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We point out that electromagnetic one-way edge modes analogous to quantum Hall edge states,
originally predicted by Raghu and Haldane in 2D photonic crystals possessing Dirac point-derived band
gaps, can appear in more general settings. We show that the TM modes in a gyromagnetic photonic crystal
can be formally mapped to electronic wave functions in a periodic electromagnetic field, so that the only
requirement for the existence of one-way edge modes is that the Chern number for all bands below a gap is
nonzero. In a square-lattice yttrium-iron-garnet crystal operating at microwave frequencies, which lacks
Dirac points, time-reversal breaking is strong enough that the effect should be easily observable. For
realistic material parameters, the edge modes occupy a 10% band gap. Numerical simulations of a one-
way waveguide incorporating this crystal show 100% transmission across strong defects.
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Photonic crystals—structures with periodicity compa-
rable to the wavelength of light—possess many unusual
and technologically important optical properties [1–3].
The theory of these devices relies on an analogy between
Maxwell’s equations in a periodic medium and quantum
mechanics with a periodic Hamiltonian, from which pho-
tonic band structures arise in a manner analogous to elec-
tronic band structures in a solid. The existence of photonic
bands has inspired a variety of applications in integrated
optics; for instance, photonic crystals made of magneto-
optical (MO) materials, which break time-reversal symme-
try (T), can be used to construct nonreciprocal optical
circuits [4,5]. Raghu and Haldane [6] have recently ex-
tended this analogy in a remarkable new direction by pre-
dicting the existence of one-way electromagnetic modes
similar to the chiral edge states found in the integer quan-
tum Hall (QH) effect [7]. These modes are confined at the
edge of certain 2D MO photonic crystals and possess group
velocities pointing in only one direction, determined by the
direction of an applied dc magnetic field (the time-reversed
versions are not eigenstates of the system). Because of the
absence of backpropagating modes, backscattering is com-
pletely suppressed. This is potentially important for slow-
light structures, which are susceptible to backscattering
[8], among other applications. However, the requirement
of locating a ‘‘Dirac point’’ in k space, as suggested by
Raghu and Haldane, led these authors to focus on TE
modes in triangular lattices and thus to gyroelectric mate-
rials. In realistic gyroelectric materials, the strength of T
breaking, characterized by the ratio of (imaginary) off-
diagonal to (real) on-diagonal elements of the permittivity
tensor � (the Voigt parameter) is at most �10�3. As a re-
sult, the band gap is not robust against disorder, and the
edge modes scatter easily into bulk modes of the crystal,
leading to significant radiative loss. To our knowledge,
these one-way edge modes have never been observed ex-
perimentally, and to do so one would desire a band gap that
is orders of magnitude broader.

In this Letter, we show that one-way modes can be gen-
eralized to photonic crystals with gyrotropic constituents
without the restriction of having Dirac points in the band
structure or the use of gyroelectric materials. To do this, we
derive an analytical mapping between the electromagnetic
modes in the MO photonic crystal and the wave functions
of a nonrelativistic electron in a QH system. This links pho-
tonic one-way modes to QH edge states via the Hatsugai
condition, which relates the number of edge modes in a
band gap to the sum of Chern numbers for all bands below
it [9]. Using gyromagnetic materials, we design an experi-
mentally feasible one-way waveguide using a 2D MO
square-lattice yttrium-iron-garnet (YIG) photonic crystal
(which lacks Dirac points) operating at microwave fre-
quencies. Such a one-way waveguide consists of an inter-
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FIG. 1 (color). Magneto-optical one-way waveguide.
(a) Projected band diagram. The dispersion curve (red) for the
edge modes spans the band gaps for the cladding crystals.
(b) Steady-state field pattern for Ez, the out-of-plane electric
field component. Blue and red represent positive and negative
field values. A source, indicated by double arrows, is located at
the interface between a magnetized (�z) YIG crystal (lower half
plane) and an alumina crystal (upper half plane), and operates at
a midgap frequency (0:552� 2�c=a). The excited edge mode
propagates to the right and undergoes evanescent decay to the
left. (c) The time-averaged electric field intensity along the
midline of the waveguide [dashed line in (b)].
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face between an MO photonic crystal and a gapped mate-
rial, such as a regular 2D photonic crystal, as shown in
Fig. 1. With realistic material parameters, the one-way
modes are laterally confined to a few lattice constants,
and occupy a broad (�10%) band gap with negligible
material loss. The MO photonic crystal exhibits strong
(order unity) T breaking due to the use of gyromagnetic
ferrimagnets. Using both frequency and time-domain nu-
merical simulations, we demonstrate that these edge modes
are immune to backscattering. The 2D waveguide structure
can be mapped into an equivalent 3D structure that sup-
ports identical field distributions and transport properties
[10].

For definiteness, consider an MO crystal consisting of a
square lattice of YIG rods (� � 15�0) of radius 0:11a in
air, where a is the lattice constant. An external dc magnetic
field applied in the out-of-plane (z) direction induces
strong gyromagnetic anisotropy, with the permeability
tensor taking the form

 � �
� i� 0
�i� � 0

0 0 �0

2
64

3
75: (1)

With a 1600 Gauss applied field, the tensor elements in
YIG at 4.28 GHz are � � 12:4�0 and � � 14�0 [11]. For
now, we neglect the effect of material dispersion and loss,
assuming a frequency-independent permeability tensor
with real-valued � and �. We will later show that our
results are not substantially affected by these effects.

Because of the presence of magnetic anisotropy, we
must adapt the conventional band theory of photonic crys-
tals [3] to this system: we eliminate the magnetic field from
Maxwell’s equations to obtain the master equation

 r � ���1�r�r�E	 � ��r�!2E: (2)

Here, the inverse permeability tensor ��1 and the scalar
permittivity � are both functions of position, and ! is the
mode frequency. This equation can be cast in Hamiltonian
form if we define the Hermitian inner product as

 hE1jE2i �
Z
d2r��r�E
1 � E2: (3)

The existence of one-way edge modes relies critically on
T breaking in MO crystals and its effects on the topological
properties of the Bloch bands. This effect is characterized
by the Chern number, a quantity that has been extensively
studied in QH systems [12,13]. The Chern number of the
nth photonic band is

 Cn �
1
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; (4)

 

~A nn0 �k� � hEnkjrkjEn0ki; (5)

where the k-space integral in (4) is performed over the first
Brillouin zone, and the Bloch-function inner product in (5)
is defined similarly to (3) with the integral performed over
the unit cell. The key properties of the Chern number are

that (i) it is always an integer, (ii) the sum of the Chern
numbers over all bands is zero, and (iii) the Chern number
of every band is zero if the Hamiltonian is T symmetric
[13]. Property (i) implies that as one adiabatically tunes the
Hamiltonian (e.g., varying the permeability tensor by tun-
ing the dc magnetic field bias), the Chern number of a
given band changes, if and when it does so, abruptly. In
fact, this abrupt change occurs at the critical point where
the band becomes degenerate with a neighboring band, at
discrete ‘‘degeneracy points’’ in k space. When the system
is tuned past this critical point, the degeneracies are lifted;
a band gap opens and the band’s Chern number changes by
an integer �C. (In other words, the relevant bands acquire
nonzero Chern numbers as soon as a nonzero bias is ap-
plied. However, a large bias is necessary to support a wide
band gap and a tightly confined edge mode.) Because of
property (ii), a Chern-number change in one band is ac-
companied by an equal and opposite change, ��C, in the
Chern number of the neighboring band. Hatsugai has
shown that in a lattice QH system, this process creates a to-
tal of �C different edge states at the system’s boundary [9].

This result, together with property (iii), implies a simple
and general strategy for constructing photonic crystals
supporting one-way modes. We begin by searching for a
T-symmetric band structure with a pair of photonic bands
degenerate at discrete k points; the requirement for Dirac
points where the bands touch in a linear fashion, which was
discussed by Raghu and Haldane [6], is not strictly neces-
sary. For example, Fig. 2 shows the TM band diagram for a
square lattice of YIG rods in air, containing a quadratic
M-point degeneracy between the second and third bands.
This degeneracy is lifted upon applying an external dc
magnetic field, which introduces magnetic anisotropy in
the high-index rods and breaks T (as well as inversion and
mirror symmetries.) The separated bands acquire nonzero
Chern numbers, causing one-way modes to appear at the
edges of the sample.

The Chern-number argument for the existence of pho-
tonic edge modes depends on a crucial assumption: that
Hatsugai’s relation between edge states and Chern num-
bers [9], which was derived using a lattice QH model,
applies to the photonic system. Although this has not
been formally proven, there is an interesting relationship
that allows us to map the photon states in gyromagnetic
crystals to electron wave functions in a family of QH
systems. To see this, let us return to (2) and write ��1�r�
in terms of its component scalar functions:

 ��1 �
~��1 i� 0
�i� ~��1 0

0 0 ��1
0

2
4

3
5: (6)

In terms of the component functions in (1), ~��1 �
�=��2 � �2� and � � ��=��2 � �2�. The equations for
Ex and Ey decouple from Ez; for TM states �Ex � Ey � 0�,

 ��r2 � �r ln ~�� i ~� ẑ�r�� � r� ~��!2	Ez � 0: (7)

Expressing this in terms of  � Ez
����
~�
p

, we obtain
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 ��jr � i ~A�r�j2 � ~V�r�	 � 0; (8)

where

 

~A �
~�
2

ẑ� r�; (9)

 

~V � 1
4�jr ln ~�j2 � j ~�r�j2� � 1

2r
2 ln ~�� ~��!2: (10)

This is the equation for zero-energy wave functions of a
nonrelativistic particle in periodic vector and scalar poten-
tials ~A�r� and ~V�r�. Increasing ! corresponds to increasing
the depth of the scalar potential well in the third term of
(10), shifting the spectrum downwards relative to the zero
of energy. With suitable boundary conditions, this mapping
holds for both edge modes and bulk modes. Thus, for each
value of !, the existence of unpaired edge modes, as well
as their spatial characteristics, can be mapped to a similar
problem in a QH system.

To complete the single-mode one-way waveguide, we
interface the MO crystal with an upper cladding that sup-
ports no bulk modes at the frequency of the second MO
crystal band gap. This can be achieved using a metal slab,
or using a regular photonic crystal with an aligned band
gap. The topological nature of the edge modes [6] ensures
that the interface structure is unimportant, as long as it is

sufficiently narrow that higher order modes are avoided.
Here, we use a square lattice of high-index alumina rods
(r � 0:106a, � � 10�0) in air, tilted 45 degrees to match
the band-gap frequency [Fig. 1(b)]. Note that the regular
crystal has zero Chern numbers for all its photonic bands,
so there is only one forward-propagating mode at the
interface. With a 1600 Gauss bias, we obtain a wide MO
band gap of 10% relative size and very low dispersion, with
the edge mode confined to a few lattice constants. Using a
finite-element frequency-domain scheme and a steady-
state excitation, we observe an evanescent mode decaying
exponentially along the backward direction of the wave-
guide [Fig. 1(c)].

One of the unusual properties of the one-way edge
modes is the complete suppression of backscattering,
which is an optical analog of the dissipation-free transport
of edge electrons in QH systems. Numerical simulations
show that these edge modes are immune to scattering from
extremely large defects. For instance, Fig. 3 shows the
results of simulations with a slab of perfect electrical
conductor (PEC) of width 3a and thickness 0:2a inserted
into the waveguide. In a conventional waveguide, such a
drastic defect would almost completely block the guided
mode. In the one-way waveguide, a steady-state source
operating at the midgap frequency 0:555� �2�c=a� ex-
cites a one-way mode that circumvents the PEC defect,
with 100% power transmission throughout the MO band
gap. This happens because the defect creates a new inter-
face waveguide between the PEC and the MO crystal.
Thus, it only alters the phase response, which is partly
due to the delay incurred by traversing the lengthened
interface. We corroborated this result with a time-domain
calculation in which a temporal Gaussian pulse with a
spectral bandwidth of 50% of the band gap and carrier
frequency 0:555� �2�c=a� is launched into the wave-
guide. Regardless of the presence of the defect, the pulse
passes through the waveguide with no perceivable change
in amplitude or pulse width; since the one-way mode has
approximately linear dispersion relation at midgap fre-
quencies (Fig. 1), sharp corners do not contribute signifi-
cantly to chromatic dispersion. The increased transit time
is in agreement with the change in group delay. Although
embedded sources were used in these simulations, we have
verified in a separate set of simulations that it is also easy to
couple to the one-way mode using waves incident on the
system boundary.

While our analysis has thus far been limited to 2D
structures at microwave frequencies, similar one-way
waveguides can be realized in practical 3D structures and
at higher frequencies. In the 2D analysis, the dielectric
structure and electromagnetic field extend uniformly along
the z direction. In a 3D structure, TM modes can be trun-
cated by introducing a PEC (for which a metal slab is a
good approximation at microwave frequencies) in the x-y
plane, without affecting the field distribution. An array of
finite high YIG rods and alumina rods between two metal
slabs supports TEM modes with field distributions identi-
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FIG. 2 (color). Construction of a MO photonic crystal support-
ing one-way edge modes. The crystal consists of a square lattice
of YIG rods [inset in (b), with � � 15�0 and r � 0:11a] in air.
(a) Band diagram with zero dc magnetic field (� � �0, � � 0).
The relevant quadratic degeneracy point is indicated. (b) Band
diagram with a 1600 Gauss �z dc magnetic field (� � 14�0,
� � 12:4�0). The degeneracies are lifted, resulting in the given
nonzero Chern numbers (red numbers). (c) Contour plot for the
second band. Although the MO crystal has only C4 symmetry,
the band structure retains an accidental C4v symmetry, with an
irreducible Brillouin zone identical to that of a non-MO crystal.
The Chern numbers are calculated by integrating Eq. (5) along
the boundary of the first Brillouin zone. (d) The corrected band
gap with material dispersion.
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cal to the TM modes in our 2D system [10,11]. Finally,
although gyromagnetic effects are generally limited to the
GHz range by the availability of high-field magnetic bias,
artificial magnetic resonance, such as those exploited in
metamaterials, might be incorporated to synthesize the
gyrotropic responses at THz or even infrared frequencies
[14–16].

The above results are not substantially altered by the
material losses and frequency-dependent permeability in a
real microwave ferrite. With a gyromagnetic linewidth of

0.3 Oe and a dieletric loss tangent of 0.0002, typical in
commericially available monocrystalline YIG [17], the
complex propagation constant is �0:359� 0:0001i��
�2�=a� in the case of Fig. 3. The imaginary part corre-
sponds to a decay length of 1300 lattice constants, far
exceeding practical structural dimensions. We have also
neglected the frequency dependency of the gyromagnetic
permeability. When correcting this approximation with a
complete gyrotropic line shape [11], we find the MO band
gap reduces to around 6%. Although such reduction nar-
rows the operational bandwidth, we find the dispersion has
no impact on the backscattering suppression or the con-
finement of the edge mode. We envision many applications
for these one-way waveguides, including defect-tolerant
slow-light systems [8], microwave isolators, high-Q chan-
nel add/drop filters, and all-pass filters. It might also be
possible to further exploit the analogy between this system
and the QH effect, by, for instance, reproducing the fractal
‘‘Hofstadter butterfly’’ spectrum [18] in the bulk modes of
the MO photonic crystal.
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FIG. 3 (color). Backscattering suppression in the one-way
waveguide. Inserting a slab of perfect electrical conductor with
thickness 0:2a (black rectangle) causes the propagating modes to
circumvent the defect, maintaining complete transmission. Ez is
plotted for (a) t � 0, (b) t � 0:25T0, and (c) t � 0:5T0, where T0

is the optical period. (d) Time-domain simulation results for a
temporal Gaussian pulse with spectrum contained in the band
gap. The electric field amplitude is plotted at the source point
(black), at the same transverse position 13 lattice constants
downstream along the waveguide in the absence of a defect
(red), and at the same point with an intervening defect (blue).
The pulse is completely transmitted regardless of the existence
of the defect. (e) Transmission and phase shift plots for the time-
domain simulation.
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