated sphere with
RA follows the standard procedures in a single RA sphere
described in Sect. 3.2. The field representations in every
region can be determined by applying boundary conditions
at each interface. The mechanism of achieving transparency
relies on the effective-medium theory, which is obviously
different from the coordinate transform. By properly tun-
ing the core-shell ratio, the coated sphere with RA can be
regarded as a uniform sphere with the effective permittivity
and permeability equal to those of free space, leading to
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the invisibility. However, it has its own limitation, i.e., the
long-wavelength limit (the size far below the wavelength).

Here, we consider a general case where both the core
(designated by subscript c) and the shell (designated by sub-
script s) are RA materials. The parameters �ir, �it, �ir, and
�it are relative, vli1 =

p
l(l + 1)�it=�ir + 1=4� 1=2, and

vli2 =
p
l(l + 1)�it=�ir + 1=4 � 1=2, where i = c or s.

The inner and outer radii are r0 and R, respectively. Once
scattering coefficients for the outermost region have been
solved and approximated by asymptotic forms of Bessel
and Neumann functions at small arguments, the effective
parameters (�e� and �e� ) for such a coated RA sphere can
be obtained in an analogy of [88] for isotropic cases, and
finally we arrive at a set of equations of the transparency
condition for the core-shell ratio

r0
R

=

(
(�srv

1
s1 � 1)

�
�crv

1
c1 + �sr(v

1
s1 + 1)

�
(�srv1s1 � �crv1c1) [1 + �sr(1 + v1s1)]

) 1

(2v1
s1
+1)

;

(52)

for nonmagnetic particles, and

r0
R

=

(
(�srv

1
s2 � 1)

�
�crv

1
c2 + �sr(v

1
s2 + 1)

�
(�srv1s2 � �crv1c2) [1 + �sr(1 + v1s2)]

) 1

(2v1
s2
+1)

;

(53)

for magnetic materials. Note that the obtained r0=R by
given sets of material parameters has a physical limitation,
i.e., 0 < r0=R < 1, according to the problem settings.
Otherwise, it implies that the present parameters for the
core and shell RA materials will never achieve transparency
no matter how one changes the filling fraction. Compared
with the isotropic coated sphere, the anisotropic coated
sphere has introduced more physical parameters for us
to achieve transparency. For large particles, quadrupole,
octopole, and even higher-order scattering coefficients can
still approach zero if the anisotropic ratio and core-shell
ratio are tuned accordingly.

In Fig. 10, it can be observed that, once the required
condition of the core-shell ratio for transparency is satisfied,
the field outside the coated sphere is identical to the incident
wave, meaning that the object is invisible to the illumination.
However, within the coated RA sphere, the local field Eloc

is greatly perturbed, which may be used for enhancement
of nonlinear effects.

5. Enhanced optical nonlinearity in
coated RA particles

5.1. Introduction to effective nonlinear
susceptibilities

In the static or quasi-static limit, it is known that composite
materials may possess strong nonlinear optical properties,

Figure 10 Spatial variation of the electric fields in the presence
of a coated particle at the transparency condition for (a) �ct = 2,
(b) �ct = 4, and (c) �ct = 6 (reprinted with permission from [87]).
The solid curve is for the field parallel to the incident E0, and the
dotted line for the one perpendicular to E0. The coated system is
nonmagnetic, with parameters b = 0:1�, � = 100 nm, �cr = 4,
and �sr = �st = �3. The first and second vertical dash-dotted
lines respectively correspond to the radii of the core and the shell,
in which the ratio is determined by Eq. (52).

e.g., second harmonic generation (SHG) susceptibility and
third harmonic generation (THG) susceptibility [89]. The
higher-order nth power is also very sensitive to the local
field [90].

When we apply a monochromatic external field along
the z axis to the composite system, the local potentials and
fields will be generated at all harmonic frequencies due
to the quadratic nonlinearity of the components inside the
composite at finite frequencies [91]. The effective nonlinear
SHG susceptibility d(!;!)e;ijk [92] can be written as

d
(!;!)
e;ijk =

sX
�=c

f�

D
K2!
il (d�lmn)

(!;!)K!
jmK

!
kl

E
�
; (54)
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where h� � � i represents the spatial average and f� stands
for the volume fraction of the component �. The local-field
factor for the lth Cartesian component of the linear field
in the particle is denoted by K!

il � El(!)=E0;i(!) when
the external field E0 is applied along the the ith direction
at frequency !.

The effective THG susceptibility �(!;!;!)e;ijkl can be rewrit-
ten as [91]

�
(!;!;!)
e;ijkl =

sX
�=c

f� (55)

�
�
2K3!

im(d�mnp)
(!;2!)K

2!
rn � Irn
�(��)(2!)

(d�rst)
(!;!)K!

jsK
!
ktK

!
lp

�
�

;

in which one can observe that the effective third-order non-
linear susceptibility can be induced by the second-order
nonlinear response.

5.2. SHG and THG for coated RA particles

The enhanced nonlinear effects using photonic crystals
have been reviewed in [93]. For instance, enhanced op-
tical third-order nonlinearity in core-shell structures was
discuused in [94], and nonlinear susceptibilities for SHG
and THG through core-shell nanostructures were discussed
in [95, 96]. However, those constituents are basically
isotropic. Anisotropy in the components can also modify
optical nonlinearity in the coated RA sphere similarly to
Fig. 10. The role of radial anisotropy of individual core-
shell constituents will be considered and characterized be-
low. For a dilute suspension of coated RA spheres, the
enhanced nonlinear effects have been presented in [32].

In Fig. 11, even though the nonlinearity in the core is
weak, the nonlinear effect in the presence of the RA shell is

Figure 11 Anisotropy ratio Ae dependence of the quadratic
nonlinear response per unit volume (reprinted with permission
from [32]). The core-shell ratio is 1/4, i.e., the volume fraction of
the core-shell system is � = 1=64. A linear RA shell (within the
region r0 < r < R and �r = 10) is coated on a nonlinear core
(linear dielectric constant �c = 1 with susceptibility �c) in a host
medium with �h = 5.

pronounced compared with an ‘equivalent’ isotropic shell,
whose isotropic permittivity �iso = �r=3 + 2�t=3 based on
the averaging process given in [25].

We continue to study the enhancement of nonlinear
effects of similar configurations of coated RA particles in
Fig. 11, while we consider dense concentration and induced
THG. In addition to �c, the nonlinear core has a second-
order susceptibility tensor

$

dc, and the RA shell is assumed
to be nonmagnetic and linear characterized by Eq. (19) and
�r = �t = 1. Note that the spherical particles may possess
the quadratic nonlinearity due to the fact that the inversion
symmetry is broken at the surface [97, 98].

When a monochromatic external field is applied, say
along the z axis, we want to solve the potential function in
the core, the shell, and the host. Since the coated inclusions
are not dilute, the electrostatic dipolar interaction among
inclusions should be taken into account. Then, the local
fields are affected by the Lorentz field EL1 instead of E0.
The solution is as follows:8>>>>><>>>>>:

�c = �A1EL1r cos � ; r < r0 ;

�s = �EL1(B1r
�1 � C1

r�1+1
) cos � ; r0 < r < R ;

�m = �EL1(r � P1R
3

Q1r2
) cos � ; r > R ;

(56)
where

A1 =
3�h�r(2�1 + 1)�(�1�1)=3

Q1
;

B1 =
3�h[�r(1 + �1) + �c]R

1��1

Q1
;

C1 =
�3�h�

(2�1+1)=3(�r�1 � �c)R
�1+2

Q1
;

with � = (r0=R)3 and

�1 =
1

2

�p
1 + 8�t=�r � 1

�
;

P1 = (�r�1 � �h) [�c + (1 + �1)�r]

�(2�1+1)=3 [�h + (1 + �1)�r] (�c � �r�1) ;

Q1 = [�r(1 + �1) + �c] (�r�1 + 2�h)

�(2�1+1)=3[2�h � �r(1 + �1)](�r�1 � �c) :

The averaged field over the entire system must be equal
to E0, so we have

fhEc1i+
�
f

�
� f

�
hEs1i+

�
1� f

�

�
EL1 = E0 ; (57)

where f is the volume fraction of the core and

EL1 =
Q1

Q1 � f
�P1

E0 : (58)

© 2010 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.lpr-journal.org



Laser & Photon. Rev. 4, No. 2 (2010) 279

Assuming K!
il to be nonzero only when i = l, only

dezzz (SHG) and �ezzzz (THG) do not vanish in Eqs. (54)
and (55), which can be expressed as

dezzz

fd
(!;2!)
zzz

=


K2!
1zz(K

!
1zz)

2
�
c

=

 
A1Q1

Q1 � f
�P1

!
2!

 
A1Q1

Q1 � f
�P1

!2

!

;

(59)

�ezzzz

fd
(!;2!)
zzz d

(!;!)
zzz

=
2fhK3!

1zz(K
2!
1zz � 1)(K!

1zz)
3ic

�2!c � �2!e1

=
2f

�2!c � �2!e1

 
A1Q1

Q1 � f
�P1

!
3!

�
 

A1Q1

Q1 � f
�P1

!3

!

�
" 

A1Q1

Q1 � f
�P1

!
2!

� 1

#
; (60)

where

�2!e1 =

"
�m + 3

f

�
�m

P1

Q1 � f
�P1

#
2!

: (61)

In our model, the core is a Drude metal:

�c(!) = 1� !2p
!2 + i!=�

;

with !p being the plasma frequency and � the relaxation
time. We take !p = 2:28�1016 s�1 and � = 6:9�10�15 s,
corresponding to bulk aluminum. The anisotropic shell is
assumed to have a frequency-independent radial dielec-
tric constant �r = 2:52, while the host medium also has
a frequency-independent dielectric constant �h = 1:76.
These numbers are typical for nonconducting materials.

In Fig. 12, it is evident that there are two peaks in dezzz .
The bigger one may be of the order 103–104 and is located
at the surface plasmon frequency !sp while the other is
located at about !sp=2. This is due to the fact that the SHG
susceptibility intrinsically involves two different frequen-
cies. It is interesting to note that when the anisotropy ratio
decreases, the surface plasmon resonances !sp exhibit blue
shifts, accompanied with large enhancement of the SHG
susceptibility. It can also be found that the nonlinearity en-
hancement in the nondilute limit is larger than the one in
the dilute limit [32, 95].

Although the material has second-order nonlinearity
only, the composite may exhibit third-order nonlinearity.
The induced third-order nonlinear susceptibility is pre-
sented in Fig. 13. An enhancement factor of the order of 105
is achieved at suitable frequencies. In this situation, there

Figure 12 (online color at:
www.lpr-journal.org) The
enhancement of effective SHG
susceptibility jdezzz=fdzzzj
versus the normalized incident
angular frequency !=!p for
various interfacial parameters
� at three anisotropic ratios
when the volume fraction of
the coated particles is 0.1.

or Peer Revi

Figure 13 (online color at:
www.lpr-journal.org) The en-
hancement of the induced
third-order nonlinear suscep-
tibility �e

zzzz=fd
(!;2!)
zzz d

(!;!)
zzz ,

the other settings being the
same as Fig. 12.

are three enhancement peaks in �ezzzz , and the dominant
one is located at the shifted resonant frequency !sp. The
reason is that the nonlinear optical process leads to a 3!
component by combining a 2! component, which is formed
first, with a ! component. The larger effective THG suscep-
tibility is found at the high frequencies when Ae = �t=�r is
small. Again, we demonstrate that the anisotropy plays an
important role in the enhancement of optical nonlinearities
at the surface resonant frequencies.

6. Discussion and conclusion

In this review, we started from the preliminaries in anoma-
lous light scattering from isotropic 3D particles, and then
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introduced the anisotropy into the material. Two different
types of anisotropy have been considered in Cartesian and
spherical coordinates, respectively. The role of anisotropy
in scattering properties is characterized both analytically
and numerically. Radial anisotropy (RA) has opened a new
window of opportunity not only in the area of plasmonic
scattering but also in the field of nonlinear photonics. In
the core-shell system, the RA shell provides a totally in-
dependent way to control the wave propagation path in
and around the particle, the scattering efficiencies in the
far zone, and effective nonlinear susceptibilities for SHG
and induced THG. The adjustment of RA may result in
nondissipative damping, invisibility, and/or large enhance-
ment of both SHG and induced THG susceptibilities at
surface plasmon resonant frequencies. Thus, the theoretical
modeling for RA particles or photonic crystals with RA is
likely to have a significant impact in providing guidelines
for future technology and fabrication for cloaking devices
and nonlinear optics.

Another issue of practical importance is where to find
those candidates with RA in nature and/or how to design
and fabricate them artificially. As mentioned, such RA can
be found in biological tissues such as a human brain [9], ori-
entational molecules [10], and phospholipid vesicles [99].
Material scientists also discovered that the onion-like mul-
tiple graphite shells exhibit dielectric anisotropy [100].
Recently, experiments revealed that such RA can be re-
alized by an anisotropic nematic liquid crystal coated on
a nanoparticle [101, 102], where the surface plasmon res-
onances were also found to be split as discussed in this
review. However, the dielectric response for nematic liquid
crystals is complex in general, which depends on temper-
ature, direction of the static field, etc. Then, the thin layer
of ordered molecules such as chromophores [103], whose
the local optical axis is pointing along the radial direction,
appears to be an alternative good candidate of the desired
RA. We hope that our summary will be helpful to facilitate
the exploration in this exciting area of dielectric anisotropy
as well as to improve the experimental investigation of
magnetic anisotropy.
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