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Near-field thermal radiation transfer controlled by plasmons in graphene
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It is shown that thermally excited plasmon-polariton modes can strongly mediate, enhance, and tune the
near-field radiation transfer between two closely separated graphene sheets. The dependence of near-field heat
exchange on doping and electron relaxation time is analyzed in the near infrared within the framework of
fluctuational electrodynamics. The dominant contribution to heat transfer can be controlled to arise from either
interband or intraband processes. We predict maximum transfer at low doping and for plasmons in two graphene
sheets in resonance, with orders-of-magnitude enhancement (e.g., 102 to 103 for separations between 0.1 μm
and 10 nm) over the Stefan-Boltzmann law, known as the far-field limit. Strong, tunable, near-field transfer
offers the promise of an externally controllable thermal switch as well as a novel hybrid graphene-graphene
thermoelectric/thermophotovoltaic energy conversion platform.
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I. INTRODUCTION

Heat transfer between two bodies can be greatly enhanced
in the near field, i.e., by bringing their surfaces close together
to allow tunneling of evanescent photon modes. For two
parallel, semi-infinite, dielectric surfaces of index of refraction
n, maximum flux enhancement is known to be n2 times the
Planck’s blackbody limit.1 However, particularly interesting
near-field radiation transfer phenomena involve thermal ex-
citation of various surface modes. Due to their localization
and evanescent nature, it is only at submicron separations that
these modes become relevant. Measuring near-field transfer
has been experimentally difficult;2–6 nevertheless, the promise
of order-of-magnitude enhancement over the far-field Planck’s
blackbody limit has made near-field transfer the topic of much
research.7 A promising class of materials for enhancing the
near-field transfer are plasmonic materials, due to the high
density of modes around the frequency of plasmons. The
potential of graphene8 as a versatile and tunable plasmonic
material has already been recognized in applications such as
teraherz optoelectronics and transformation optics.9–13 Unlike
in metals, where high plasma frequencies make thermal
excitation of surface modes difficult, plasmon frequencies
in graphene can be anywhere from the teraherz to the
near infrared.14 In addition, the dependence of graphene
conductivity on chemical potential, which in turn can be
controlled by doping or by gating, allows for a tunable
plasmonic dispersion relation. Transfer between graphene and
amorphous SiO2,15,16 as well as application of graphene as
a thermal emitter in a near-field thermophotovoltaic (TPV)
system, has been reported.17 Here we analyze the contribution
of plasmon polaritons to graphene-graphene near-field heat
transfer. The choice of identical coupled systems is predicated
on the idea that resonant enhancement could lead to even
greater heat transfer capacity. Indeed, we find maximal transfer
for resonantly coupled plasmon modes (corresponding to
similar doping in the two graphene sheets), which can be
orders of magnitude larger than the heat transfer between two
blackbodies in the far field.

In general, the radiative heat transfer between two bodies
at temperatures T1 and T2 is given by

H =
∫ ∞

0
dω [�(ω,T1) − �(ω,T2)] f (ω; T1,T2), (1)

where �(ω,T ) = h̄ω/(eh̄ω/kbT − 1) is the average energy of a
photon at frequency ω (the Boltzmann factor), and f (ω; T1,T2)
is the spectral transfer function, characterizing frequency
dependence of the heat exchange (i.e., how much heat is
exchanged at a given frequency). In the context of fluctuational
electrodynamics,18 the spectral transfer function f (ω; T1,T2)
is calculated in the following way: thermal fluctuations in the
first (emitter) medium induce correlations between electric
currents, which are proportional to the real part of the medium
conductivity;19 next, using Green functions, we can find
the electromagnetic fields in the second (absorber) medium
induced by the fluctuating currents in the first;20 finally, the
radiation transfer is obtained by calculating the Poynting flux
around (or the ohmic losses within) the second medium.
This approach has been used to numerically calculate the
near-field transfer between two half-spaces,18,21 as well as
generalizations such as two slabs,22 sphere and a plane,3,23

and two spheres,24 as well as one-dimensional (1D) periodic
structures.25

II. PLASMONS AND NEAR-FIELD TRANSFER
IN GRAPHENE

The system we analyze, shown in Fig. 1, consists of
a suspended graphene sheet at temperature T1 emitting to
another suspended graphene sheet held at room temperature
T2 = 300 K, and a distance D away. In general, the p-
polarization spectral transfer function for evanescent modes
between two bodies is

fp(ω; T1,T2) = 1

π2
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FIG. 1. (Color online) (a) Schematic diagram of the radiation
transfer problem: a suspended sheet of graphene at temperature T1

is radiating to another suspended graphene sheet at temperature T2

and distance D away. k-vector components are q,γ , for the parallel
and perpendicular component, respectively. (b) Real and imaginary
parts of graphene p-polarization reflection coefficient for μ = 0.5 eV,
T = 300 K, and τ = 10−13 s. Dashed line is the vacuum plasmon
dispersion relation (4) for the graphene sheet. Insets show the real
and imaginary part of reflectivity at q ≈ 50 eV/h̄c as a function of ω.

where γ =
√

ω2/c2 − q2 is the perpendicular wave vector and
r1(2) is the reflection coefficient for the bottom (top) body;
note that r1,2 depend on T , and hence the T dependence
of f (ω,T1,T2). Integration is over the parallel wave vector
q, limited only to the evanescent (q > ω/c) modes. The
spectral transfer function (2) was derived for the case of
two semi-infinite slabs;7 however, it can be shown that the
same expression is valid when any of the two bodies is a 2D
system, such as graphene.17 Since graphene absorbs poorly
(2.3%) in the far field (hence is also a poor emitter), not
including the propagating modes is a good approximation.
The contribution of evanescent s-polarized modes can also
be calculated using Eq. (2), but it turns out to be negligible
compared to p-polarized modes, as we discuss later. We
assume graphene is completely characterized by its complex
optical conductivity σ = σr + iσi , which depends on angular
frequency ω, electron scattering lifetime τ , chemical potential
μ, and temperature T . Furthermore, the graphene conductivity
is taken to be independent of the parallel wave vector q (see
discussion below), and consists of the Drude (intraband) and
interband conductivity, expressed respectively as26

σD = i

ω + i/τ

e22kbT

πh̄2 ln

[
2 cosh

μ

2kbT

]
,

(3)

σI = e2

4h̄
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)
+ i

4h̄ω

π

∫ ∞

0

G(ξ ) − G(h̄ω/2)

(h̄ω)2 − 4ξ 2
dξ

]
,

where G(ξ ) = sinh(ξ/kbT )/ [cosh(μ/kbT ) + cosh(ξ/kbT )]
and μ is the chemical potential. Various electron scattering
processes are taken into account through the relaxation time τ .

From dc mobility measurements in graphene, one obtains9 an
order-of-magnitude value of τ ≈ 10−13 s.

First we discuss the electrodynamic properties of a single
suspended sheet of graphene, inherent in the p-polarization re-
flection coefficient, which is illustrated in Fig. 1(b). The reflec-
tion coefficient is rp = (1 − ε)/ε, where ε = 1 + γ σ/(2ε0ω)
is the dielectric function of graphene.26 Its pole ε = 0
corresponds to the dispersion relation of p-polarized plasmon
modes9

q = ε0
2iω

σ (ω,T )
, (4)

which is shown as the dashed line in Fig. 1(b). Figure 1
shows plasmons exist in a strongly nonretarded regime (q �
ω/c), indicating a tightly confined plasmon polariton mode.
Graphene also supports s-polarized surface modes with a
dispersion relation very close to the light line.27 However, due
to the large density of states and the tightly confined nature
of p-polarized surface modes, it is the p polarization that
dominates (as our calculations confirm) the near-field transfer.

III. RESULTS AND ANALYSIS

When two parallel graphene sheets are sufficiently close
[see Fig. 1(a)], their plasmonic modes can become cou-
pled. The dispersion of these coupled modes is 1 −
r

p

1 (ω)rp

2 (ω)e−2qD = 0, when q � ω/c, so γ ≈ iq, which is
exactly the pole of the integrand of the spectral transfer func-
tion (2). The integrand is illustrated in Fig. 2 for different values
of chemical potential. The coupling of modes is strongest
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FIG. 2. (Color online) Contour plot of the integrand (a.u.) in
fp(ω) from Eq. (2), for two graphene sheets at T1,2 = 300 K, separated
by D = 10 nm. Chemical potentials are μ1 = 0.5 eV, while μ2

is different for each plot. Dashed lines correspond to the vacuum
plasmon dispersion relations for the bottom (1) and the top (2)
graphene sheet.
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when both graphene sheets have identical parameters (middle
panel in Fig. 2). In that case, their individual dispersions are
identical. Nevertheless, the dispersion of the combined system
shows two branches that dominate the near-field spectral
transfer, i.e., the implicit equation 1 − r(ω)2e−2qD = 0 for
ω(q) has two explicit solutions: ωeven(q) and ωodd(q) for the
even and the odd mode, respectively. The splitting of two
superimposed resonances is particularly noticeable at smaller
wave vectors q. For larger q, the splitting disappears, and the
resonant matching of peaks of Im(r1,2) significantly enhances
the near-field transfer. As the chemical potential of one of the
sheets changes (top and bottom panel in Fig. 2), the plasmons
in the two sheets move out of resonance, coupling decreases,
the peaks in the integrand approach the individual (vacuum)
plasmons dispersion curves, and the heat transfer becomes
lower than in resonance.

Figure 3(a) shows a highly tunable spectral transfer
function fp for different values of chemical potential and
relaxation time. Given the chemical potential, the relaxation
time determines which processes (interband or intraband) are
responsible for the peaks in spectral transfer. Since interband
processes are dominant at high frequencies, all τ curves
converge in the high frequency limit, where Drude losses are
negligible. However, interband processes can play a leading
role even below the absorption threshold ω ≈ 2μ, particularly
for small chemical potential where thermal broadening of
the interband threshold (on the order of few kbT ) becomes
more significant. For example, for μ1,2 = 0.1 eV [first peak in
Fig. 3(a)] the similarity between τ = 10−12 s and τ = 10−13 s
spectral transfer functions indicates that the majority of loss in
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FIG. 3. (Color online) (a) Spectral transfer function fp(ω) from
Eq. (2), for plasmons in two graphene sheets at resonance, μ1,2 = μ,
τ1,2 = τ ; T1,2 = 300 K, D = 10 nm. Solid green line corresponds to
the μ1(2) = 0.3(0.5) eV, τ1(2) = 10−13(10−14) s case. (b) Contour plot
of the integrated ratio of the near-field transfer between two graphene
sheets, Hnf

gg , and the far-field transfer between two blackbodies, H
ff

BB

for plasmons in resonance (left, μ1,2 = 0.1 eV) and out of resonance
[right, μ1(2) = 0.1(0.3) eV]. Here, T2 = 300 K and τ1,2 = 10−13 s.

graphene comes from interband processes. On the other hand,
the Drude (intraband) loss term, usually important for ω < μ,
can become dominant at higher frequencies, for large enough
μ (third peak). Finally, a combination of two loss processes,
μ1(2) = 0.3(0.5) eV and τ1(2) = 10−13(10−14) s, can lead to
a hybrid spectral transfer. While the use of q-independent
expression for graphene conductivity Eq. (3) for intraband pro-
cesses is a good approximation,9 one must take care when ap-
plying Eq. (3) to interband transitions. As indicated in Fig. 3(a),
interband transitions can play a significant role in near-field
transfer at low doping levels. Here, the contribution from the
nonzero wave vector becomes important since it broadens the
interband threshold from 2μ to ∼2μ − h̄qvF . On the other
hand, this is similar to nonzero temperature effects which
also broaden the interband threshold, so we do not expect
a qualitatively different result with q-dependent conductivity.

We quantify the heat exchange in the near-field by plotting
[Fig. 3(b)] the integrated transfer H from Eq. (1) normalized to
the transfer between two blackbodies in the far field. Factoring
in the temperature dependence shifts the majority of the near-
field transfer to lower frequencies, due to the exponentially
decaying Boltzmann factor. This implies that, while doping or
gating might be advantageous in some applications (for exam-
ple, emitter-PV cell band-gap frequency matching in near-field
TPV systems17), near-field transfer between two graphene
sheets is maximized for small values of doping, despite the
stronger peak in spectral transfer for μ1,2 = 0.3 eV vs μ1,2 =
0.1 eV [Fig. 3(a)]. For plasmons in resonance with μ1,2 =
0.1 eV [left panel, Fig. 3(b)], we observe orders-of-magnitude
increase in heat exchange, particularly at small separations
(×1000 for D = 20 nm, T1 = 800 K), but also at separations
as large as 0.1 μm. At larger separations, we observe (not
shown) the shift of the peak of the spectral transfer function
fp to μ1,2 = 0.1 eV case [red line in Fig. 3(a)], indicating that
the coupling between highly localized, large q, modes becomes
weaker, and the transfer is dominated by lower-frequency, less
evanescent modes. The heat transfer depends in a complex
fashion on the parameters of the system, and does not seem
to yield a simple functional dependence on the emitter and
absorber temperatures (as is the case for two blackbodies).
Nevertheless, there is a relative advantage [Fig. 3(b)] to
operating at lower temperatures, as the temperature depen-
dence of the near-field transfer appears to grow slower than
the T 4 blackbody dependence. Finally, we note that the
temperature dependence of conductivity reduces the resonant
effect when two graphene sheets are at different temperatures.
This reduction is more pronounced for a large temperature
difference, shifting the peak of the spectral transfer on the
order of kbT ; however, the relative reduction of the integrated
spectral transfer function is small, with the main temperature
dependence coming from the Boltzmann factor. This efficient
heat exchange between two graphene sheets in the near
field, together with recently reported advances in hot carrier
extraction from graphene,28 may offer a potential for a novel,
hybrid thermophotovoltaic/thermoelectric solid-state heat-to-
electricity conversion platform. In addition, this material
system could pave the way toward an externally controllable
thermal switch behavior, where one can, by means of doping or
gating, tune the resonant coupling between the hot and the cold
side.

155422-3



OGNJEN ILIC et al. PHYSICAL REVIEW B 85, 155422 (2012)

Note added. Recently, we became aware of a related paper
by Svetovoy, van Zwol, and Chevrier, where the contribution
of plasmons to the near-field radiation transfer in graphene has
also been analyzed.29
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