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Self-Trapping of “Necklace” Beams in Self-Focusing Kerr Media
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We show that an azimuthally periodically modulated bright ring “necklace” beam can self-trap in
self-focusing Kerr media and can exhibit stable propagation for very large distances. These are the
first bright s2 1 1dD beams to exhibit stable self-trapping in a system described by the cubics2 1 1dD
nonlinear Schrödinger equation. [S0031-9007(98)07747-3]

PACS numbers: 42.65.Tg, 03.40.Kf

Solitons in Kerr media are the most well-studied solitons
in nature. The reason for that is twofold. First, the
Kerr nonlinearity can be found in many systems: It
represents a weak symmetric anharmonicity, which is
equivalent to a weak saturation in a simple harmonic
oscillator. For electromagnetic waves propagating in a
weakly nonlinear centrosymmetric dielectric media, the
Kerr nonlinearity manifests itself in the cubic nonlinear
Schrödinger equation (NLSE) [1], which in many cases
describes the envelope of waves in plasmas, shallow water,
deep water, gravity, etc. [2]. The second reason is that
Kerr solitons are mathematically elegant: The cubic NLSE
is integrable in s1 1 1d dimensions. Its solitons can
be found analytically and form a closed set; in their
collisions, the total power and momentum in the solitons,
and the number of solitons are always conserved [3].
The s2 1 1dD NLSE, although not integrable, has many
conserved quantities, but, in the context of self-focusing,
is haunted by stability problems [3];s2 1 1dD bright Kerr
solitons are unstable and undergo catastrophic collapse
or expansion [4], ands1 1 1dD bright Kerr solitons in a
3D medium suffer from transverse instability [5]. These
instabilities occur for solitons of all orders, including,
e.g., the higher order self-trappeds2 1 1dD solutions
[6]. In optics, bright Kerr solitons are observed only as
temporal solitons [7], which are inherentlys1 1 1dD, or as
s1 1 1dD spatial solitons in single mode waveguides [8],
for which transverse instability is eliminated by stringent
boundary conditions. Thus interactions between bright
solitons are restricted to planar systems. Consequently,
much of the beautiful similarity between solitons and
particles is lost; e.g., angular momentum has no equivalent
in the strictly planar system of bright solitons represented
by thes1 1 1dD NLSE.

Here, we present self-trapped bright “necklace”-ring
beams that exhibit stable propagation for very large dis-
tances (.50 diffraction lengths) in Kerr media. The
intensities of the necklace beams are azimuthally periodi-
cally modulated (in the form of “pearls”), and the widths
of the beams are very narrow compared to their radia. A
necklace beam is actually a ring array ofs2 1 1dD qua-
sisolitons (pearls), which we find to be stable whenever
the azimuthal period length of the ring is smaller than or
equal to the width of the ring. Computer simulations indi-

cate that this necklace ring is stable in the absolute sense,
although we cannot prove this analytically. The necklace
ring slowly expands, with a rate of expansion dependent
on the number of pearls in the ring, the width of the ring,
the initial peak intensity, and ring’s diameter. When the
number of pearls is large, holding the parameters of each
pearl fixed, the beams are almost fully stationary, and in
some cases allow approximate analytic solutions.

The normalized cubics2 1 1dD NLSE is
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in Cartesian coordinates. One might think that, since
omitting the third term in Eq. (1) reduces it to thes1 1

1dD NLSE, the solutions should include all those of the
s1 1 1dD NLSE in x andz that are uniform iny. How-
ever, such solitons are transversely unstable: large length-
scale perturbations iny grow with propagation distance,
and the soliton disintegrates [5]. In optical systems, this in-
stability can be arrested by spatially modifying the refrac-
tive index so thatns yd provides waveguiding iny, while
the self-trapping occurs inx [8]. For this to work, the scale
of waveguiding iny must be smaller than (or equal to) the
x width of the soliton. The first experimental observation
of optical spatial solitons [9] has employed an “effective
waveguide,”ns yd, that was self-induced (via Kerr nonlin-
earity) by the same beam that was a soliton inx. This
works when thes1 1 1dD (x and z) soliton of Eq. (1)
varies iny on a scale smaller than the “wavelengths” of
perturbations that make the comparabley-uniform soli-
ton transversely unstable. These wavelengths are typically
larger than or equal to thex width of the soliton. There-
fore, periodic modulation iny superimposed on a soliton
in x, arrests the transverse instability, provided that they
period is smaller than thex width of the soliton [9]. Ex-
perimentally, two equivalent sheets of light were superim-
posed. Both were very long iny and perpendicular tox.
The sheets propagated mostly alongz, with a small angle
to one another. The sheets interfered, producing a sinu-
soidal pattern iny, whose period was smaller than thex
width of each sheet. This superposition was launched into
a self-focusing Kerr medium. At a high enough power, the
beams evolved into a soliton (inx) while remaining trans-
versely stable (iny). However, as the two beams were not
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infinite in y, they eventually stopped overlapping and the
system disintegrated.

Encouraged by Ref. [9], we take as1 1 1dD soliton (in
x and z) whose intensity is periodically modulated iny,
and wrap it around its own tail, hoping to find a stable
s2 1 1dD ring array of quasisolitons in self-focusing Kerr
medium. We start with Eq. (1) in cylindrical coordinates
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Consider ringlike solutions whose ring thicknessw is much
smaller than the ring radiusL, such as those in the first
row of Fig. 1. In this case, the third term in Eq. (2) can
be neglected since it isOswyLd smaller than the second
term. Furthermore, sincer varies negligibly over the ring
thickness,1yr2 can be replaced by1yL2 in the fourth term.
Redefining the variables asx ­ r and y ­ Lu reduces
Eq. (2) to Eq. (1). Consequently, if the intensity of the
beam is periodically modulated inu, the system looks
much like the one in Ref. [9], apart for a small curvature. It
is, therefore, reasonable to expect that such ring beams are
stable. Physically, if the solitons from Ref. [9] are stable,
we do not expect a small curvature to destabilize them; and,
the experimental evidence from Ref. [9] certainly shows
that these solitons without curvature are stable.

Led by the intuition gained from Ref. [9], we expect
that the self-trapped shapes are close toa sechfsr 2

Ldywg cossVud for somea’s, even whenw’s are not much
smaller than the correspondingL’s. In this case the radius
of our ring should slowly grow with propagation, because

FIG. 1. Examples of evolution of necklace-ring beams with
V ­ 15, V ­ 8, and V ­ 4 (first, second, and third rows,
respectively). In all cases the initial peak intensity is 1,w ­ 1,
andLyV ­ 1.707. The axes are the same for all plots. Dark
color indicates high intensity. In all figures in this paper,
contrast is enhanced for better clarity.

adjacent bright “spots” on the ring differ in phase byp, that
is, neighboring pearls repel each other [10]. In a circularly
symmetric ring the net force exerted on each pearl is
radially outwards, making the ring expand. However, if
we increaseL while holding w, a, and LyV constant,
the net radial force vanishes. In the limit of vanishing
curvature of the ring, the ring should not grow at all.

The expansion of the necklace beam brings back the
stability issue, because the propagation of the array of
s1 1 1dD solitons in Refs. [9] is stationary, thus different
from that of the necklace. However, as we show below,
the expanding necklace seems to be stable. The intuitive
reason for this is that, ifcsr , u, zd is a solution of Eq. (2),
thenqcsqr , u, q2zd is also a solution for any realq, and
both solutions have the same total power. As the radius
of the ring slowly grows, there is always a stable shape
close to the beam’s instantaneous shape. If the distance
needed for the beam to evolve into a stable shape is
smaller than the rate of the expansion, our necklace array
of quasisolitons has a good chance of being stable.

We have simulated numerically (using the standard
split step beam propagation method) the propagation of
necklace-ring beams and indeed all the above predictions
seem correct. We have checked a large number of case
examples of necklace rings and propagated them over
large distances. We find that all the examples with pearls
of azimuthal width narrower than (or equal to) the radial
width of the ring, and radial width much smaller than ring
radius, are stable. Within our computation capability,
we find that they remain stable even under fairly large
perturbationss,5%d in the initial widths or powers, and
at the presence of random noise (e.g., we have injected
up to 1% of the total power of white noise in the Fourier
space every diffraction length). Typical examples (for
V ­ 15, 8, 4) are presented in Fig. 1, in which the initial
shape is csr , u, z ­ 0d ­ asechfsr 2 Ldywg cossVud,
where L ¿ w, a ­ 1, w ­ 1, and LyV ­ 1.707.
As a measure for the propagation distance, we define the
diffraction length,LD ­ 2pnw2

0yl, wherel is the carrier
wavelength in vacuum,n is the refractive index, and the
minimum waist of as2 1 1dD Gaussian beam of width
2 wsz ­ 0d ­ 2w0. After a few LD ’s, the initial shape

FIG. 2. Evolution of the initial shape of the third row of
Fig. 1, but with nonlinearity set to zero. The beam diffracts
within Os1LDd.
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evolves into a stable necklace of pearls which then slowly
grows in size, via a uniform expansion (scaling) of the
entire necklace ring. As the necklace-ring beam expands
uniformly, the peak intensities of the pearls drop roughly
as1yL2szd. Therefore, the total power within the necklace
ring beam is conserved and does not “escape” to radia-
tion. This necklace ring of quasisolitons remains stable for
the propagation distances of,100 diffraction lengths. In
fact, the only thing that prevents us from stating that these
necklace-ring beams are always stable (in the numeri-
cal sense), is the fact that, as the necklace beams expand,
they fill up our computational window and are affected
by reflections from the window’s boundaries and cause
some (seemingly) artifacts of instability. Finally, we have
tested the stability of these necklace beams under azi-
muthally asymmetric variations in input conditions. We
launched the input shapes of Fig. 1, but with,2%
ellipticity, and found that these imperfect rings exhibit
stable self-trapping, yet they do not evolve into a circular
shape. We conclude that, at least for small azimuthal
perturbations, the necklace beam is stable, but its circular
shape is not an “attractor.”

When we launch our necklace beams into a linear
medium, they simply diffract withinOs1d LD and the
necklace structure is not preserved (e.g., see Fig. 2 for
V ­ 4). If we launch a single isolateds2 1 1dD beam
with the same dimensions as one of the pearls in the
necklace ring, into this self-focusing Kerr medium, the
isolated beam undergoes catastrophic collapse and disin-
tegrates afterOs1d LD, as expected for a singles2 1 1dD
bright beam propagating in Kerr media [4]. It is the nonlin-
earityand the presence of the other peaks in our necklace-
ring beam that keeps the whole configuration stable.

We now investigate the expansion dynamics of our
necklace-ring beams. The rates of expansion are much
slower for the rings of largerV than for the rings of smaller
V, keepingw, LyV, anda constant. One might think that
increasingV, while keepingw andL constant, would also
decrease the expansion rate because the angle that deter-
mines the net radial component of the repulsion force gets
smaller. But, this is not the case because the force between

FIG. 3. Growth of ratiosradiusyinitial radiusd, as a function
of propagation distance. In all the cases the initial peak
intensity is 1, w ­ 1, and LyQ ­ 1.707. Holding these
parameters fixed, a largerV implies slower dynamics.

solitons of the cubic NLSE increases with increasing the
gradient of the intensity (or decreasing distance between
solitons). The final result is that decreasingV while keep-
ing everything else constant typically slows down the ring
growth. However, one cannot fully stop the expansion by
exploiting V’s that are too low, since the transverse (azi-
muthal) instability occurs ifLyV ¿ w. The expansion
dynamics of the relative radii of the necklace beams from
Fig. 1 is shown in Fig. 3. In the beginning of the expan-
sion there is a short period of acceleration, as the intensity
peaks speed up in the radial direction. The acceleration
diminishes once the pearls are far away from each other
since the interaction forces decrease. Eventually, the ad-
jacent peaks interact only very weakly, and the rate of the
expansion becomes constant. Very similar features are ob-
served in evolution of a ring of equally charged particles,
demonstrating again very picturesquely that solitons be-
have like particles. IncreasingV while holdingw, LyV,
and a fixed decreases the growth rate as predicted. As
V ! `, the beams become fully stationary.

To put things in a physical perspective, it is useful
to note how our necklace rings would look in a typi-
cal experiment. Forl ­ 500 nm, refractive indexn ­
1.5, w ­ 10 lyn, andV ­ 45, one findsw ­ 3.3 mm,
L ­ 0.26 mm, and60LD ­ 12.6 mm. Consequently, the
necklace-ring solitons should be easily observable experi-
mentally. Within60LD, a necklace beam withV ­ 45
will not change its shape or size almost at all. On the
other hand, when the nonlinearity is “off” (or when the
peak intensity is very low), the ring will undergo natural
diffraction within severalLD ’s, say,200 mm.

Since our necklace beams expand, it is not possible to
find a stationary solution for them in ther , u, z frame. But
in the limit 1 ø wVyL ø Lyw approximate stationary
ringlike solutions to Eq. (2) are

csr , u, zd ­ e2iGz
X̀
n­1

X̀
m­1

han,m cosfs2n 2 1dVug

3 sech2m21fsr 2 Ldywgj ,
(3)

FIG. 4. Propagation of an initially azimuthally uniform ring
beam (withL ­ 13.7, w ­ 1, and initial peak intensity of 1)
in Kerr media. In this media, the background numerical noise
(only) destabilizes the ring, and it eventually disintegrates. (a)
The initial shape; (b) the shape afterz ­ 24LD .
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with Gsw, L, Vd, an,msw, L, Vd, V ­ integer, wherea1,1
is of OfswVyLd2g larger than any otheran,m. In this
limit, csr , u, zd . a sechfsr 2 Ldywg cossVude2iGz,
with a2 ­ 4y3w2, G ­ sVyLd2. The necklace beam
becomes fully stationary asL ! `. We compare this
solution to our simulations and find that indeed this
analytic approximation is excellent. For example, in the
casewVyL ­ 10 andL ! `, the difference between the
lowest term in Eq. (3) and the true numerical self-trapped
shape is onlyOs1%d. This solution also applies to the
periodically modulateds1 1 1dD soliton stripe in Ref. 9
with r , u replaced byx, yyL. One might think that as
w ¿ LyV, the beam might become transversely unstable
in the radial direction. This does not happen because the
intensity is just high enough to cause self-focusing on
length scales ofw, and not on any smaller scale.

It is now instructive to compare our solitonlike necklace
beams to other (known) ring beams. As mentioned
earlier, higher orders2 1 1dD solitons in Kerr media are
all unstable [6]. It is then interesting to study azimuthally
uniform rings. When w ø L, these rings are azi-
muthally unstable, as shown in Fig. 4. This is expected
since the azimuthal length scale is much larger than the
thickness of the ring; the instability is of the same origin
as in the case of as1 1 1dD soliton which is uniform in
the y direction. Whenw , L we find (numerically) that
uniform rings tend to coalesce and eventually undergo
catastrophic collapse ass2 1 1dD bright Kerr solitons
do. One can also superimpose some radial “velocity”
on a bright ring beam [11], which can provide some
control over the rate of the inherent tendency to shrink and
collapse, and also convert the dynamics to expansion. In
some specific cases the expansion dynamics of such a ring
can last up to several diffraction lengths before becoming
unstable [11].

Another possibility to seek stable self-trapped ring
beams is to multiply an intensity-uniform ring byeiVu

[instead of cossVud, as we did]. These vortex rings carry
angular momentum [12], in contrast to our necklace-ring
beam which is a coherent superposition of two vortex rings
with equal topological charge but opposite handedness; as
suchour necklace-ring beam carries no angular momen-
tum. When launched into a self-focusing Kerr medium,
a vortex seiVud ring beam disintegrates into filaments
[12], which are themselves unstable and undergo either
catastrophic collapse or expansion, as isolateds2 1 1dD
Kerr solitons do [4]. If the self-focusing nonlinearity is
saturable, the filaments created after the breakup from
stable s2 1 1dD solitons [12]. Since the initial beam
carries angular momentum, after the breakup each of the
solitons shoots off tangentially. This transformation of
vortex-ring beams intos2 1 1dD solitons seems universal
to all saturable self-focusing nonlinearities, including
quadratic [13] and photorefractive [14] media. All of
these examples are related to the self-trapped necklace-
ring beam we have found, but have important major

differences from it. We have discussed them here just to
clarify what our self-trapped necklace ring beam is not.

In conclusion, we have presented a new form of a self-
trapped beam in self-focusing Kerr media: a necklace-
ring beam [15]. Even though we do not know if this
necklace beam is stable in the absolute sense, we find
numerically that it exhibits stable propagation for at least
Os100d diffraction lengths, which is more than enough
for experimental observations. Such necklace-ring beams
slowly expand but fully preserve their structure. To our
knowledge, this necklace-ring beam is the onlys2 1 1dD
self-trapped structure that can propagate in a stable form in
self-focusing Kerr media. This new kind of quasisolitons
are of a particular fundamental importance because the
cubic NLSE appears in many nonlinear systems in nature.
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