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Nonlinear photonic crystals near
the supercollimation point
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We uncover a strong coupling between nonlinearity and diffraction in a photonic crystal at the supercolli-
mation point. We show that this is modeled by a nonlinear diffraction term in a nonlinear-Schrödinger-type
equation in which the properties of solitons are investigated. Linear stability analysis shows solitons are
stable in an existence domain that obeys the Vakhitov–Kolokolov criterium. In addition, we investigate the
influence of the nonlinear diffraction on soliton collision scenarios. © 2008 Optical Society of America
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Photonic crystals (PhCs) are under active investiga-
tion owing to rich physics and all-optical signal con-
trol [1–3]. One of the striking features in PhCs is the
supercollimation (SC) effect, which was experimen-
tally [4,5] and theoretically [6–8] examined. This ef-
fect originates from the possibility of obtaining flat
regions in the spatial dispersion relation or equifre-
quency contours of PhCs. At these particular points
the phase propagation components along the direc-
tion of a beam are equal. In this way all components
of the beam travel with the same phase velocity, and
it becomes nondiffractive. Recently, centimeter-scale
SC was achieved in a large-area two-dimensional
PhC [9]. However, the study of nonlinear effects
around these SC points is largely unaddressed. Here
we propose a more fundamental approach, as op-
posed to a more numerical one [10].

In this Letter we derive a phenomenological model
that describes light beam propagation in nonlinear
PhCs around the SC point. In most optical systems
nonlinearity is a small perturbation and hence is
added to the linear equation of motion. In contrast, in
the current system one uncovers a strong coupling
between nonlinearity and diffraction. More specifi-
cally, a nonlinear diffraction term is introduced into
the nonlinear Schrödinger (NLS) equation. This term
can control the magnitude and sometimes even the
sign of the diffraction. As a result, this is a unique
system, and new physical phenomena emerge. For
example, this modified equation gives rise to solitons
up to an upper threshold for the propagation con-
stant. Linear stability analysis demonstrates that
the solitons are stable in the existence domain and
obey the Vakhitov–Kolokolov criterium. In addition,
we examine soliton interaction scenarios.

To deduce the model equations we consider a 3D
PhC with the same periodicity in the transversal x
and y directions (a scheme shown in Fig. 1) and write
the electric field of a beam in the PhC as E�x ,y ,z , t�

c c
=F�x ,y ,z�A�x ,y ,z�exp�ikzz− i�t�, with kz being the
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propagation constant of the central Bloch mode, � be-
ing the frequency of the beam, A�x ,y ,z� being the
slowly varying amplitude, and F�x ,y ,z� being the
Bloch mode profile corresponding to � and kz

c. The
propagation direction is along z.

We study beams in the neighborhood of an SC
point, so ���SC with �SC being the SC frequency.
The special dispersion relation around this point is
shown in Fig. 1. The sign and strength of diffraction
depends strongly on the position of � versus �SC. Ex-
actly at the frequency �SC, all components of the
beam travel with the same propagation constant
along z, noted by kz

SC, and there is no diffraction. For
frequencies different than �SC we approximate the
equifrequency contours by a parabola. In this case
diffraction can be positive or negative, depending on

Fig. 1. (a) Scheme of a 3D PhC. (b) Depiction of the linear
dispersion relation in the proximity of a SC point. (c) Non-
linearity gives rise to an index change �n and is modeled by
a shift of the dispersion relation, here shown for the par-

ticular input frequency �=�SC.
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the position of � versus �SC. Furthermore, the
strength of diffraction increases as the difference be-
tween � and �SC increases.

To include nonlinearity we apply first-order pertur-
bation theory [11]. Thus, the nonlinear interaction
causes a small shift of the local dispersion relation
(Fig. 1), which is equivalent to shifting �SC. To first
order this shift is given by

��

�SC
= −

1

3

� drn2�r�n�r���F · F��F* · F*� + 2�F�4�

� drn2�r��F�2

��A�x,y,z��2 � ��A�x,y,z��2, �1�

with � being a nonlinear coefficient calculated from
the linear Bloch mode profile.

The nonlinearity shifts �SC to �SC+��, so by Tay-
lor expanding the dispersion relation around the SC
point the modified dispersion relation becomes ap-
proximately

kz − kz
SC + �1�� − �SC − ��A�2�SC�

= �1�� − �SC − ��A�2�SC��kx
2 + ky

2�, �2�

with kz being the longitudinal and kx, ky being the
transverse propagation vector components. The term
with �1 corresponds to the frequency dependence of
the central kz component (thus at kx, ky=0). Simi-
larly, the term with �1 describes the frequency
change of the curvature (or the diffraction). Note that
we neglect higher-order diffraction terms, such as
fourth-order diffraction, as we are considering propa-
gation of a broad beam with respect to the PhC pe-
riod. We transform Eq. (2) into the space domain and
arrive at the following equation in dimensionless
form: i��q /���+ 1 / 2��2q− 1 / 2� �q�2�2q+	 �q�2q=0,
where �2= ��2 /�
2�+ ��2 /��2�, with the transverse co-
ordinates 
 and � scaled to the spatial characteristic
width W0 and � being the longitudinal coordinate
scaled to the free-space diffraction length Ld
=2�W0

2 /, for Gaussian-like beams [12]. �=−2�1��
−�SC�Ld /W0

2 indicates the linear diffraction strength,
and its sign characterizes the type of linear diffrac-
tion. The novel nonlinear diffraction term is preceded
by �=2�1��SCc2Ld /W0

2, with c being the speed of
light. The usual nonlinear term has 	=−�1��SCc2Ld.
In the following we employ �n�I��0 (thus n2�0) and
�1�0.

In this Letter we will mainly show results concern-
ing 2D PhCs, so the resulting equation takes the
form

i
�q

��
+

1

2
�

�2q

�
2 −
1

2
��q�2

�2q

�
2 + 	�q�2q = 0. �3�

Note that all the coefficients for this model can be de-
duced from rigorous numerical simulations [9]. Re-
cently, an equation similar to Eq. (3) was reported as
the continuous approximation of the Salerno model

[13–15]. Here, in contrast, we derive the model from
a physical system, describing light beam propagation
in nonlinear PhCs with SC. Equation (3) conserves
the power U=−�1/��	 ln ��−� �q�2 �d
. The stationary
solutions of Eq. (3) have the form q�
 ,��
=w�
�exp�ib��, where a real function w�
� and a real
propagation constant b are found by iterative relax-
ation method. To analyze stability we examine per-
turbed solutions q= �w+u+ iv�exp�ib��, where the
real u�
 ,�� and imaginary v�
 ,�� perturbations can
grow with complex rate � upon propagation. The ei-
genvalue problem linearized from Eq. (3) around
w�
� is solved numerically.

One concludes that Eq. (3) allows soliton solutions
[see, e.g., Fig. 2(a)], but only in a finite band of propa-
gation constants. More specifically, there exists an
upper threshold for the propagation constant �bco�,
which depends on the strength of nonlinear diffrac-
tion � [Fig. 2(c)]. Above this value peakon solutions
[13] appear, which are unphysical given the assump-
tions of our physical model. To model what happens
beyond that point in a real PhC one would have to in-
clude more terms in Eq. (3). To emphasize, in our sys-
tem it is the nonlinear diffraction term that leads to
the reduction of the semi-infinite band of propagation
constants (as in a pure cubic NLS system) to a finite
one, which is typical for soliton families in models
with competing nonlinearities, such as the cubic-
quintic NLS equation [16]. It is noted that the power
is a nonmonotonic function of the propagation con-
stant [Fig. 2(b)]. Figure 2(d) shows the dependence of

Fig. 2. (a) Profile of a soliton for b=1 with �=0.3. (b) The
dispersion diagram for �=0.3. (c) Domain of existence for
solitons in the �b ,�� plane, where the inset shows the real
part of the perturbation growth rate versus propagation
constant for �=0.3. (d) The soliton width (FWHM) versus
maximum amplitude for varying nonlinear diffraction,
namely, �=0.1 (dotted curve), 0.2 (dashed curve), and 0.3
(solid curve). The inset shows the dependence of maximum
amplitude on the propagation constant. �=1 and 	=1 for
all cases.
the width of solitons on the amplitude (the plot of the
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inset shows the dependence of the maximum ampli-
tude on the propagation constant). As one can see
from this plot, the nonlinear diffraction has a signifi-
cant effect at larger amplitudes. In addition, it
should be pointed out that a lower power would be
needed to generate a soliton in our system, because
the diffraction is so weak to start with. Thus our sys-
tem may provide an experimentally favorable way to
manipulate nonlinear waves.

Linear stability analysis shows that solitons are
stable in the whole domain of their existence. An in-
stability growth rate calculation is shown in the inset
of Fig. 2(c). It is noted that the Vakhitov–Kolokolov
criterium applies to our system for fundamental soli-
tons, namely, solitons are stable when dU /db�0. To
confirm the outcome of the linear stability analysis
we perform direct numerical simulations of Eq. (3).
We employ a split-step Fourier method in combina-
tion with fourth-order Runge–Kutta to deal with the
nonlinear diffraction term. The input condition is
q�
 ,�=0�=w�
��1+��
��, with w�
� being the profile
of the stationary soliton and ��
� being a random
noise function with a variance of up to 10%. The
simulations confirm the linear stability analysis.

As another example where nonlinear diffraction af-
fects fundamental phenomena, we report its influ-
ence on soliton collisions for different input condi-
tions. We use as the input a soliton of the pure NLS
��=0� and examine how changing � affects collision
scenarios. In the case of two in-phase parallel soli-
tons as input the colliding solitons behave periodi-
cally for a small nonlinear diffraction term [Fig. 3(a)],
as in the case of the pure NLS. For larger � the col-
liding solitons merge into a single localized state,
with breatherlike features [Fig. 3(b)]. For solitons
moving in opposite directions, the colliding solitons
feature similar behavior. One example, presented in
Fig. 3(c), shows two solitons merging into a single lo-
calized state. Such inelastic effects often appear
when dealing with a perturbed NLS; again, here it is
caused purely by nonlinear diffraction. For two out-
of-phase solitons the results show that the repulsive
force between neighboring solitons is reduced with an
increase of nonlinear diffraction [Fig. 3(d)].

Finally, we investigated soliton properties in the
�2+1�D model (two transversal dimensions and one
propagation direction), but no stable solitons were
found. The results show, however, that nonlinear dif-
fraction modifies the critical power for collapse: posi-
tive (negative) � reduces (increases) the critical
power. This means the nonlinear diffraction can slow
down the collapse.

In most PhC structures the SC effect is relatively
broadband. This means that the curvature changes
slowly near the SC point. Therefore, to have a signifi-
cant nonlinear diffraction effect one needs to design a
PhC with a large curvature change, meaning a large
�1. At the SC frequency the nonlinear diffraction
term would then be the main contribution that can
interact with the normal nonlinear term.
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Fig. 3. Collision scenarios between solitons with �=	=1:
two in-phase parallel solitons for �= (a) 0.05 and (b) 0.15.
(c) Two solitons moving in opposite directions with an angle
��=0.2� and �=0.15. (d) Two out-of-phase parallel solitons
for �=0.15.


