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Abstract—In this paper, we review various numerical methods
currently used to model nonlinear optical processes in nanopho-
tonics. Among the different theoretical frameworks that have been
used to study nonlinear photonic structures, we particularly focus
on the application of both perturbation theory and coupled-mode
theory to the analysis of complex nonlinear nanophotonic devices.
This description is illustrated on several examples of how these
techniques can be used to design photonic-crystal-based nonlinear
devices. In addition, in all these examples, we show that the
predictions made by the two mentioned techniques are in a good
agreement with the numerical results obtained from a nonlinear
finite-difference-time-domain approach to these problems.

Index Terms—Coupled-mode theory (CMT), nonlinear nano-
photonics, perturbation theory.

I. INTRODUCTION

EVER since the first experimental demonstration of second
harmonic generation in a quartz crystal [1], nonlinear

optical phenomena have drawn a great deal of both fundamental
and applied interest [2]; numerous applications of nonlinear op-
tical effects have already been commercialized. Many of these
applications exploit different types of frequency conversion
processes that can be obtained in suitably designed nonlinear
structures [3]–[8], enabling generation of coherent radiation
in frequency regimes, where it is difficult or not possible to
have such sources. In addition, nonlinear optical materials
have been proposed as the basic elements of all-optical signal
processing systems. This research direction was particularly
active during the 1980s, when optical bistability in nonlinear
materials was extensively studied [9]. However, due to the very
weak nonlinear properties of most materials, the typical sizes
and operating powers of such devices were far from fulfilling
the requirements of feasible optical-integrated components.
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This picture dramatically changed with the emergence of
photonic crystals (PhCs) [10], [11]. By creating structures with
a periodic modulation of the refractive index, it is possible
to tailor the dispersion relation and the corresponding electro-
magnetic modes propagating inside such systems. This ability
led to successful demonstration of novel optical devices whose
characteristic dimensions are smaller than the wavelength of
light [12]–[14]. Within the context of nonlinear optics, the
localization of light and guiding capabilities of PhCs have
opened new opportunities for the enhancement of nonlinear
effects [15]–[17]. In particular, as we describe in this paper,
nonlinear PhCs that include point and/or line defects can be
used to design ultrafast nanophotonic devices that are several
orders of magnitude smaller than their conventional optical
counterparts, while operating at much lower power levels [17].

From a theoretical standpoint, the interest in nonlinear PhCs
has motivated the development of accurate numerical methods
to model nonlinear nanophotonics. Most of these methods are
extensions of the corresponding theoretical frameworks used
to characterize the response of linear systems, where plenty of
experience has been acquired during the last 15 years [12].

The first theoretical studies of light propagation through
nonlinear periodic structures can be traced back to the 1970s
[18], [19]. Some years after the appearance of these early
studies, the interest in the theoretical analysis of nonlinear
periodic structures increased in a great extent due to the dis-
covery of soliton solutions for periodic dielectric structures
[20]–[26]. All these studies were mainly devoted to the case
of 1-D periodic structures. One of the first rigorous analyses
of nonlinear phenomena in 2-D PhCs was published in [27]. In
that work, a Green’s function approach was developed to obtain
analytical formulas for the enhancement of a sum frequency
generation process in a 2-D nonlinear PhC at frequencies close
to the photonic band edges. Remarkably, in that work, the
authors showed that the low value of the group velocity at those
frequencies produces a large increase of the corresponding
frequency conversion efficiency.

Multiple scattering theory has also been used to model
optical bistability of a microcavity embedded inside of a non-
linear PhC [28]. In addition, it is worth pointing out that
Green’s function technique has been employed to compute
both the enhancement of second harmonic generation in 2-D
PhCs [29] and the transmission of light through 2-D nonlinear
PhC waveguides [30]. Another notable recent contribution to
the analysis of nonlinear nanophotonic devices has been the
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extension of transfer-matrix frequency domain methods to the
case of nonlinear structures [31].

Importantly, it has also been recently demonstrated that
the combination of perturbation theory, coupled-mode theory
(CMT), and finite-difference-time-domain (FDTD) methods
permits an efficient characterization of many nonlinear
PhC-based devices [17]. It can be stated that the FDTD method
provides exact results (with no approximation except for the
discretization), but it is difficult to obtain a physical insight on
the studied problem from these results. On the other hand, CMT
can be considered as a very accurate and intuitive approach,
whereas perturbation theory is an accurate, fast, and intuitive
theoretical framework. In this paper, we focus on the applica-
tion of this particular set of numerical methods to the modeling
of nonlinear nanophotonic devices.

This paper is organized as follows. In Section II, we present
the fundamentals of perturbation theory and its application
to nonlinear photonic structures. Section III is devoted to the
description of CMT and how it can be applied to nonlinear
optics. We conclude in Section IV.

II. PERTURBATION THEORY AND NONLINEAR OPTICS

Perturbation theory is a very powerful and general tool
used in many different areas of physics [32], e.g., classical
mechanics and quantum mechanics. This theoretical framework
basically establishes that if the eigenmodes and eigenvalues
of a certain operator Ĥ0 are known, then it is possible to
compute both the approximate eigenmodes and eigenvalues of
any operator Ĥ that can be written as Ĥ = Ĥ0 + ∆Ĥ , where
∆Ĥ is a small alteration of Ĥ (later in this section, we shall
more accurately define the term small in this context). The
resulting solutions that are obtained within the perturbation
theory framework are expressed as a power expansion in ∆Ĥ .
The extension of perturbation theory to nanophotonics is rather
straightforward, as we shall see in Sections II-A and B. This
discussion will be divided in two main parts. First, we will
consider how perturbation theory can be used to analyze linear
photonic structures whose refractive index is slightly changed
by an external excitation (which could, for example, be electri-
cal, thermal, optical, and mechanical). Second, we will consider
the application of perturbation theory to truly nonlinear pho-
tonic structures: those in which light signal, through nonlinear
self-action, acts on itself. In this case, the description will be
clarified by analyzing several nonlinear devices based on PhC
microcavities.

A. Externally Induced Variations of the Dielectric Constant

First, notice that Maxwell’s equations can be cast in the
form of an eigenvalue problem for both the magnetic and
the electric fields [12]. In particular, if we consider a linear
dielectric constant distribution ε0(�r), the equation that governs
the electric field of a particular Bloch eigenmode of interest
(which, following the Dirac notation, we denote as

∣∣∣ �E0

〉
) can

be written as

∇×∇×
∣∣∣ �E0

〉
=
(ω0

c

)2

ε0(�r)
∣∣∣ �E0

〉
(1)

where a harmonic time dependence exp(−iω0t) for the electric
field has been assumed.

Now, imagine that by means of some external excitation
(which, for instance, can be electrical, thermal, optical, me-
chanical, etc.), we are able to induce a small change in the
dielectric constant distribution ∆ε(�r) [i.e., we define a new
system whose dielectric constant is ε(�r) = ε0(�r) + ∆ε(�r)].
Note that this excitation is simpler than the most general
nonlinear interaction, in which ∆ε(�r) depends on local light
intensity, so light typically experiences self-action; that case
will be considered later.

Instead of computing the solutions of (1) from scratch
(something that might not be trivial, depending on the kind
of perturbation we are introducing), we can use perturbation
theory and calculate the eigenvectors and eigenvalues of the
new problem from the knowledge of the unperturbed solutions

(
∣∣∣ �E0

〉
and ω0). If we assume that the contributions of orders

(∆ε/ε0)n with n > 1 can be neglected (this is typically a good
approximation for systems where ∆ε/ε0 ≤ 0.01, which is a
characteristic for nonlinear applications), we can calculate the
correction ∆ω to the original eigenvalues ω0 as

∆ω=−ω0

2

〈
�E0

∣∣∣∆ε
∣∣∣ �E0

〉
〈
�E0

∣∣∣ ε0

∣∣∣ �E0

〉 =−ω0

2

∫
d3r∆ε(�r)

∣∣∣ �E0(�r)
∣∣∣2∫

d3rε0(�r)
∣∣∣ �E0(�r)

∣∣∣2 . (2)

Note that the range of applicability of (2) is very general. It
can be applied to calculate ∆ω for a mode of a point defect,
a guided mode, or a certain eigenstate of the bulk. The gen-
eralization of perturbative methods to the case of leaky modes
can be found, for instance, in [33] and [34]. In addition, notice
that once the electric field �E0(�r) is calculated (something that
might be computationally intensive, depending on the particular
problem we are studying), (2) can be used to perform a fast
computation of the effect of any small perturbation on the
system under analysis.

To illustrate this approach, let us consider the case of a
PhC coupled-cavity waveguide [35]–[37] [CCW, which is also
called coupled-resonator optical waveguide]. It consists of a
line of point defects in an otherwise periodic PhC, with the
distance between the defects Λ greater than the lattice peri-
odicity of the PhC a [see Fig. 1(a)]. In this structure, each of
the point defects acts as a resonant cavity. Light propagation
in this system can be seen as a tunneling process between the
resonant cavities that are forming the waveguide. This kind
of light transport is of interest in nonlinear nanophotonics,
since it enables design of waveguide modes with very low
group velocity vg , yet low dispersion. As we shall describe
later, a small value of vg typically leads to a saving factor of
(c/vg)2 in the power necessary to operate active devices [38]
(or equivalently, for a given power, it leads to the same saving
factor in the length of the device).

As mentioned before, in a perturbation theory analysis, we
first need to examine the linear properties of the structure under
study. As an example, we consider here the case of the 2-D
PhC CCW shown in Fig. 1(a). Notice that the values of the
group velocity along the slow-light mode can be controlled by
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Fig. 1. (a) Electric field distribution of a guided mode of a CCW formed
by a 1-D line of defects in a square lattice of high dielectric rods. The high-
index rods have a radius r = 0.25a, a dielectric constant εr = 12.25, and they
are embedded in a material with a lower dielectric constant εb = 2.25. In this
case, the defects are created by reducing the radius of the rods from r to r/3
every six lattice periods Λ = 6a. Red/blue regions correspond to maximum
positive/maximum negative amplitude of the electric field, which points in the
direction parallel to the rods. (b) Dispersion relation of the CCW depicted in
panel (a). Blue line displays the dispersion relation corresponding to the case
without externally induced excitation ∆n = 0, which is calculated using the
PWE method (see [40]). Reds dots were obtained with a similar calculation
but now include an externally induced shift ∆n/nr = 0.001 in the refractive
index. Green line shows the results obtained by applying perturbation theory to
the original case.

changing Λ: as we increase the distance between defects Λ, the
value of vg becomes smaller. In addition, it is worth pointing
out that the general conclusions for the 2-D case presented here
should be valid for CCWs created by introducing defects in 3-D
PhCs [39]. Blue line in Fig. 1(b) shows the dispersion relation
corresponding to the PhC-based CCW we are considering. This
dispersion relation has been computed by using a frequency-
domain method based on a plane wave expansion (PWE) of
the fields [40]. For simplicity in Fig. 1(b), we show only
the frequencies of the guided modes of the CCW inside the
corresponding photonic bandgap (PBG). As can be observed
in Fig. 1(a), the presence of a line of defects creates a guided
mode inside the PBG; its electric field is confined in the regions
near the point defects.

Let us now consider how the dispersion relation changes if
we assume that high-index regions experience a small index
change due to some external excitation. For definiteness, we
take ∆n/nr = 0.001 (see the definition of nr in Fig. 1), which
is a typical order of magnitude change for electrooptical or Kerr
mechanism. This small value of ∆n/nr allows us to expect that
perturbation theory should produce accurate predictions for the
considered system.

Taking into account that ∆n/nr does not depend on �r
within high-ε regions and using the first-order expansion ∆ε ≈
ε02∆n/nr, we can rewrite (2) as follows:

∆ω

ω0
= −∆n

nr

∫
HIGH−ε

d3rε0(�r)
∣∣∣ �E0(�r)

∣∣∣2
∫

ALL SPACE

d3rε0(�r)
∣∣∣ �E0(�r)

∣∣∣2 (3)

where the volume of integration in the integral in the numerator
corresponds only to those regions where ∆n is applied, i.e.,
high-ε regions.

Green line in Fig. 1(b) shows the dispersion relation obtained
by applying the shift calculated from (3) to the original disper-
sion relation (blue line in that figure). The red dots in Fig. 1(b)
represent the numerical results directly computed with the men-
tioned PWE method, assuming ∆n/nr =0.001. As can be seen,
for the considered value of ∆n, the exact results and those ob-
tained from perturbation theory are in an excellent agreement.

From the computed dispersion relations displayed in
Fig. 1(b), for both the system with and without the external
excitation, we can deduce the improvements in the performance
introduced by low group velocity waveguides as follows. Many
of the active interferometric devices (e.g., Mach–Zehnder in-
terferometers) that could be used in a future integrated optics
circuit can be improved by increasing (for a given frequency
ω) the change in the wave vector k of the light propagating
inside them. Such devices operate based on the induced phase
change ∆φ = L ∆k, where L is the length of the device; thus,
larger ∆k is desired, since it leads to a larger ∆φ for a given
device length. If for small enough values of ∆ω we approximate
vg ≈ ∆ω/∆k, (3) can be rewritten as

∆k = −ω0

vg

∆n

nr

∫
HIGH−ε

d3rε0(�r)
∣∣∣ �E0(�r)

∣∣∣2
∫

ALL SPACE

d3rε0(�r)
∣∣∣ �E0(�r)

∣∣∣2 . (4)

Therefore, from (4) together with ∆φ = L ∆k, one can see
that slow-vg devices present a saving in device length of c/vg .
In addition, there is typically another saving factor ∼c/vg in
the power needed to operate the device coming from the fact
that the smaller length of the device means that ∆n has to be
induced in a smaller volume. These savings can often be traded
for each other; for example, keeping the length of the device
fixed, one can operate it with (c/vg)2 less power, and vice versa.

B. Perturbation Theory and Nonlinear Photonic Structures

Let us now consider the application of perturbation theory to
a truly nonlinear photonic structure, in which light experiences
nonlinear self-action. From Maxwell’s equations, we can write
the following general expression:

∇×
[
∇× �E(�r, t)

]
= − 1

c2
∂2 �D(�r, t)

∂t2
. (5)

Let us focus on instantaneous Kerr nonlinearity. In that case,
if we assume an isotropic nonlinear medium defined by the
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nonlinear susceptibility χ(3), the displacement electric vector
�D(�r, t) is of the form

�D(�r, t) = ε0(�r) �E(�r, t) + χ(3)
[
�E(�r, t)

]2
�E(�r, t). (6)

By introducing (6) on the right-hand side of (5), we find that

∇×
[
∇× �E(�r)

]
=

ω2ε0(�r)
c2

�E(�r) +
ω2

c2
�PNL(�r) (7)

where we have assumed an electric field vector given by

�E(�r, t) =

[
�E(�r) exp(iωt) + �E∗(�r) exp(−iωt)

]
2

. (8)

In addition, in (7), we have defined each component of vector
�PNL(�r) as PNL,i = χ(3)

∑
j ξijEj , where ξij = [( �E · �E∗)δij +

(EiE
∗
j + E∗

iEj)]/4, i = x, y, z. We are currently interested in
nonlinear self-action only, so we are neglecting interactions
with other frequencies: in (7), we have only retained the terms
proportional to exp(±iωt).

The quantity ω2/c2 �PNL(�r) that appears in the right-hand
side of (7) can be treated as a small perturbation [i.e., we assume
ω = ω0 + ∆ω, where ω0 satisfies (1)]. That approach yields
(9), shown at the bottom of the page.

Now, if consider that [2] n2(�r) = 3χ(3)/(4n2
0(�r)), where

n2(�r) is the local nonlinear Kerr coefficient, (9) can be ex-
pressed in (10), shown at the bottom of the page.

Here, it is important to emphasize that the aforementioned
equation has been obtained for a particular mode of the system
(e.g., for a given �k). An analogous perturbation theory can be
developed to compute ∆�k in optical fibers [41].

In the following part of this section, we will show how (10)
can be applied for modeling of realistic nonlinear photonic
devices based on PhC microcavities. The linear properties of
such system have been extensively analyzed in both 2-D and
3-D PhCs, due to their potential as basic ingredients of compact
passive elements of photonic circuits. This research effort has
led to the successful demonstration of waveguides [42], sharp
bends [43], and channel drop filters [44], whose characteristic

dimensions are smaller than the wavelength of light. Recently,
these studies have been extended to the case of resonant cavities
consisting of a point defect inside a nonlinear PhC [28], [30],
[45], [46], showing that these structures can be designed to
display optical bistability of the transmitted power with respect
to the incident power.

For definiteness, let us consider the 2-D structure depicted in
Fig. 2(a), and assume only continuous wave (CW) excitations
of the system. It consists of a resonant cavity coupled by a
light tunneling mechanism to two single-mode PhC waveguides
placed to the left and to the right of the cavity. In the lin-
ear regime, the ratio between the power of the light signal
sent through the input waveguide PIN to the outgoing power
through the output waveguide POUT has a Lorentzian shape
as a function of the input signal frequency ω0, as shown
in Fig. 2(b). This transmission function is characterized by
a certain frequency width Γ and peaks at 1 (i.e., 100% of
the input power is transmitted through the system) whenever
ω0 coincides with the resonant frequency of the considered
cavity ωc, i.e., POUT/PIN = Γ2/(Γ2 + (ω0 − ωc)2). Imagine
now that the material inside the cavity is nonlinear; for instance,
we assume that the high-index rods display instantaneous Kerr
nonlinearity. If we increase the energy stored in the cavity (e.g.,
by increasing PIN), the self-induced change in the refractive
index ∆n will effectively shift the transmission curve to lower
frequencies. The shift of the transmission curve ∆ω is given
by (10), which in turn is proportional to POUT, since POUT is
proportional to the energy stored in the cavity. In fact, one can
show [45] that ∆ω can be written as

∆ω

ωc
= − 1

2c
κQ (n2(�r)|max)POUT (11)

where n2(�r)|max is the maximum value of n2(�r) anywhere, Q
is the quality factor of the cavity (i.e., Q = ωc/2Γ), and the
parameter κ is defined as

κ=
(
c

ωc

)2

∫
A

d�r

[∣∣∣ �E0(�r) �E0(�r)
∣∣∣2+ 2

∣∣∣ �E0(�r) �E∗
0(�r)

∣∣∣2]n2
0(
r)

3 n2(�r)[
1
2

∫
A

d�r
∣∣∣ �E0(�r)

∣∣∣2 n2
0(�r)

]2
n2(�r)|max

(12)

∆ω

ω0
= −1

4

∫
ALL VOL.

d3rχ(3)

{[
�E0(r) · �E0(r)

] [
�E∗

0(�r) · �E∗
0(�r)

]
+ 2

∣∣∣ �E0(�r)
∣∣∣4}

∫
ALL VOL.

d�r
∣∣∣ �E0(�r)

∣∣∣2 ε0(�r) (9)

∆ω

ω0
= −1

3

∫
ALL VOL.

d3rn2
0(�r)n2(�r)

{[
�E0(�r) · �E0(�r)

] [
�E∗

0(�r) · �E∗
0(�r)

]
+ 2

∣∣∣ �E0(�r)
∣∣∣4}

∫
ALL VOL.

d�r
∣∣∣ �E0(�r)

∣∣∣2 n2
0(�r)

(10)
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Fig. 2. (a) Distribution of the electric field parallel to the rods of a 2-D PhC
microcavity coupled to the left and to the right to two single-mode line-defect
waveguides. The structure is formed by a square lattice of high-index rods
(nr = 3.5, represented as yellow areas) that are embedded in a low dielectric
constant material nb = 1.5. The periodicity of the lattice is given by a, whereas
the radius of the holes is r = a/4. The resonant cavity has been created in this
system by increasing the radius of the central hole to rd = 5a/3. The two
line defects have been introduced by reducing the radius of the corresponding
holes to r/3. Notice that these line defects act as waveguides that allow the
coupling between the microcavity and the external illumination by a tunneling
mechanism. (b) Ratio between the outgoing and incoming powers in the
linear regime (POUT and PIN, respectively) as a function of the input signal
frequency. Vertical dashed line represents the position of resonant frequency of
the structure (labeled as ωc).

where we have used the same definitions as in (10). κ is a
measure of the geometric nonlinear feedback efficiency; thus,
it is called nonlinear feedback parameter. As can be seen from
(12), κ is basically the inverse of the modal volume of the
particular resonant mode we are studying, weighted by the
local Kerr coefficient. In addition, it is important to note that
κ is almost independent of n2, Q, and the peak amplitude of
the electric field; thus, a single linear simulation is enough to
determine its value for different configurations of the studied
system.

From the aforementioned discussion, it follows that the
transmission in this nonlinear system depends on POUT as
POUT/PIN = Γ2/(Γ2 + (ω0 − (ωc + ∆ω))2). Using (11), this
can be written as [45]

POUT

PIN
=

1
1 + (POUT/P0 − δ)2

(13)

where δ = (ωc − ω0)/Γ, and P0 is the characteristic power of
the system, which is defined as

P0 =
c

κQ2ωc n2(�r)|max

. (14)

Fig. 3. Output power POUT as a function of the input power PIN, corre-
sponding to the structure shown in Fig. 2(a). Green line displays the results
obtained from (13) (see text for details about this equation), whereas the blue
circles represent the results from FDTD simulations. The dashed line represents
the unstable branch of the hysteresis loop. Both perturbation theory and FDTD
results numerically confirm the optical bistability displayed by the system
shown in Fig. 2(a).

For a given value of the incident power PIN, (13) admits three
real solutions for POUT whenever δ >

√
3. This corresponds

to the bistability regime of the PhC microcavity we are con-
sidering. Green line in Fig. 3 shows the numerical results for
POUT/PIN computed from (13), assuming ωc − ω0 = 3.8γ. As
can be clearly seen in this figure, this system displays a hystere-
sis loop, with the dashed line in that figure being the unstable
branch of this loop. The bistability properties of this system
are confirmed by nonlinear FDTD calculations (shown as blue
circles in Fig. 3), which are in a perfect agreement with the
predictions made by perturbation theory. Notice that according
to (13), P0 sets the power level at which one has to operate
the device in order to observe bistability. P0 scales proportional
to 1/(κQ2), so if we take into account that κ roughly scales
as 1/VMODE, where VMODE is the modal volume of the cor-
responding cavity mode [47], then P0 ∝ VMODE/Q

2. Since in
PhC cavities VMODE can be very small, whereas Q can be very
large, PhC microcavities are optimal microscopic structures for
low power optical bistability. Recently, this kind of bistability
properties have been experimentally demonstrated in high-Q
PhC cavities [48], [49]. More examples of the application of
perturbation theory for modeling nonlinear PhC devices can be
found in [50] and [51].

III. CMT IN NONLINEAR OPTICS

CMT is a fairly general approach valid for a quantitative
characterization of systems involving a resonant object weakly
coupled to the external environment [52]. It has been success-
fully applied in a broad range of different fields ranging from
photonics to coupled mechanical resonators. In this section, we
show how CMT applies to nonlinear nanophotonics. Unlike
previous approaches, where only CW signals can be consid-
ered, the CMT framework presented in this section can be used
to study signals with arbitrary time dependence. To illustrate
the basis of this framework, consider first the example of appli-
cation of CMT to the 2-D PhC system shown in Fig. 4(a) and
(b), which was analyzed in [53]. It is formed in a square array of
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Fig. 4. (a) Distribution of the electric field pointing along the rods in a
structure composed by a resonant cavity side-coupled to a line-defect PhC
waveguide. The PhC is formed by a square array of high-dielectric rods defined
by a radius and a refractive index of 0.2a and 3.5, respectively, where a is the
periodicity of the 2-D array. The low-index background is assumed to be air
(n = 1). The resonant cavity has been created by introducing an elliptical rod,
with the length of the long axis being a, whereas its short axis length is 0.2a.
(b) Schematic illustration of the CMT description of the structure shown in
panel (a). In this sketch, the meaning of the different quantities appearing in
CMT equations is also illustrated.

high dielectric rods (n = 3.5) of radius r = 0.2a embedded in
air. As can be seen in Fig. 4(a), a waveguide has been introduced
in the system by removing a whole row of cylinders. In addition,
a resonant cavity has been created by introducing a point defect.
In this case, the defect consists of an elliptical dielectric rod,
with the length of the long and short axis being a and 0.2a,
respectively. In the linear case, if we assume that the EM fields
inside the cavity are proportional to a certain parameter A, this
system can be modeled within the CMT framework by means
of the following set of equations [see the corresponding sketch
in Fig. 4(b)]:

dA

dt
= iωcA− 1

τ1
A− 1

τ2
A + κs1+ + κs2− (15)

s1− = s2− − κA (16)
s2+ = s1+ − κA (17)

where ωc is the resonant frequency of the cavity. τ1 is the decay
constant of the cavity into the waveguide modes propagating
to the right and to the left, whereas the magnitude τ2 governs
the decay rate due to intrinsic losses of the cavity (like, for
instance, the absorption losses of the corresponding material).
s1+ and s1− (s2+ and s2−) represent the complex amplitudes of
the fields propagating to the left and right at the input (output)
of the waveguide. The parameter κ governs the input coupling
between the resonant cavity and the propagating modes inside
the waveguide. From power conservation arguments [52], it can
be deduced that this magnitude is given by κ =

√
1/τ1. Note

that the parameter A is normalized so that |A|2 is the energy

Fig. 5. Temporal dependence of the input and output powers computed for
the 2-D PhC structure shown in Fig. 4(a). Parameter tγ represents the product
tγ (see the definition of γ in the text). The black dashed line displays the
input power, the red line corresponds to the results from CMT, and the blue
dots correspond to FDTD results. Notice how, in this case, CMT accurately
reproduces the behavior simulated with an FDTD method.

inside the cavity, whereas s1,2± are normalized so that |s1,2±|2
represent the corresponding incoming/outgoing powers inside
the waveguides.

Now, if we assume that s2− = 0 (the input signal launched
only from the left) and that external losses can be neglected
(τ2 → ∞), (15)–(17) can be expressed in terms of just s1+ and
s1− as

ds1−
dt

= iωcs1− − 1
τ1
s1− − 1

τ1
s1+. (18)

Therefore, once we solve (18), we can compute the output
power through the system POUT given a certain input power
PIN just by computing PIN = |s1+|2 and POUT = |s1+|2 −
|s1−|2.

Next, assume that the region close to the defect has an
instantaneous Kerr nonlinearity. In that case, from a perturba-
tion theory analysis, we know that the nonlinearity introduces
a frequency shift to the resonant frequency proportional to
POUT [see (11)]. If we also take into account (14), nonlinear
effects can be introduced in (18) just by replacing ωc by
the corresponding shifted frequency that was obtained from a
perturbation theory analysis [see (11)]. This procedure yields

ds1−
dt

= iωc

(
1 − 1

2Q
|s1−|2

P0

)
s1− − 1

τ1
s1− − 1

τ1
s1+ (19)

where Q is the quality factor of the cavity (i.e., Q = ωcτ1/2),
and P0 is defined in (14).

In order to show the accuracy of this approach, Fig. 5 shows
the comparison between the CMT results for the outgoing
power as a function of time (red line) and the numerical results
obtained from a nonlinear FDTD method (blue circles). In that
figure, the temporal dependence of the input power is shown
as a black dashed line. Notice how the input signal switch the
system from a high transmission state to a low transmission one.
For another example of using CMT to model nonlinear PhC
devices, see [54].



BRAVO-ABAD et al.: MODELING NONLINEAR OPTICAL PHENOMENA IN NANOPHOTONICS 2545

IV. CONCLUSION

The rapid advance of large-scale computing technologies
is leading to an unprecedented ability to design and simulate
novel photonic devices through virtually exact methods such as
the FDTD method. In particular, the application of the FDTD
method to nonlinear structures has been proven to be an essen-
tial technique in the modeling of novel nonlinear nanophotonic
devices. However, FDTD simulations can be seen as numerical
experiments in which the physical mechanisms responsible for
the behavior of the system we are analyzing are often difficult
to elucidate.

Thus, in order to get physical insight into the nonlinear
optical response of nanophotonic structures, developing ap-
proximate analytical methods is crucial; these methods allow
us to propose nonlinear devices with novel functionalities.

In this paper, we have reviewed how both perturbation theory
and CMT can be used to characterize the behavior of com-
plex nonlinear systems. In particular, we have focused in the
application of these methods to nonlinear PhCs, since these
structures are one of the most promising candidates for large-
scale all-optical integration. Different examples that are shown
in this paper extensively demonstrate good agreement between
perturbation theory, CMT, and FDTD results.
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Marin Soljačić received the B.S.E. degree in physics and electrical engineering
from the Massachusetts Institute of Technology (MIT), Cambridge, in 1996 and
the Ph.D. degree in physics from Princeton University, Princeton, NJ, in 2000.

In September 2000, he was named an MIT Pappalardo Fellow in Physics.
In 2003, he was appointed as a Principal Research Scientist in the Research
Laboratory of Electronics and the Department of Physics, MIT, where he has
been an Assistant Professor of physics since September 2005.
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