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Abstract: Nonlinear photonic-crystal microresonators offer unique fun-
damental ways of enhancing a variety of nonlinear optical processes. This
enhancement improves the performance of nonlinear optical devices to such
an extent that their corresponding operation powers and switching times
are suitable for their implementation in realistic ultrafast integrated optical
devices. Here, we review three different nonlinear optical phenomena that
can be strongly enhanced in photonic crystal microcavities. First, we discuss
a system in which this enhancement has been successfully demonstrated
both theoretically and experimentally, namely, a photonic crystal cavity
showing optical bistability properties. In this part, we also present the
physical basis for this dramatic improvement with respect to the case
of traditional nonlinear devices based on nonlinear Fabry-Perot etalons.
Secondly, we show how nonlinear photonic crystal cavities can be also
used to obtain complete second-harmonic frequency conversion at very low
input powers. Finally, we demonstrate that the nonlinear susceptibility of
materials can be strongly modified via the so-called Purcell effect, present
in the resonant cavities under study.
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1. Introduction

Since the early days of nonlinear optics, optical resonators have been seen as an attractive
way to enhance nonlinear optical phenomena, such as a frequency conversion processes [1]
(in optical parametric oscillators) or optical bistability properties [2]. Traditionally, these non-
linear optical resonators have consisted of a nonlinear material located between two partially
transmitting mirrors. Although interesting in their own right, the application of these nonlin-
ear Fabry-Perot interferometers for designing all-optical logical devices is rather limited, as
they can not fulfill the requirements in size, switching time and operating power of practical
integrated optical systems.

On a separate front, the rapid development of fabrication techniques at micro and nanomet-
ric scale has enabled the successful demonstration of optical micro- and nano-cavities where
light is strongly confined in a very small volume. This corresponds to the case where the ra-
tio between the quality factor Q and the modal volume VMODE is extremely large, such that
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Q/VMODE >> 1/λ 3). Here, it is important to emphasize that the modal volume is a measure of
the spatial extent of the mode in the material of interest, but its precise definition will depend
on the physical phenomenon of interest (for example, as it is shown in this work, there are
different relevant definitions of the modal volume for Kerr bistability, harmonic generation or
Purcell enhancement).

During the last decade, different types of optical cavities characterized by ultrasmall modal
volumes and extremely high quality factors have been sucessfully demonstrated (such as
photonic-crystal (PhC) cavities or microtoroid and microsphere resonators, just to cite some
examples [3]). Among them, due to their unique confinement mechanism [4], PhCs cavities
have proven to be a versatile route to develop novel optical integrated devices. PhC optical
cavities are usually created by introducing a small defect in an otherwise perfectly periodically
modulated refractive index profile in either one, two or three dimensions. The linear properties
of PhCs including such defects have been extensively studied both theoretically and experi-
mentally [5–15]. Recently, it has been experimentally demonstrated that it is possible to design
PhC microcavities with quality factors of Q ∼ 106 and modal volumes of the order of a cubic
wavelength [16].

As a consequence of these recent advances in nanophotonic fabrication, many of the nonlin-
ear phenomena previously analyzed in conventional nonlinear etalons are being revisited within
the context of PhC cavities [17–40]. Although it is true that the physical mechanisms produc-
ing nonlinear phenomena (such as optical bistability or nonlinear frequency conversion) in PhC
cavities are similar to those observed in their conventional counterparts, it has been demon-
strated that PhC microresonators enhance the performance of traditional nonlinear devices by
several orders of magnitude. In addition, due to their design versatility, PhC cavities can be
used as the basis of completely new configurations performing all-optical logic functions, such
as all-optical transistor action [25]. Moreover, PhC resonators offer new fundamental ways of
tailoring optical nonlinearities by using the so-called Purcell effect. Finally, in this context, note
that not only PhC resonators can lead to a strong enhancement of nonlinear phenomena, but also
nonlinear effects can be enhanced by using slow-light properties of PhCs, via the corresponding
band egdes [41, 42] or by means of coupled-cavity waveguides [18, 43, 44]

It is important to mention that, together with the aforementioned rapid development of the
experimental techniques, during the last decade there has also been an important growth in
large-scale computing technologies. Thus, the combination of pure numerical methods as the
non-linear finite-difference-time domain method (FDTD) [37] (which simulates Maxwell’s
equations with no approximation apart from discretization), with analytical approaches such
as coupled-mode theory [38] or perturbation theory [19] allow a complete characterization of
the electromagnetic response of the nonlinear PhC cavities under study. In particular, all the
theoretical calculations shown in this paper have been obtained by using one of the tools just
mentioned. However, since this work is mainly focused in explaining the physical mechanisms
responsible for the observed results, we refer to the reader to more specialized references for
details on the numerical calculations and analysis [37–40].

This manuscript reviews three examples of nonlinear optical processes that can be dramat-
ically enhanced by PhC resonators. The first example in Section 2 reviews the mechanism of
optical bistability, and shows how PhC cavities enhance it in a striking fashion. The second
example in Section 3 shows how PhCs can dramatically lower the threshold for 100% efficient
harmonic generation compared to conventional approaches. The third example in Section 4
models the origin of nonlinearity at an atomic level, and shows how it can be tailored by its
PhC enviroment. In particular, it gives rise to PhC cavities that enhance not only the field but
also the nonlinear coefficient. These results are summarized in Section 5.
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cω−ω  / Γ

Fig. 1. Sketch of a system composed by an optical resonator coupled symmetrically to
both an input and output ports. ωc is the corresponding resonant frequency and Γ is the
width of the resonance. Pin and Pout label the incoming and outgoing powers through the
structure, respectively. Inset shows the typical linear transmission spectrum corresponding
to this system.

2. Optical bistability in photonic crystal cavities

For pedagogical reasons, let us start by considering the general system sketched in Fig. 1.
It consists of a resonant nonlinear cavity coupled to both an input and an output port. This
optical resonator can be a conventional nonlinear Fabry-Perot resonator (i.e., a slab of nonlinear
material situated between two partially transmitting mirrors) as well as a PhC microcavity (a
defect in an otherwise perfectly periodic PhC). In the linear regime, light is transmitted between
the input and the output ports by means of a resonant tunneling process. Thus, if we assume
that the input and output ports are two single-mode waveguides, the ratio between the input and
outgoing powers (Pin and Pout , respectively) is characterized by a Lorentzian shape (see inset of
Fig. 1)

Pout

Pin
=

1
1+((ω −ωc)/Γ)2 (1)

where Γ is the width of the resonance and ωc is the corresponding resonant frequency. Note
that from Γ and ωc we can obtain the quality factor of the cavity Q = ω c/2Γ.

Now, let us consider how this behavior changes when, by means of some physical mecha-
nism, we induce a nonlinear response in the optical resonator. For definiteness, we assume that
in our system the nonlinearity is introduced by a Kerr-like nonlinear material inside the res-
onator. In this way, we are introducing into our problem a change of the refractive index of the
optical resonator δn, so that δn ∝ n2|E|2 , with E being the electric field inside the resonator
and n2 the Kerr coefficient. Imagine next that we illuminate the cavity with light at a frequency
ωp detuned below the resonant frequency ω c of the cavity by several times the resonant width
(we define δω = ωc −ωp, see vertical black line in Fig. 2(a)). In the linear regime, this will
correspond to a low value of the ratio Pout/Pin (see black arrow in Fig. 2(a)). Consider now the
effect introduced by an increase δn of the refractive index of the resonator. In that case, due
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to the subsequent growth of the electromagnetic energy inside the cavity, the value of ω c will
be shifted towards ωp, leading to an increase in the transmission through the system (see red
arrow in Fig. 2(a)). Taking into account that this shift δω is proportional to δn and that, in
turn, δn ∝ Pout (since Pout is proportional to the energy stored in the cavity), we deduce that
δω ∝ Pout and consequently that the dependence of Pout/Pin on Pout has also a Lorentzian shape
(as shown in Fig. 2(b)). In fact, casting this logic in terms of equations, and starting from Eq.
(1), it can be rigorously shown using perturbation theory arguments [19] that this nonlinear
dependence can be expressed as the following Lorentzian

Pout

Pin
=

1
1+(Pout/P0 −Δ)2 (2)

where P0 is the so-called characteristic power of the cavity (this magnitude will be discussed in
more detail below) and Δ is the frequency detuning normalized by the width of the resonance,
Δ = (ωc −ωp)/Γ. Figure 2(b) displays Pout/Pin as a function of Pout for Δ=3.

Now, if instead of plotting Pout/Pin as a function of Pout we plot Pout versus Pin, we obtain the
dependence shown in Fig. 2(c), where we have considered several values of Δ, ranging from
Δ=1 to Δ=3. As can be observed in this figure, for large enough values of Δ (more precisely
for Δ >

√
3), the dependence between Pout and Pin shows a hysteresis loop (whose unstable

branch for each Δ is represented by dotted lines in Fig. 2(c)). Also note that the width of the
loop increases with Δ. The bistable loops shown in Fig. 2(c) can be used as the basis for a
broad range of applications, such as logical gates or memories (although the response of the
materials that form the structure is instantaneous, the nonlinear response of the whole system
remembers the past state of the system). Another crucial feature that can be deduced from
Fig. 2(c), is that, for a fixed value of the detuning parameter Δ, the operating powers of the
system will be determined by the value of the characteristic power P0. By using perturbation
theory arguments [19], it can be rigorously demonstrated that P0 should scale as Γ2VMODE/n2

(or equivalently P0 ∝ VMODE/(Q2n2)). Actually, this scaling of P0 in terms of various relevant
physical parameters can be also deduced by physical arguments as follows. First of all, from the
fact that the frequency should be shifted by more that the cavity resonance width Γ to observe
an important change in the transmission through the system, we expect P0 to be proportional to
a factor of Γ. In addition, we expect P0 to be proportional to another factor of Γ because there
are field enhancement effects inside the cavity. P0 should also depend on the modal volume
VMODE [45], since, for a given value of the input power, the induced change of the refractive
index inside the cavity δn is inversely proportional to VMODE . Finally, it is clear that P0 must
also be inversely proportional to n2, since the characteristic power of the system will decrease
as the nonlinearity of the considered material becomes larger.

For most conventional nonlinear optical resonators based on Fabry-Perot configurations, the
values of Γ and VMODE correspond to power levels well above the threshold ∼ 1mW desired
for integrated optical devices (e.g. in telecommunication applications). In order to overcome
this limitation, it is necessary to look for completely new approaches in the design of the res-
onator. This is where PhC microcavities come into play. They are ideal candidates to solve this
problem, as they are intrinsically characterized by high quality factors and tiny modal volumes
(i.e., Q/VMODE >> 1/λ 3). This unique combination is enabled by the photonic bandgap mech-
anism, which reflects light without loss and can confine light in an volume smaller than a cubic
wavelength.

To illustrate this point, consider the structure displayed in Fig. 3(a). It is formed by a two-
dimensional (2D) PhC composed by high-ε dielectric rods embedded in a low-ε dielectric
material. A defect has been introduced at the center of the structure by slightly increasing
the size of one of the rods. This central defect is coupled symmetrically to two single mode
PhC waveguides on the left and right [19]. If we assume that the central rod is made by a
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ωω

δ

Fig. 2. (a) Evolution of the transmission spectra through the system sketched in Fig. 1 when
the refractive index of the resonator is increased by δn. As can be seen in this panel, δn
shifts the original resonant frequency of the cavity ωc (dashed line) towards the frequency
of the external illumination ωp (blue dashed line). (b) Dependence of Pout/Pin as a function
of the outgoing power for Δ=3 (see text for details on this magnitude). (c) Same function
as (b) but this time Pout is plotted as a function of Pin for several values of Δ. Dotted lines
display the unstable branches of the hysteresis loop for each case.

Kerr-nonlinear material, this structure can be considered to be a PhC implementation of the
system sketched in Fig. 1. Thus, this structure displays the same kind of bistability properties
described previously: if we send light through a PhC waveguide, the input–output relation will
exhibit bistability (two stable solutions for a given input power), provided that the frequency
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Fig. 3. (a) Photonic crystal implementation of the system sketched in Fig. 1. The PhC is
made by a periodic two dimensional distribution of high dielectric rods (εH=12.25, yellow
regions in the figure) in a low-ε background (εL=2.25). The rods have a radius of r=0.25a.
A point defect, introduced by increasing the radius of the central rod to r=0.33a, is sym-
metrically coupled to two single mode PhC waveguides on the left and right. The electric
field pointing into the page is depicted with positive (negative) values in red (blue). (b)
Computed dependence of the output power (Pout ) as a function of the input power (Pin)
for the structure shown in panel (a) when the central rod is assumed to be made by a non-
linear Kerr-like material. Green line displays the results obtained from a perturbation the-
ory analysis while the blue dots correspond to the result of a nonlinear FDTD simulation.
Dashed lines represent the unstable branch of the bistable loop.

detuning of the external illumination and the resonant cavity frequency is large enough. This
is confirmed by the numerical calculations shown in Fig. 3(b), where the results obtained from
both perturbation theory and the nonlinear FDTD method have been plotted (see green line
and blue dots, respectively). In this case it has been assumed Δ = 3.8. The crucial point is that
although the quality factor shown in Fig. 3(a) is just 500, similar cavities can be designed to
show Q ∼ 106 (for instance, just by increasing the number of layers surrounding the defect),
while they are confining light in regions of subwavelength size, something that could not be
reached in a straightforward manner by using conventional Fabry-Perot devices. This, taking
into account the scale law for the characteristic power P0 we have deduced above, can lead to a
reduction of the typical values of P0 by several orders of magnitude.

Recently, this dramatic decrease of the characteristic power of optical bistability loops has
been confirmed experimentally in silicon PhC microcavities [31–33]. In particular in Ref [32] a
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microcavity was introduced into a silicon slab with a triangular pattern of air holes by creating a
structural point defect in the system. This defect mode had Q∼ 10 4 and a modal volume smaller
than λ 3. In the experiment reported in Ref. [32], the input and output ports were implemented
by means of two PhC defect waveguides coupled to the left and right of the microcavity. Im-
portantly, these experimental results showed that it is possible to find bistability with switching
powers as low as 0.4mW, with a values for the pulse energy and switching time of about 70 fJ
and 100 ps, respectively.

At this point, let us mention that, in contrast to conventional electronic logical gates, in which
most of the operating power is dissipated, in the scheme analyzed in this Section only a small
fraction of this power is absorbed by the structure (typically only ∼ 10% of the operating power
is absorbed [46], i.e., 7 fJ in the system analyzed in [32]). If we take into account that the energy
employed to operate this kind of photonic logical gates can be reutilized in some other parts
of the system, it can be stated that the performance of these structures start being comparable
to that corresponding to their electronic counterparts (in which the typical value of the power
consumed in a single logical gate of modern day microprocessors is of the order of 1 fJ) . Thus,
these results challenge the traditional belief that all-optical logic processing based on nonlinear
optical devices is not feasible due to the weak nonlinearities of naturally existing materials.

Summarizing, it has been shown that, due to their unique light confinement mechanism,
PhC microcavities are particularly suitable for geometric enhancement of nonlinearities. In
addition, optical bistability of PhC microcavities can be used as the basis of complex devices
performing all-optical logical operations, such as integrated optical isolation [22], logical AND
gates [25] and all-optical transistor action [25, 33]. Importantly, due to their characteristic size,
switching time and high integrability, this new class of optical processing devices (and similar
approaches [47]) have many of the desired features for their on-chip implementation. Thus, we
believe that the results reviewed in this section will pave a way to the future optical integrated
devices based on enhanced nonlinearities inside PhC microcavities.

3. Harmonic generation in photonic crystal cavities

Nonlinear optical processes can lead to harmonic generation, in which light at one frequency ω
is converted to light at some multiple of this frequency; for example, a χ (3) (Kerr) nonlinearity
in which the material polarization has a term ∼ E 3 that leads to generation of 3ω from ω . This
process, along with the related processes of sum- and difference-frequency generation (χ (2))
or four-wave mixing (χ (3)), can be exploited for frequency conversion of signals and sources.
Just like optical bistability and other topics discussed earlier, the key questions are for what
power and what bandwidth one can achieve efficient frequency conversion. And just like for
bistability, the power requirements at a given bandwidth can be greatly decreased by confining
light for a long time in a small cavity.

The most basic approach to harmonic generation involves two propagating modes inter-
acting through a nonlinear medium, usually via a χ (2) (Pockels) or χ (3) (Kerr) nonlinear-
ity [1, 41, 48–54]. In this case, light at one frequency co-propagates with the generated light
at the harmonic frequency. This scheme poses a series of challenges. First, because each field
accumulates a different phase as it travels through the waveguide or medium, a phase-matching
condition between the two wavelengths must be satisfied in order for the two modes to couple
efficiently [55, 56]. Second, the pump power required to achieve maximum nonlinear conver-
sion can be quite high. Instead one employs a cavity to trap the light at the input frequency
and/or the output frequency, and it turns out that not only does this greatly reduce the power re-
quirement, but it can also enable 100% conversion in principle. The most common scheme is a
singly-resonant cavity, in which the input frequency is trapped and the harmonic frequency im-
mediately escapes, so that all of the light is eventually converted if the lifetime is long enough,
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Fig. 4. Schematic diagram of waveguide-cavity system. Input light from a waveguide (left)
at one frequency ω1 is coupled to a doubly-resonant cavity (with resonances at ω1 and ω2,
with respective lifetimes Q1 and Q2) and converted to a cavity mode at another frequency
ω2 by a χ(2) process. The converted light is radiated back into the waveguide at both
frequencies.

and negligible down-conversion occurs [27,57–74]. A tantalizing possibility, however, is to use
a doubly-resonant cavity [35], in which the nonlinear interaction is enhanced by trapping both
the input and the harmonic frequencies. In this case, both up- and down-conversion of the fre-
quency must be included, but it turns out that there is a critical pump power (much lower than
the power for a singly resonant cavity) at which 100% conversion can be achieved.

As for bistability, the two important quantities that will determine the strength of the nonlin-
ear interactions in the cavity are the lifetime Q and an effective modal volume (represented by
VHG). Intuitively, the longer the lifetime (the narrower the bandwidth), the longer the time the
light has to interact with the material; similarly, the smaller the modal volume, the more intense
the fields are for the same power, and thus the stronger the nonlinear interaction.

In harmonic generation, one can define a modal volume VHG that reflects the spatial extent
and overlap of modes at frequencies ω and 2ω (roughly, it can be stated that V HG is a modal
volume but one that also depends on the field overlaps). A coupling coefficient, controlling the
efficiency of harmonic conversion, is inversely proportional to this quantity, as can be precisely
defined using perturbative methods [35], but here we restrict ourselves to scaling arguments
for the sake of developing physical intuition. The advantage of using photonic crystals in this
context is, just as for bistability, that they allow one to simultaneously achieve high Q and
tightly-confined small modal volumes (whose symmetry and field patterns can be precisely
controlled), although doubly resonant cavities are a challenge because they require confinement
at two very different frequencies. The following discussion is generic to all harmonic generation
in cavities, regardless of the specific geometry or confinement mechanism.

We now turn to the details of enhanced nonlinear conversion in cavities by focusing first on
the particular case of χ (2) nonlinearities. It can be shown that in a single-resonant cavity the
critical power Pin required for high conversion efficiency scales as VHG/Q [75] (note that the
scaling of Pin is similar to that corresponding to the critical power P0 defined in the former
Section). However, in a doubly-resonant nonlinear cavity, in addition to the coupling coeffi-
cients between the two fields (∼ 1/VHG), the important figures of merit are the lifetimes Q1 and
Q2 at the frequencies ω1 and ω2 = 2ω1, respectively, as depicted schematically in Fig. 4. As
shown in [35], in this case, Pin scales as VHG/Q2

1Q2 (actually, the singly-resonant cavity can be
considered as a special case of small Q2). The additional factor of Q2 plays a crucial role in
decreasing the critical power. For example, for a singly resonant macroscopic cavity displaying
second-harmonic generation at Pin = 1W operating at a bandwidth Q ∼ 1000, one can immedi-
ately reduce this operating power to milliwatt levels and by further reducingV HG to microscopic
sizes, one can in principle obtain microwatt levels [35]. Full expressions for operating powers
are obtained by solving explicit coupled-mode equations for the cavity modes [35].

Although it is clear that double resonance should improve harmonic generation, it may not be
clear whether 100% conversion may be attained due to the phenomenon of down-conversion: as
soon as the cavity has accumulated significant energy at both ω 1 and ω2, difference-frequency
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Fig. 5. Plot of conversion efficiency Pω2
out/Pin (black), and reflection Pω1

out/Pin vs. Pin for the
schematic geometry in Fig. 4 (Here Pω

in/out denotes input/output power at frequency ω). The
maximum conversion efficiency is achieved at the expected critical power P0. To compute
this figure, we have chosen conservative modal parameters ω1 = 0.3 2πc/a, Q1 = 104,
Q2 = 2Q1, 1/VHG ≈ 10−5a−3 (where a is the characteristic length scale of the system, see
Ref. [35] for further details on this calculation).

generation results in conversion from ω2 back to ω1. However, this turns out to be closely re-
lated to the problem of resonant transmission through cavities: as already seen for the bistable
case, when you pump a cavity from one side and the light can either escape back (reflect) or for-
ward into some other channel, 100% transmission (0% reflection) occurs when the cavity decay
rates into the two channels are exactly matched. (This is somewhat analogous to “impedance
matching.”) In the harmonic-generation case, we have a cavity with a single input/output chan-
nel that can operate at two frequencies: we are pumping the ω 1 mode from one input channel,
and the light can either reflect at ω1 (either directly or via down-conversion) or be converted
and escape at ω2. So, just as for resonant transmission, we have two escape “channels” and it
turns out that we can achieve 100% conversion if we can exactly balance the net reflection rate
with the net conversion/escape rate. Here, however, the conversion rate depends upon the power
as well as on the cavity geometry. If the power is too low, then the nonlinear conversion rate is
too small and all the light is reflected at ω1; this is not surprising. Perhaps more surprisingly,
if the power is too large, the nonlinear conversion rate is too big and all of the harmonic light
down-converts and escapes at ω1. In between these two extremes, there is a critical power P0

where the rates are exactly matched and 100% of the input light is converted and escapes at ω 2

(in the absence of other losses) [35]. It is this critical power that turns out to be proportional to
VHG/Q2

1Q2 [35]. A plot of the numerical conversion efficiency, computed via the coupled-mode
equations for a system of the type depicted in Fig. 4, is shown in Fig. 5, and displays precisely
the 100% conversion peak at P0 described above. Furthermore, note that in the example above,
conversion efficiencies of 80% or more are predicted over a power Pin range of one order of
magnitude.

Similar phenomena occur if one considers third-harmonic generation in a doubly resonant
χ (3) cavity, with cavity frequencies ω1 and ω3 = 3ω1 and corresponding Q values Q1 and Q3. (It
is also possible to perform third-harmonic generation via a χ (2) medium, using a combination of
second-harmonic and sum-frequency generation [72,76]). Again, there is a coupling coefficient
∼ 1/VHG. Again, there is a critical power P0 where 100% conversion is possible, by matching

the conversion and reflection rates.Here, the critical power P0 ∼ VHG/(Q3/2
1 Q1/2

3 ), which for
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Q1 = Q3 gives a similar figure of merit as that found in the bistability case VHG/Q2.
All of these statements can be precisely derived from perturbation and coupled-mode the-

ory [35]. However, χ (3) media introduce an additional wrinkle: self-phase modulation (SPM),
where the nonlinearity shifts the cavity frequencies in addition to generating the harmonic. In
the bistability phenomenon, SPM was the source of the entire effect, but here it poses a problem
because, as the input power is increased, the cavity frequencies shift out of resonance. This shift
can be countered by appropriately detuning the cavity frequencies beforehand [35].

4. Tailoring optical nonlinearities via the Purcell effect

In this section, the impact of the Purcell effect upon the strength of the Kerr nonlinear coeffi-
cient is discussed. The Purcell effect, first discovered in 1946 [77], is a phenomenon whereby
a complex dielectric environment strongly enhances or suppresses spontaneous emission (SE)
from a dipole source [78–81]. Recently, it was shown that using the Purcell effect for frequen-
cies close to an atomic resonance can substantially influence the resultant Kerr nonlinearity for
light of all (even highly detuned) frequencies [36].

Optical nonlinearities are caused by atomic or molecular resonances: the closer the frequency
ω becomes to the resonant frequency ωba, the stronger the atom-photon coupling becomes and
the larger the nonlinear effects. On the other hand, operating too close to resonance generally
leads to large absorption loss, so instead one operates at a detuned frequency ω = ω ba + Δ.
Intuitively, modifying the SE rate of the resonance changes a property of the resonance which
causes nonlinearity, so it should modify the nonlinear process in some way. The key point is that
the atomic resonance and the optical mode lie at different frequencies: this makes it possible
for a photonic crystal to suppress SE at ωba via a photonic band gap, which increases χ (3)

as shown below, while simultaneously operating at a probe frequency ω outside the gap. In
fact, one can additionally simultaneously engineer optical resonant cavities at ω , which further
enhance nonlinear effects by concentrating the fields.

Moreover, as we show below, this enhancement effect displays some unexpected properties.
For example, while increasing SE strengthens the resonance by enhancing the interaction with
the optical field, it actually makes the optical nonlinearity weaker. Furthermore, phase damping
(e.g., through elastic scattering of phonons), which is detrimental to most optical processes,
plays an essential role in this scheme, because in its absence, these effects disappear for large
detunings (i.e., the regime in which low loss switching can take place).

In order to approach this problem quantitatively, we start with a simple, generic model dis-
playing Kerr nonlinearities: a collection of two-level systems. The corresponding complex Kerr
susceptibility has been calculated in the steady state limit using the rotating wave approxima-
tion [1, 36, 82], and is given by:

χ (3) =
4
3

Nμ4 T1T 2
2 (ΔT2 − i)

h̄3(1+ Δ2T 2
2 )2

, (3)

where N is the number of two-level systems, μ is their dipole moment, T −1
1 is the rate of

population decay, T −1
2 =

[
(1/2)T−1

1 + γphase

]
is the rate of phase damping, and Δ ≡ ω −ωba is

the detuning of the incoming wave of frequency ω from the electronic resonance frequency
ωba. For large detunings ΔT2 � 1, one obtains the approximation that:

Re χ (3) ≈ 4
3

Nμ4
(

1
h̄Δ

)3 T1

T2
. (4)

Of course, there are many types of materials to which a simple model of noninteracting
two-level systems does not apply. However, it has been shown that χ (3) nonlinearities of some
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Fig. 6. A 7x7 square lattice of dielectric rods (ε = 12.25) in air, with a single defect rod in
the middle. On top of the dielectric structure outlined in black, the Ez field is plotted, with
positive (negative) values in red (blue). A small region of nonlinear material, e.g., a CdSe
nanocrystal, with transition frequency ωelec, is placed in the defect rod.

semiconductors such as InSb (a III-V direct bandgap material) can be treated as a collection of
independent two-level systems with energies given by the conduction and valence bands, and
yield reasonable agreement with experiment [83]. The predicted nonlinear coefficient displays
the same scaling with lifetimes as Eq. (4), so the considerations that follow should also apply
for such semiconductors.

Now, consider the effects of changing the SE properties for systems modeled by Eq. (4),
in which χ (3) scales as T1/T2. Oftentimes, the phase coherence time T2 will be much smaller
than T1 [84], so that T2 ≈ γ−1

phase will remain nearly unchanged even if T1 is altered by the

Purcell effect. In that case, the enhancement of the real part of χ (3), denoted by η , will be
given by η ≈ T1,purcell/T1,vac, which means that the suppression of SE will enhance nonlinearities.
This comes about because a larger T1 increases the virtual lifetime for nonlinear processes to
occur [85]. Conversely, Purcell enhancement suppresses nonlinearities by reducing this virtual
lifetime.

The rate of phase damping is crucial to this scheme, because as in the limit that phase damp-
ing is controlled exclusively by the SE rate (i.e., T2 ≈ 2T1), the ratio T1/T2 in Eq. (4) will not
be altered by changes in SE, and therefore, the nonlinearity will revert to its normal value for
large detunings (i.e., the regime in which lossless switching can take place).

It is also interesting to note that this enhancement scheme will generally not increase non-
linear losses, which are a very important consideration in all-optical signal processing. If
the nonlinear switching figure of merit ξ is defined by ξ = Re χ (3)/(λ Im χ (3)) [86], then
ξpurcell/ξvacuum = T2,purcell/T2,vacuum ≥ 1, for all cases of suppressed SE.

The general principle described thus far should apply for any medium where the local density
of states (DOS) is substantially modified provided that one is in the weak-coupling regime [87].
In the following, we show how this effect would manifest itself in a PhC system, thus illustrat-
ing how strong nonlinear suppression or enhancement effects could be achieved in practical
physical systems. Our system consists of a seven by seven 2D square lattice of dielectric rods
(ε = 12.25 and radius 0.25a) in air, with a two-level system placed in the middle defect rod of
radius r = 0.35a, as illustrated in Fig. 6.

First, consider the magnitude of the enhancement or suppression of SE in this system.
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Fig. 7. (a) Numerical calculation of the enhancement of SE for the set-up in Fig. 6, given by
the ratio of the rate of emission in the PhC, T−1

1,purcell
, divided by the emission rate in vacuum,

T−1
1,vac

. (b) Kerr enhancement η ≡ Re χ(3)
purcell/ Re χ(3)

vac as a function of electronic transition
frequency (ωelec) for a system of dielectric rods in air, with the parameter values listed in
the text.

Clearly, since there are several periods of high contrast dielectric, one expects to observe two
distinct effects. First, there will be a substantial but incomplete suppression of emission inside
the bandgap. Second, there will be an enhancement of SE outside the bandgap (since the DOS
is shifted to the frequencies surrounding the bandgap), and also close to the cavity resonance.
For an atom polarized in the direction out of the 2-D plane, only the TM polarization need be
considered. The enhancement of SE obtained in a time-domain simulation is plotted in Fig. 7(a).

Some recent work has demonstrated that single nanocrystals can demonstrate predominantly
radiative decay in vacuum even at room temperature, e.g., single CdSe/ZnS core-shell nanocrys-
tals with a peak emission wavelength of 560 nm have Γ rad ≈ 39Γnr, where the radiative lifetime
T1,rad = 25.5 ns [88]. Extrapolating from low temperature results [89], we estimate T2 ≈ 0.13 fs
at room temperature.

When these data are combined with the data from Fig. 7(a), we can calculate the enhancement
of the real part of the Kerr coefficient, η , as a function of the atomic transition frequency
ωelec, when probed at a frequency ω ph = 0.508(2πc/a) (the cavity’s resonant frequency). The
results are shown in Fig. 7(b). Enhancements of up to a factor of 21 are predicted in the regions
in which SE is suppressed, for these exact parameter values. This set-up has the advantage
of allowing simultaneous probe field enhancement (through the concentration of the field in
the defect mode), along with nonlinear coefficient enhancement (through the suppression of
spontaneous emission). The enhancement factor is less than the theoretical maximum value of
40 obtained from the expression for maximum nonlinear enhancement that takes the quotient
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of T1 values with and without complete SE suppresion for this material because the SE is
suppressed only by a factor of about 43, as shown in Fig. 7(a). However, a much bigger PhC,
which suppresses SE very strongly, should approach the theoretical maximum enhancement. If
a single nanocrystal with the parameters above proves difficult to use in practical devices, note
that even bulk samples of similar nanocrystals have been shown to yield a significant radiative
decay component, corresponding to Γ rad ≈ Γnr [90]. Thus, it has been predicted that with strong
suppression of radiative decay, nonlinear enhancement of a factor of two or more could be
observed at room temperature, for certain materials.

We now discuss the implications of this effect on the results discussed earlier in this re-
view. Most past experiments should not have observed this effect, because they were designed
with photonic bandgaps at optical frequencies significantly smaller than the frequencies of the
electronic resonances generating the nonlinearities, in order to operate in a low-loss regime.
Furthermore, in most materials, non-radiative decays will dominate radiative decays at room
temperature. Finally, all the previous analyses are still valid as long as one considers the in-
put parameters to be effective nonlinear susceptibilities, which come from natural nonlinear
susceptibilities modified in the way described by this paper.

Summarizing, it has been shown that the Purcell effect can be used to tailor optical nonlinear-
ities [36]. We have illustrated in an exemplary system how enhancements of Kerr nonlinearities
of at least one order of magnitude should be achievable. This phenomenon is caused by strong
modification of the local DOS near the resonant frequency. Thus, our treatment can easily be
applied to analyze the Kerr nonlinearities of two-level systems in almost any geometrical struc-
ture in which the Purcell effect is substantial (e.g., PhC fibers [91] or optical cavities). It also
presents a reliable model for a variety of materials, such as quantum dots, atoms, and cer-
tain semiconductors. Finally, note that the physical principle described in this Section (i.e., the
strong modification of nonlinearities via the Purcell effect) should have a general character, and
thus may apply to coefficients at other orders, such as χ (5), and to other materials (e.g. where
two-level approximation does not apply).

5. Summary and conclusions

Photonic crystal microresonators offer a unique mechanism for confining light, giving rise to
a combination of high quality factors and small modal volumes. This puts many previously
known nonlinear optical processes in a new operating regime. For example, we have shown
that optical bistability is greatly amplified in these systems. Also second and even potentially
third harmonic generation can be made to operate with high efficiences with resonances at
both the input and output frequencies, up to 100 % efficiency at a particular, low input power.
Finally, the Kerr coefficient itself has been shown to be capable of being tailored via careful
modification of the radiative properties of the nonlinear medium.

In summary, all these phenomena have already begun to enable the design of novel all-optical
signal processing devices whose operating powers and switching times are orders of magnitude
smaller than those corresponding to traditional nonlinear optical devices. These properties,
combined some other key features of these devices, such as their micrometric size and their
high integratibility, could make nonlinear photonic crystal cavities one of the most important
actors in the development of future photonic integrated technology.
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