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Flat photonic surface bands pinned between Dirac points
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We point out that 2D photonic crystals (PhCs) can support surface bands that are pinned to Dirac points. These
bands can be made very flat by optimizing the parameters of the system. Surface modes are found at the interface
of two different cladding materials: one is a PhC with Dirac linear dispersion for the TE mode, and the other is a PhC
that has a broad TE gap at the Dirac frequency. © 2012 Optical Society of America
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Photonic crystals (PhCs) have been studied extensively
due to their importance in theory, experiments, and ap-
plications [1-3]. It has been shown that light dispersion in
certain 2D PhCs can possess Dirac points [4-9]. Dirac
points are characterized by conical (i.e., linear) disper-
sion and can be found in PhCs with triangular lattice sym-
metry [4-7,9]. Linear and nonlinear honeycomb photonic
lattices (where the wave dynamics obeys a nonlinear
Schrodinger-like equation) and pertinent phenomena
such as conical diffraction have also been studied [10].
In part these studies have been motivated by experimen-
tal realization of graphene: a monolayer of carbon atoms
arranged in honeycomb lattice with Dirac dispersion and
extremely interesting properties [11-13]. Along with the
bulk dispersion properties, real photonic systems are
characterized by surface (edge) states at the boundaries.
Because of their versatility, PhCs are especially suitable
for the studies of these localized modes [3]. Among sur-
face states, flat surface bands are also important in the
context of slow light dispersion and for achieving large
density of states. We note here that dispersion-free sur-
face states in graphene-like photonic lattices have been
observed recently [14]. In this Letter we show that, in 2D
PhCs, it is possible to design surface bands that are
pinned to Dirac points. Furthermore, we show that the
dispersion characteristics can be tailored: by varying
the parameters of the system, a specific band pinned be-
tween Dirac points can be made extremely flat. To the
best of our knowledge, this is the first study of flat sur-
face bands in the Dirac pseudogap region in the context
of PhCs.

We start by introducing a 2D triangular lattice of
dielectric rods with a high dielectric index ¢;, embedded
in a low-index material ¢;. As has been shown in
[4-7,9], this structure can be tailored to have Dirac points
for TE modes. We tune the system parameters so that the
lattice has a large Dirac pseudogap: we want the Dirac
point to be sufficiently separated from other TE bands
and conical dispersion to extend throughout this region.
We choose the high dielectric constant of the rods to be
€, = 12 and their radius ; = 0.31a (a is the lattice con-
stant). For the low-index material, we take ¢; = 1. The
structure is shown in the inset of Fig. 1(a). Our calcula-
tions are performed using the frequency-domain method
for solving Maxwell equations in periodic systems [15].
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In Fig. 1(a) we plot the TE projected band structure
(PBS) of our triangular lattice. As a projection axis we
take one particular direction of the primitive cell (parallel
to the horizontal edge of the structure in the inset).
We denote it as || axis and k| as its projection of the 2D
wave vector. The dispersion (k) depicts presence of
two Dirac points, kp = +1/3(27/a), in the first Brillouin
zone of the PBS, centered at frequency wp = 0.45(27c/a).
The linear dispersion encompasses states in the second
and the third TE projected band. In addition, Fig. 1(b)
shows the surface plot of the 2D band structure for
the second and the third TE band. We clearly see the
characteristic graphene-like hexagonal pattern of Dirac
points with conical dispersion around the central fre-
quency.

At this point, in order to introduce surface states into
our 2D system, we need to modify the geometry. As a
first step, we cut the triangular lattice of rods along the
|| axis, thus creating a semi-infinite structure. We show
that, under certain conditions, we can find surface states
at its edges. Namely, since the Dirac point is above the
light line, we have to ensure that these surface states
will not couple to the outer regions. That is, we need to
attach another photonic structure as a cladding material:
this cladding should have a TE bandgap in the Dirac
pseudogap region. We find that a properly chosen trian-
gular lattice of low dielectric holes can satisfy this
criterion. In particular, we use holes with dielectric con-
stant ¢; and radius r, = 0.48a, embedded in a high dielec-
tric region with ¢,.
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Fig. 1. (Color online) (a) TE PBS of 2D photonic graphene-like
system. Dirac points are found between the second and the
third TE photonic band. The inset depicts triangular structure
of high-e (¢, =12) rods in low-¢ (¢ =1) media, with
r1/a = 0.31. (b) Surface plot of the 2D TE band structure
(second and third band) with the characteristic hexagonal
pattern: Dirac points with conical dispersion.
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Therefore, the final construct involves an interface
geometry between two different 2D PhCs: the semi-
infinite triangular lattice of rods (lower cladding) and
the semi-infinite triangular lattice of holes (upper clad-
ding). Since the translational symmetry in the perpendi-
cular direction is broken, we write k| =k. Next we
introduce the termination parameter ¢ to define the par-
ticular realization of the cladding interface as follows. We
keep positions of the rods and the holes in two semi-
infinite structures fixed such that the centers of all the
rods and all the holes lie on the same lattice. We choose
to have one line of boundary cells divided into two parts
along the k axis. The termination parameter ¢t (0 <t < 1)
measures the extent to which the boundary cell is occu-
pied by the lower cladding material. Particular examples
of dielectric structure for various ¢’s are plotted in the
insets on the right of the Fig. 2 (translucent green).

Figure 2 shows surface bands in the Dirac pseudogap
region. In general, surface states originate from the bulk,
and as ¢ changes they move within the pseudogap region:
the net effect of changing ¢ from 0 to 1 is to move one
bulk band from the upper (third) to the lower (second)
TE band. Here we demonstrate that (i) surface bands
can be pinned to Dirac points and (ii) for some ¢ we may
find one or even two (top and bottom) surface bands. Re-
sults for three different values of termination parameter ¢
are presented: ¢ = 0.55 (red solid), ¢t = 0.6 (black dot-
dashed), and ¢ = 0.8 (magenta dashed). Blue and green
areas present bulk modes of two independent claddings.
For ¢t = 0.55 and ¢t = 0.6 we have two surface bands (top
and bottom) at each ¢. Bottom bands are pinned to two
Dirac points, and our calculations show that this state-
ment is also valid for smaller values of ¢ (not shown).
That is, if the entire Dirac pseudogap region between
left and right Dirac points can support a surface band
(for all, or some, values of t), the band is pinned since
the bandgap at Dirac points is zero.
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Fig. 2. (Color online) Surface bands within the Dirac pseudo-
gap. We plot results with termination parameter ¢ (see text for
details) for three particular junctures of the two cladding
materials: ¢ = 0.55 (red solid), ¢ = 0.6 (black dot-dashed),
and ¢ = 0.8 (magenta dashed). PBSs of bulk of two cladding
PhCs are shown for both lower cladding (blue) and upper clad-
ding (green) material. In the insets on the right we plot the elec-
tric-field energy density of three states (at k¥ = 0) from the top
surface bands (up to bottom: ¢ = 0.55, ¢ = 0.6, and ¢t = 0.8). En-
ergy density is in red color, superimposed on the high dielectric
pattern (translucent green).
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However, at t = 0.55 and ¢ = 0.6, an additional (top)
surface band is present: it is pulled from the upper bulk
region. We see that, since this surface band has just left
the bulk region, it does not initially extend between the
left and the right Dirac points. By increasing ¢, this top
band approaches the central (Dirac) frequency and be-
comes pinned between the two Dirac points as well. This
can be nicely seen for ¢ = 0.8. Moreover, for ¢ = 0.8, no
bottom band is present since, for this value of ¢, the bot-
tom band has already entered the lower bulk region.
Finally, in order to illustrate the localized character of the
surface modes, in the insets on the right we plot the elec-
tric-field energy density (in red color) for three different
values of ¢ (at k = 0), superimposed on their dielectric
structures.

Now we proceed to an important finding of this Letter:
our system allows for construction of a superflat surface
band. We emphasize the following: the facts that the
bands are pinned and that their curvature (second deri-
vative at k = 0) must alter sign when changing ¢ from
0 to 1 guarantee that we can expect to find flat bands
for some parameter values. However, we can do even
more by carefully optimizing different parameters in our
structure. For this we utilize a nonlinear (and derivative-
free) optimization algorithm [16,17] in order to minimize
the width of the surface band in the region around
k=0 [specifically, between k= -1/4(2z/a) and
k = 1/4(2z/a)]. In the present numerical calculations we
have chosen to vary the termination ¢, radius of the rods
71, and radius of the holes 7,. By changing these three
parameters we indeed find a very flat band pinned be-
tween Dirac points. This surface band structure is plotted
(top red curve) in Fig. 3 for the optimized values of
t = 0.66, r;/a = 0.306, and 75/a = 0.480. The flat region
extends from the left to the right Dirac point, thus occu-
pying most of the 1D Brillouin zone. In addition, we also
note that another surface band (bottom red curve) in the
pseudogap region is present for these parameters. Blue
and green areas represent bulk modes of the two consti-
tuent claddings, as in Fig. 2. A short comment is needed
to explain the small gap that seemingly opens at the Dirac
points: this is a result of the finite size of our system in
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Fig. 3. (Color online) Superflat dispersion of the surface band
between two Dirac points (top red curve). Here ¢ = 0.66,
r1/a = 0.306, and 13 /a = 0.480. An additional (bottom) surface
band is also present. Blue and green areas are PBSs of two
independent claddings, as in Fig. 2. In the inset on the right
we plot the electric-field energy density of the flat surface mode
(at k = 0).
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numerical simulations. For the sake of completeness, in
the inset on the right we depict the electric-field energy
density of the superflat surface mode (at k = 0).

Finally, we comment on the analogy between the sur-
face states in PhCs and in graphene. In the case of the
electronic structure of graphene, the nonzero winding
number and the chiral symmetry of the Dirac Hamilto-
nian ensure that there is a zero-energy flat band between
two Dirac points along the zigzag edge [18-20]. However,
we emphasize here that, in PhCs with triangular (honey-
comb) symmetry, one cannot guarantee to have exactly
flat bands [8]. This point requires careful treatment in
future studies of these analogies. In particular, it has
been shown recently that the effective Hamiltonian (for
triangular PhCs) close to Dirac point can be mapped into
the Dirac Hamiltonian [21].

In summary, we have constructed TE surface bands
in a 2D PhC system that are pinned to Dirac points in
reciprocal space. Our system consists of two cladding
materials: the first is a 2D PhC that exhibits linear (Dirac)
dispersion between the second and the third TE band,
and the second PhC has a bandgap in the region where
the first PhC has the Dirac-cone dispersion. This inter-
face can support one or even two different surface
modes, depending on the particular realization of the
system. We have shown, by optimizing the parameters of
our system, that superflat surface bands can exist in the
Dirac pseudogap region. We expect that this Letter will
inspire study of surface bands with large density of states
in PhCs with conical dispersion.
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