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The authors theoretically and numerically

investigate

the beam propagation near the

supercollimation frequency wg in a photonic crystal made of nonlinear material. Since the value and
sign of the equal-frequency-contour curvature which dominates the beam behaviors can be
nonlinearly tuned near w?, a kind of nonlinear effect is generated. The envelope equation with
unique form is also obtained. Beam-control mechanisms are theoretically predicted and observed in
numerical experiments, such as tunable collimation, tunable beam-divergence angle, and self-lock
of collimation. These mechanisms can be utilized to function as fiber, lens and coupler, or to design
photonic devices. © 2007 American Institute of Physics. [DOI: 10.1063/1.2739413]

Controlling the propagation of beams or pulses in non-
linear materials is of central importance in nonlinear optics.1
Generally it is described by a nonlinear Schrodinger equation
(NSE) with the factors depending on the material dispersion,
such as dyw and &iw. On the other hand, photonic crystals
(PhCs) (Refs. 2 and 3) have shown the strong structural
dispersion, much different from natural materials. The com-
bination of the nonlinearity and the PhC dispersion at special
frequency ranges has drawn attentions, such as band-gap-
edge modes or defect modes.*™® Due to its potential to steer
light beam, the supercollimation (SC) (also called “self-
collimation”) phenomena have been intensively studied
experime:ntallyL9 and theoreticallym’16 in two and three di-
mensional (2D and 3D) PhCs. Some intrinsic advantages of
SC in linear PhCs, i.e., the ﬂexibility7 and the zero-cross-talk
at intersection,lo’13 have been discussed. Optical devices,
such as the sharp bend and the splitter, can also be designed
and made.”'>'* The SC is from the zero-curvature parts of
the equal-frequency contour (EFC) in k space at certain fre-
quency a)_?.7 Since the group velocity v, (or the Poynting
vector) is always normal to the EFC, zero-curvature (flat)
EFC means that the Bloch waves can have different k but
same Vv, direction. The SC beam composed of these Bloch
waves can propagate without expanding (no diffraction).”®
Albeit, to the best of our knowledge, the nonlinear study
around the SC frequency is still absent thus far. The interplay
between nonlinearity and SC could be more interesting since
the uniqueness that the EFC curvature and its sign, which is
essential for beam evolution, is very sensitive to small fre-
quency change around SC frequency (its sign changed from
< wg to w>w2). Given the uniqueness, we anticipate the
different nonlinear effect arising from the interplay, with im-
portant applications for beam control.

In this letter, 2D PhCs made of nonlinear Kerr material
are studied around the SC frequency. A nonlinear effect, even
much stronger than the traditional ones, merges as a result of
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nonlinear tune of the EFC curvature. The beam envelope
equation with unique form is obtained with a nonlinear fac-
tor in front of the derivative operator on the beam transverse
direction. Interesting beam-control mechanisms, such as the
tunable SC frequency, the continuously tunable beam-
divergent angle, and the self-locking of SC, are revealed.

To study the nonlinearity-SC interplay, a concrete 2D
PhC is considered. Without losing generality, all concrete
parameters in our model are just for numerical simulations.
The PhC setup12 is a square lattice of air holes in the non-
linear dielectric n;=n{+x'¥|E|>/n{ (Kerr material), with lat-
tice constant a and hole radius r=0.35a. Without nonlinearity
n,=n{=3.46, the EFCs in k space for E,-polarization mode
are displayed in the inset (a), in which the SC EFC (with
zero-curvature sections) is shown by the red curve. Along
I'-M direction (defined as k, direction), the cross point of the
SC EFC and k, axis is the SC central point S. In the inset (b)
we schematically show the divergent, collimated, and con-
vergent beam behaviors for different frequencies with the
negative (w< w?), Zero (w:w?), and positive (o> wg) EFC
curvatures, respectively. From the inset (b), the different
EFC-curvature sign means qualitatively different beam be-
havior with same initial condition. If the EFC-curvature sign
can be nonlinearly tuned near SC, the nonlinear PhCs be-
come the diffraction-quality-changeable material. The next
study will show that this is true.

First, we demonstrate that the SC frequency can be non-
linearly shifted. In Fig. 1, we draw the first-band diagram for
the case without nonlinearity as the black curve, which is
also the side view of inset (a) along k, axis. The coordinates
of the SC point S are {&’=0.18(27c/a),k=0.537(27/a)},
where c is the light speed. Based on perturbation theory,”’18
the main effect of a small index change (i.e., the nonlinear-
ity) is just to vertically suppress or expand the photonic
band. Numerical calculations also confirm this, shown by the
dashed blue lines in Fig. 1, where the frequency w, of the
new SC point S’ (or §”) is tuned slightly lower w, <’ (or
higher w,> ") with a larger(or smaller) n;(|E|?). We empha-
size that since the SC frequency always is the “curvature
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FIG. 1. (Color online) Frequency vs Bloch vector of the first band along
I'-M direction. The solid, upper dashed and lower dashed lines are the cases,
without nonlinearity, with the n; tuned smaller and larger, respectively. The
SC point for each case is marked by S, S’, and S”. Inset (a) shows the EFCs
of the first band in k space without nonlinearity. The red line represents the
EFC of SC. In the inset (b), the divergent, SC and convergent behaviors of
beam propagation are schematically shown by the group velocity vectors v,
for EFCs with negative, zero, and positive curvatures, respectively.

zero point” and can be tuned w,=w,(|E|*), the EFC curvature
of all near frequencies is also tuned simultaneously. If our
working frequency ® is in the frequency range [, w,]
which is swept by the tuning SC point, then not only the
value but also the sign of the curvature is changed, such as
0> wg and positive EFC curvature originally, but now
<w, and the curvature becomes negative. Obviously, the
curvature sign of EFC at w is always same as w— w;.

The envelope equation which can quantitatively describe
the beam propagation is our next goal. An EFC around the
SC point generally has the parabolic form (kx—kg)zxki/ 2,
where £” is the k vector of the cross point of the EFC and the
k, axis, and « is the EFC curvature. From the general corre-
sponding relations in the envelope-equation derivation,
(k,—kJ)—i(d/ 3x) and k; ——¢#/dy*, we can phenomenologi-
cally introduce an envelope equation for a beam FE,
=U(x, y)ei(ksx“‘”) around the SC frequency in nonlinear PhCs
(Ref. 19),

U  k(w,|UP) FU
I+ ——

G277 —
+ UPU=0, 1
o 2 W U] (1)

where y=fw’uy/(c*k°) and f=1-mr?/a? is the filling factor
of PhC dielectric. Although Eq. (1) looks like the common
NSC, actually its form and physical meaning are unique
since besides the “traditional nonlinear term” yx®|U|? there
is a new nonlinear factor «(w,|U|?). Without nonlinearity, &
is the linear EFC curvature [Fig. 1 inset (a)] and can be
expressed as K=K0((U)=((1)—a)§))/}’7£, where m is a positive
value and depends only on w, then Eq. (1) is a common NSE.
The beam diffraction is dominated by «,. But with the non-
linearity turned on, x becomes a nonlinear factor x=(w
—wy(|U/») /7 in front of the transverse derivative operator
P/ é‘yz, and it dominates the beam diffraction. The unique
form of Eq. (1) demonstrates the new nonlinear optics that
the boundary between the positive and negative diffraction
regimes (defined by the « sign) can be overcome by nonlin-
ear tune. Nonlinear PhCs really are diffraction-quality-
changeable material. The exact solutions of Eq. (1) can be
quite complex. To simplify the problem, the last term
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FIG. 2. (Color online) (a) Field vs x of stable beams in the nonlinear PhC of
(upper panel) |Uy|=2.6X 107 V/m (weak nonlinearity) and (lower panel)
|Up| =9.2% 107 V/m (the tunable SC is achieved), where |Uy| is the peak
amplitude of the Gaussian beam. The thick black lines represent the detec-
tion area. (b) The divergence angle A6 vs the incident field \QOL where the
divergence angle is defined as Af=tan™' (AW/L). L=36.75\2a is the dis-
tance from the source to the detection plane; AW is the change of the beam
half-width on the detecting plane. y¥=1X 1077 m?/V2.

yX(3)|U |? is neglected in next beam-control study due to its
much weaker nonlinear effect, but will be discussed later.

The tunable SC frequency is confirmed by our finite dif-
ference time domain numerical experiments. In the simula-
tion, a Gaussian beam is excited using an adjacent single-
mode slab waveguide at the left end,12 then the incident
beam propagates into the nonlinear PhC. We observe the
beam-propagating behavior (divergent, convergent, or colli-
mated) after the incidence. The beam frequency is chosen as
0=0.172mcla)< w?, so the beam should be divergent with-
out nonlinearity or with a weak nonlinearity (w—w;<0),
which is demonstrated in Fig. 2(a) (upper panel). But if the
field intensity is strong enough to tune the SC frequency as
to satisfy w—w,=0, the beam becomes collimated. Such tun-
able SC over a long distance is shown in Fig. 2(a) (lower
panel). The tunable SC means that the SC can be realized in
a much wider frequency range now. With certain beam cen-
tral amplitude U,, the new SC frequency w, can be approxi-
mately obtained from the perturbation theory w,=~ w?
—axI|Uk?, where « is a constant which depends on the
linear PhC structure (@=0.24 in our model). From the con-
dition w,=w, the required beam central intensity I,=|U,|* to
reach the tunable SC is approximately I,=(n)eo|U,|*c
= (w?— w)(n;)%ec/ a)(@)k?.

The EFC curvature, tuned by nonlinearity, also provides
a mechanism to continuously modulate the beam-divergence
angle. Such a divergence-angle continuous control (DACC)
is also confirmed by our numerical results, which are shown
in Fig. 2(b). DACC may function as a focal-length-tunable
lens or a width-tunable coupler between different devices in
a photonic microcircuit.

So far the nonlinearity in our system is just engaged to
tune the index of PhC material and then the EFC curvature.
This goal can also be realized by other tunable materials,”’
i.e., liquid crystals. Nevertheless, the nonlinearity around the
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FIG. 3. (Color online) Beamwidth vs the beam propagating distance. The
wide incident beam gradually becomes a SLOC beam (with constant width).
The parameters are w=0.1835(2mc/a)> o', |Uy|=3.2X 10" V/m for the
incident beam and ¥®'=-2.28 X 1077 m2/V2.

SC frequency can cause further novel properties since there
is a feedback from the EFC curvature to the nonlinearity. The
EFC curvature dominates the beam convergent (or divergent)
behavior, which results in a stronger (or weaker) beam inten-
sity, implying a stronger (or weaker) nonlinearity. Such feed-
back means the nontrivial interplay between the nonlinearity
and the SC, which is also implied in Eq. (1). The nontrivial
interplay can cause a novel phenomena, the self-lock of col-
limation (SLOC), if two conditions (i) x* <0 (the w, shifts
up with stronger field) and (i) w> «° (without nonlinearity,
the curvature is positive and the beam is convergent) are
satisfied. The SLOC works in the following way. If the beam
intensity I<<I; (or I>1,), w, is not tuned large enough (or
overtuned), thus o> w, (or < w,), and the beam should be
convergent (or divergent). Then, owing to the convergence
(or divergence), the beam intensity I becomes larger (or
smaller) and the evolution goes on until I=I, and w;=w, so
that a stable collimated mode is locked. Obviously, the
physical mechanism of SLOC is attributed to the negative
feedback when the beam frequency w deviates from w,. The
SLOC can make the SC beam significantly robust, which is
essential for the SC use in real systems. In our numerical
experiment, the SLOC process is shown in Fig. 3 and one
can indeed see the effect that is theoretically predicted. Fur-
thermore, we will demonstrate that the SLOC is also a
method to control the collimated beamwidth d. Suppose the
total energy flux of the beam is W, the SLOC beamwidth can
be estimated by

dSLOC = W/IS S WX(S)/|(1) - w§)| . (2)

Obviously, the SLOC beamwidth can be tuned by the beam
total flux W. The SLOC can function as the width-tunable
fiber, which does not exist in macrooptic systems. If the gain
media is introduced in, W can be controlled by the outside
pumping power, therefore the SLOC beamwidth can be dy-
namically modulated. The SLOC can also be realized by the
positive y'* which appears in most nonlinear materials, but
then one needs to use the SC point in a high-order band, such
as the second band. SLOC can be used to design devices too.
For example, SLOC can be exploited as a width-tunable cou-
pler between PhC chips and waveguides.

Since all the related beam-control properties are from the
nonlinear shift of the linear PhC dispersion around SC, a
relatively weak nonlinearity, whose magnitude can be ap-
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proached by realistic materials, is needed to obtain strong
effects. But in our simulation, since the limited computer
resources, our numerical system is smaller than real ones’ ™’
and a quite strong nonlinearity (~1072 order index change)
has been used. After optimizing the structure and parameters
to make the EFC curvature more sensitive to frequency shift,
we expect that the needed nonlinearity is one order weaker.
The usage of the SC on high-order bands can also reduce the
needed nonlinearity. Furthermore, our study reveals the ad-
ditional advantages of nonlinear PhC around SC. First, the
SC is valid in a wider frequency range or even self-locked,
which makes the phenomena very robust. Second, both
DACC and SLOC can be dynamically modulated by external
variables, i.e., the input beam power or the outside pumping
power. Third, multifunctions (lenses, cables, couplers) can be
realized on a single PhC chip depending on the usage. Such
versatility is essential for the integration in a photonic cir-
cuit. In the previous study, we have neglected the last term in
Eq. (1). If we include the effect of the term, then we can have
other new solutions, such as solitons. Since the curvature
around SC can be much smaller than the EFC of vacuum, the
solitons should be quite different from common ones. Other
novel results, i.e., new solitons and new dynamical pro-
cesses, can be expected in further studies. Such studies can
be broaden to other fields of nonlinear periodic systems, such
as electronic systems. So our study does open a window for
new nonlinear studies.
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