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Abstract: Near-field thermophotovoltaic (TPV) systems with carefully
tailored emitter-PV properties show large promise for a new temperature
range (600 − 1200K) solid state energy conversion, where conventional
thermoelectric (TE) devices cannot operate due to high temperatures and
far-field TPV schemes suffer from low efficiency and power density. We
present a detailed theoretical study of several different implementations
of thermal emitters using plasmonic materials and graphene. We find that
optimal improvements over the black body limit are achieved for low
bandgap semiconductors and properly matched plasmonic frequencies. For
a pure plasmonic emitter, theoretically predicted generated power density of
14 W

cm2 and efficiency of 36% can be achieved at 600K (hot-side), for 0.17eV
bandgap (InSb). Developing insightful approximations, we argue that large
plasmonic losses can, contrary to intuition, be helpful in enhancing the
overall near-field transfer. We discuss and quantify the properties of an
optimal near-field photovoltaic (PV) diode. In addition, we study plasmons
in graphene and show that doping can be used to tune the plasmonic disper-
sion relation to match the PV cell bangap. In case of graphene, theoretically
predicted generated power density of 6(120) W

cm2 and efficiency of 35(40)%
can be achieved at 600(1200)K, for 0.17eV bandgap. With the ability to
operate in intermediate temperature range, as well as high efficiency and
power density, near-field TPV systems have the potential to complement
conventional TE and TPV solid state heat-to-electricity conversion devices.

© 2012 Optical Society of America

OCIS codes: (040.5350) Photovoltaic; (310.6628) Subwavelength structures, nanostructures;
(240.6680) Surface plasmons.
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1. Introduction

An inherent limitation of a thermophotovoltaic (TPV) system is the upper limit on spectral
emissivity of the emitter - the black body limit. This is true for TPV systems operating in the
far field, where the separation between the emitter and the photovoltaic cell is large enough
to limit the energy transfer only to modes propagating in air. Contrary to this is the near-field
mode of operation, whereby reducing the gap between two surfaces allows for tunnelling of
evanescent modes. It has been theoretically argued [1–4] and experimentally shown [5–8] that
sub-micron separations can greatly enhance the energy transfer compared to that in the far field
and even that of the black body.

In this manuscript, we analyze a TPV system consisting of a plasmonic emitter and a short-
wavelength infrared bandgap photovoltaic (PV) cell. Plasmonic materials support surface plas-
mon polaritons (SPP), electromagnetic excitations propagating along the surface of the mate-
rial, that can be thermally excited. In the near field, the density of these surface modes strongly
increases at frequencies close to the surface plasmon frequency ωp/

√
2, where ωp is the mate-

rial plasma frequency. In photovoltaic cells, photons with energies less than the bandgap energy
cannot create electron-hole pairs, whereas for high-energy photons the difference in photon en-
ergy and the bandgap energy is lost due to thermalization. The almost monochromatic nature of
SPPs thus allows for efficient energy transfer, when surface plasmon frequency is tuned close
to the bandgap energy.

This paper is divided into five sections. In section 2, we develop physical intuition and inves-
tigate the optimal parameters of the analyzed near-field TPV system. In section 3, we analyze
silver and indium tin oxide (ITO), materials that support surface plasmons, as potentially use-
ful thermal emitters. In section 4, we study plasmons in graphene and energy transfer in a
graphene-PV system. Finally, we summarize the results in section 5.
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2. Optimal near-field TPV design: Model and Theory

Radiation transfer at subwavelength scales and applications to thermophotovoltaic devices has
been a subject of much research [9–17]. In many of these references, the main interest was in
emitter and/or the photovoltaic (PV) cell parameters that maximize radiation transfer, energy
conversion efficiency, power output, etc. Here, we provide an intuitive explanation for the role
that each of the parameters plays in overall energy transfer in the near field.

A near-field TPV system, as illustrated in Fig. 1, consists of a higher temperature plasmonic
emitter and a colder photovoltaic cell, separated by a distance D. We model both components
as non-magnetic, semi-infinite slabs, with frequency-dependent permittivity responses εi(ω)
where i = 1,0,2 corresponds to emitter, air gap, and PV cell, respectively. Throughout the
manuscript, it is assumed that the PV cell is operating at room temperature T2 ≈ 300K. Both
the emitter and the PV cell are connected to a thermal reservoir, maintaining non-equilibrium
temperature difference. We begin by recalling the equations that govern the non-contact radi-

Fig. 1. Schematic illustration of a near-field TPV system. Plasmonic emitter, character-
ized by the plasma frequency ωp and damping γ , operates at temperature T1. Next to it, a
distance D away, is the photovoltaic cell at temperature T2, characterized by the bandgap
energy ωg, photon absorption coefficient α0, and the refractive index n. The parallel and
the perpendicular wave vectors are q and kz, respectively.

ation transfer in the near and the far field. For two semi-infinite slabs, separated by air gap of
size D, the contribution of evanescent and propagating modes to the net radiation transfer, as
calculated using fluctuational electrodynamics, is given by [18]

Hs,p
evan =

1
π2

∫ ∞

0
dω [Θ(ω,T1)−Θ(ω,T2)]

∫ ∞

ω/c
dqq

Im(rs,p
01 )Im(rs,p

02 )

|1− rs,p
01 rs,p

02 e2ikz0D|2 e−2|kz0|D (1)

Hs,p
prop =

1
π2

∫ ∞

0
dω [Θ(ω,T1)−Θ(ω,T2)]

∫ ω/c

0
dqq

(1−|rs,p
01 |2)(1−|rs,p

02 |2)
4|1− rs,p

01 rs,p
02 e2ikz0D|2 (2)

Here rl
i j corresponds l-polarization reflectivity coefficient at the i- j interface, Θ(ω,T ) =

h̄ω/[exp(h̄ω/kbT )− 1] is the mean energy of a photon at temperature T , known as the Boltz-
mann factor, and kz0 is the perpendicular wave vector kz in the gap medium. The far field energy
transfer between a black body (r0i = 0) at T1 and a black body at T2 calculated using Eq. (2)
would be Hprop = σ

(
T 4

1 −T 4
2

)
, where σ is the Stefan-Boltzmann constant.

The permittivity of a pure plasmonic emitter is given by the standard Drude-Lorentz expres-
sion ε1(ω) = 1−ω2

p/(ω2+ iωγ), where ωp is the plasma frequency and γ is the plasma damp-
ing term. Furthermore, we restrict our analysis of near-field transfer, Hevan, to only p-polarized
modes, as these modes dominate the evanescent (q � ω/c) transfer regime in non-magnetic
materials [3].

Design requirements for an optimal photovoltaic cell operating in the far field are different
from an optimal photovoltaic cell operating in the near field. A far field photovoltaic cell needs
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to minimize reflections to reach high efficiencies. This is achieved using an anti-reflection coat-
ing, such as several stacked dielectric layers designed to cancel reflected waves of desired wave-
lengths. Characteristics which make for a good near-field photovoltaic cell will be discussed
later; presently, we treat the photovoltaic cell as a semiconductor, with dielectric permittivity
approximately modeled as

ε2(ω) =

(
n+ i

α
2k0

)2

where α(ω) =

{
0 ,ω < ωg

α0

√
ω−ωg

ωg
,ω > ωg

(3)

where n is the refractive index, k0 = 2π/λ where λ is the photon wavelength in vacuum, and
ωg is the bandgap frequency. Square root dependence of the absorption coefficient is a char-
acteristic of direct bandgap semiconductors. For example, indium arsenide, InAs, is a direct
bandgap semiconductor where ωg = 0.36eV ; in the above model α0 ≈ 1.3×104cm−1 matches
experimentally measured values (at room temperature) [19] reasonably well for frequencies
near the bandgap, as discussed in section 2.3. Similarly, indium antimonide, InSb, is also a di-
rect bandgap semiconductor (ωg = 0.17eV ) where α0 ≈ 0.7× 104cm−1 is a reasonable fit for
the experimentally measured absorption values (at room temperature) [20]. The simple model
in Eq. (3) is not meant to completely characterize optical properties of a given semiconductor
but, instead, to capture general trends and quantify the near-field heat transfer to a reasonable
degree of accuracy. We would like to point out two things regarding this model: first, accurate
modeling of the PV cell is complicated by discrepancies in experimentally reported values of
semiconductor absorption in the literature; and second, at higher frequencies our fit becomes
worse (section 2.3). However, modes at such high frequencies do not contribute much to the
power transfer, due to the exponentially decaying Boltzmann factor Θ(ω,T ). For most of the
calculated values of power density (Tables 1 and 2), the difference between using the model
given by Eq. (3) and the reported values in literature [19,20] is under 5% (maximum difference
of under 15%). Calculated efficiencies are even less sensitive to this distinction, with differences
mostly unnoticeable to two significant figures.

2.1. Plasmon damping γ
For many SPP applications plasmon damping is undesirable and low values for γ are favored
[21]. For energy transfer in the near field, however, the opposite can be true. A rough, qualita-
tive, picture of the role of γ can be obtained as follows: in the extreme near field (q� ω/c), and
for very weak damping, surface plasmon local density of states is proportional to the imaginary
part of permittivity [18], which is in turn proportional to γ; consequently, very small γ implies
low power transfer. On the other hand, a large value of γ completely dampens the surface mode
and the radiation transfer diminishes. While the situation in a TPV system is more complicated,
this argument correctly implies that there is an optimal value of γ for which transfer of energy
is maximized. To get a better understanding, we show (Appendix A) how a complicated ex-
pression in Eq. (1) for radiation transfer in the near field can be approximated as a lorentzian
lineshape in frequency. We first define (ε2 − 1)/(ε2 + 1) ≡ χ ′+ iχ ′′, where ε2 is given by Eq.
(3), and χ ′,χ ′′ are real. In general, both χ ′ and χ ′′ depend on frequency and obtaining a closed-
form expression for the dispersion relation is non-trivial. However, for realistic PV parameters
(n= 3.51, α0 ≈ 104cm−1), χ ′ is approximately constant and χ ′′/χ ′ � 1, as discussed in section
2.3. Rewriting Eq. (1) as

H p
evan =

1
π2

∫ ∞

0
dω [Θ(ω,T1)−Θ(ω,T2)]

∫ ∞

ω/c
dqqΠ(ω,q) (4)

we can express the spectral transfer function for a given channel q as
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Π(ω,q) =
γβ (ω,q)

4[ω −ω0(q)]2 +[γ +β (ω,q)]2
where β (ω,q)≡ ω2

p −2ω0(q)2

2ω0(q)
χ ′′(ω)

χ ′(ω)
(5)

where ω0 and the dispersion relation is given by Eq. (17). Equation (5) is the central equation of
this section. It separates plasmon damping coefficient γ from other parameters, and PV cell pa-
rameters only enter through dimensionless χ ′′/χ ′ ratio, which we label the PV cell admissivity
in the near field. Figure 2 shows the comparison between the spectral transfer function calcu-
lated using Eq. (5) and using Eq. (1), for several values of parallel wave vector q. In each case,
we see that Eq. (5) is indeed a very good approximation. Limits of its validity are discussed in
Appendix A. In accordance with the dispersion relation Eq. (17) of the two-interface system

Fig. 2. Contour plot of Π(ω,q) from Eq. (1) for (a) γ = 5×10−4eV , (b) γ = 5×10−3eV .
Dashed line shows the dispersion relation from Eq. (17), and the solid cyan line shows the
dispersion relation of a surface plasmon in air. In (c) and (d), solid (dashed) line corresponds
to the spectral transfer function Π(ω,q) calculated using Eq. (1) (Eq. (5)), for four different
values of q. On a separate scale, β is plotted as a function of ω0 (magenta), where the
x-axis for ω0 and ω is shared. Plasma frequency, PV gap frequency and PV absorption
coefficient are ωp = 0.6eV , ωg = 0.36eV and α0 = 1.3×104cm−1, respectively. Separation
is D = 10nm (1/D ≈ 20eV/h̄c).

shown in Fig. 1, bringing the PV cell in extreme vicinity of the emitter shifts the power transfer
to much higher q-vectors compared to the dispersion of the surface plasmon in air. This is a
direct result of the delocalized nature of isolated surface plasmons, making the joint dispersion
relation particularly sensitive to separation between two interfaces.

The integrated radiation transfer increases with γ , for small γ; to show this, we note that in
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the limit γ � β the width of Π is ≈ β , i.e:

Π(ω,q) =
γβ (ω,q)

4[ω −ω0(q)]2 +[γ +β (ω,q)]2
≈ γ

β (ω,q)
4[ω −ω0(q)]2 +β (ω,q)2 (6)

To analyze the large γ limit, the Boltzmann factor Θ(ω,T ) must be included. For photon
energies on the order of an electron-volt and reasonably high emitter temperatures, Θ(ω,T2)
can be ignored (for ω = 0.2eV , T1 = 600K, we have Θ(ω,T2)/Θ(ω,T1)≈ 0.02). We define

A(q) =
∫ ∞

ωg

dωΘ(ω,T1)Π(ω,q) (7)

where A(q) is the spectral cross-section for a given wave vector, q. Integration limit is chosen
such that only photons with energies greater than the bangap are included. When γ is very
large, γ � β ,ω−ω0, the dominant dependence in Eq. (5) is 1/γ for low enough frequencies for
which Θ(ω,T1) is effectively non-zero. As a result, the heat transfer goes down with increasing
γ . To get a sense of the optimal value of plasmon damping, we note that for ω0 = 0.38eV
(corresponding to maximum value of β , Fig. 2(c)), ωg = 0.36eV , and T1 = 600K, the spectral
cross-section A(q) is maximized for γ = 6.8×10−3eV , and decays thereafter.

It is interesting to note that Eq. (5) has the same functional form as the transmission coeffi-
cient of a waveguide-cavity-waveguide system, obtained using temporal coupled mode theory
equations [22]. There, the transmission through a cavity is maximized when the coefficients that
measure cavity coupling to each waveguide, 1/τ1 and 1/τ2, are equal. This is the condition for
critical coupling. In this case, the critical coupling is achieved when γ = β ; an example of this
is shown in Fig. 2(c) (second from the left peak, where γ = β = 5×10−4eV ). However, critical
coupling has low transmission over a broad range of frequencies (low spectral cross-section),
and is not suitable for enhancing broadband radiation transfer. Note that when both media are
plasmonic (i.e. ε2 = ε1, analyzed in Appendix A), the system is always critically coupled due
to symmetry.

Finally, the dispersion relation, Eq. (17), of this system tells us that the modes that dominate
the near-field energy transfer are highly-evanescent. In Fig. 2, we see that, at D = 10nm, these
modes have characteristic wave vectors almost two orders of magnitude larger than the normal-
ized vacuum frequency. Whether or not such extremely evanescent modes participate in energy
transfer has been a topic of much debate [4,16,23–25]. This debate is centered around the pre-
diction that integrated energy transfer would diverge as 1/D2, as two slabs are brought closer
together. While this is deemed unphysical and a violation of energy conservation by some au-
thors [16, 23], others have defended the result, noting it is based on a macroscopic formalism
that does not in itself impose the limit on the separation, but would break down when separa-
tions approach atomic distances [4,24,25]. We note from Fig. 2 that characteristic distances for
maximum wave-vector values of relevant modes (≈ 40eV/h̄c) are on the order of ≈ 5nm, well
above the atomic separation limit.

2.2. Plasma and gap frequency, ωp, ωg

Many variables in this system make for a rich parameter space. In general, it is hard to isolate the
contribution of a specific parameter and quantify the behavior of the integrated radiation transfer
based solely on that parameter. In that respect, looking at how radiation transfer depends on ωp

and ωg is relevant because the main takeaway points remain valid for a wide range of γ , T1 and
D.

We look at the ratio of the near-field transfer between a plasmonic emitter and the PV cell,
versus the far-field transfer between two black bodies. Radiation transfer between two black
bodies in the far field is known to be the upper-limit on radiation transfer between any two
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media of given temperatures in the far field. The first expression, Hevan, is obtained from Eq.
(1), whereas the second, Hbb, is obtained from Eq. (2), with r01 = r02 = 0. Both expressions
are integrated over all wave vectors q; however, in contrast to equations Eq. (1) and Eq. (2), the
integral over frequency is limited to frequencies higher than ωg.

Figure 3 shows this ratio for different ωp,ωg. Two key points from this figure remain true
for a range of γ , T1, D, and could be stated as follows: there is an optimal frequency separation
Δ ≡ ωp/

√
2−ωg, and transfer ratio increases with decreasing ωg,ωp. To understand the first

point, we note that for small Δ (red line in Fig. 3), there is little absorption (β ≈ 0) , and the
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Fig. 3. Contour plot of logarithm of transfer ratio versus ωp, ωg, for the plasmonic emitter-
PV system in Fig. 1. Plasmon damping is γ = 5×10−3eV , and temperature is T1 = 600K,
with other parameters being the same as in Fig. 2.

ratio rapidly grows for increasing Δ. For a large Δ, however, the surface plasmon frequency
is too far from ωg and the transfer between two black bodies grows faster in the [ωg,ωp/

√
2]

range. In other words, there is a mismatch between the optimal plasmonic density of states
occurring at frequencies closer to ωp/

√
2 and PV cell absorption, characterized by β . With the

optimal Δ fixed, simultaneously lowering ωg and ωp shifts the dispersion relation Eq. (17) and
concentrates (due to behavior of β as a function of ωg) radiation transfer to lower frequencies
where the average energy per mode is exponentially higher. This is particularly beneficial for
surface plasmon modes in the near field, where the density of photonic modes is much higher
(no limit on q) than for a black body (at the same frequency) in the far field. One also notices
that, due to the scale invariant nature of Maxwell’s equations, lowering frequency is equivalent
to decreasing the separation, resulting in the increase of (near-field) transfer.

2.3. PV cell in the near field

We already mentioned how requirements for an efficient photovoltaic cell in the far field are
different from a photovoltaic cell operating in the near field. So far, we have focused on a bare
semiconductor as the PV cell, with the dielectric response given by Eq. (3). Previously, we
showed how increasing plasmon damping leads to enhanced radiation transfer. However, given
the symmetry of Eq. (5) with respect to γ and β , similar reasoning can be applied to β as well.
We calculated that, for a given mode where β = 5× 10−4eV , there was an optimal value of
γ that maximizes the spectral cross-section. However, the symmetry of β and γ implies that,
ideally, we would like both parameters to be larger. For a larger β , the optimal γ would naturally
be larger as well, and the overall transfer would grow. From this perspective, making a more
efficient near-field PV cell would mean that the PV cell admissivity, χ ′′/χ ′, should be made as
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high as possible (note, however, that this analysis is valid only when χ ′′/χ ′ � 1).
On the other hand, the optimal relationship between the plasma frequency ωp and the gap

frequency ωg, as discussed in the previous section, implies that both frequencies should be as
low as possible, with ωp/

√
2 in the vicinity of ωg. These two facts imply that an efficient near-

field PV cell should have a large absorption coefficient (and hence large admissivity) right near
the bandgap frequency, and decay afterwards. Theoretically, one way of achieving this is by
having a step-like absorption curve α(ω). Instead of Eq. (3), we write

ε2(ω) =

(
n+ i

α
2k0

)2

where α(ω) =

{
0 ,ω < ωg

α0 ,ω > ωg
(8)

In Fig. 4, we compare values for χ ′ and χ ′′ for when α is given by Eq. (3), calculated experi-
mentally, and when it is given by Eq. (8). First, for the purpose of a near-field PV cell, modeling
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Fig. 4. Plot of χ ′ (blue) and χ ′′ (red) for a semiconductor as a function of frequency,
with ωg = 0.36eV and n = 3.51. Three lines correspond to the absorption coefficient α
calculated using square-root dependence, Eq. (3), with α0 = 1.3×104cm−1, experimental
values for InAs from Ref. [19], and using step-like dependence, Eq. (8), with same α0.
We see that both PV cell approximations, χ ′ ≈ 0.85, and χ ′′/χ ′ � 1, are satisfied in this
frequency range.

absorption of InAs as a square-root dependence on energy was an appropriate approximation.
Second, a step-like dependence given by Eq. (8) focuses the radiation transfer to frequencies
right around ωg: for parameter values as in Fig. 2, and the same value of α0 = 1.3×104cm−1,
the overall power transfer Hevan is up to a factor of 3× stronger for step-like absorption de-
pendence than for the square-root one. This implies that step-like dependence, while being the
simplest model for PV cell absorption, also overestimates the near-field transfer.

2.4. Temperature dependence, efficiency and power density

In this section, we explore how the ratio of the power transferred in the near field, Hevan, to
the power transferred between two black bodies in the far field, Hbb, depends on the emitter
temperature. For an appropriate choice of parameters, this dependence can be increasing, de-
creasing, or non-monotonic. This flexibility can allow a possible design of a near-field device
that would operate at temperatures that are usually too low for a conventional thermophoto-
voltaic device but too high for a conventional thermoelectric one.

In Fig. 5, we plot this ratio for several different values of plasma frequencies and damping, for
emitter temperature range of 600K−1500K. As we previously calculated, for ωp = 0.6eV , the
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optimal damping coefficient was γ = 6.8×10−3eV , when β was maximized. Figure 5 confirms
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Fig. 5. Radiation transfer ratio, as a function of emitter temperature T1 for a pure plasmonic
emitter-PV cell near-field TPV system. The ratio is plotted for several values of ωp and γ ,
with other parameters being the same as in Fig. 2, namely ωg = 0.36eV , D = 10nm.

that this result is a decent estimate of optimal γ . The other two cases can also be understood
using Eq. (5) and Eq. (7). When surface plasmon frequency is below the gap frequency (i.e.
ωp = 0.5eV ), only the tails of the lorentzian above ωg contribute to the near field transfer.
Since the width of the lorentzian in Eq. (5) is dependent on γ , stronger damping is preferable,
as shown in Fig. 5. Finally, for large ωp, examining spectral cross-section H(q) similarly as
before, we find the optimal γ , corresponding to when β is maximum, is ≈ 0.05eV . Again, Fig.
5 shows this is a reasonable estimate for the damping coefficient.

For a fixed value of damping (i.e. γ = 10−1eV ), changing the plasma frequency significantly
alters the temperature dependence in the plotted temperature range. As an example, this depen-
dence can be non-monotonic, as shown for the ωp = 1.0eV case in Fig. 5. For well-matched
gap and plasma frequencies, the case of ωp = 0.6eV in Fig. 5, the dependence can be decreas-
ing with emitter temperature. This could allow for efficient thermal-electric energy conver-
sion devices, especially in the range of temperatures inaccessible to current energy conversion
schemes.

To quantify the performance of a system like this we are interested in parameters such as
efficiency and power density. Modeling the PV cell as an ideal thermodynamic diode operating
at voltage Vo, and using Eq. (1), we can express the total radiative power exchange as [26]

Prad =
1

π2

∫ ∞

0
dqq

[∫ ∞

0
dωΠ(ω,q)

h̄ω

e
h̄ω
kT1 −1

−
∫ ∞

ωg

dωΠ(ω,q)
h̄ω

e
h̄ω−eVo

kT2 −1

]
(9)

In general, the optimal voltage Vo depends on other parameters in the system. We avoid the full
optimization procedure, and, motivated by the observed dependence of efficiency on Vo, choose
a voltage slightly below the limit V max

o = ωg(1−T2/T1). The total electrical power generated in
the photodiode is calculated as the product of the voltage Vo across the PV diode terminals, the
electron charge e, and the difference between the absorbed photon flux and reradiated photon
flux. This can be conveniently expressed as [26]

PPV =
1

π2

∫ ∞

0
dqq

[∫ ∞

ωg

dωΠ(ω,q)
eVo

e
h̄ω
kT1 −1

−
∫ ∞

ωg

dωΠ(ω,q)
eVo

e
h̄ω−eVo

kT2 −1

]
(10)
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Finally, the efficiency of such a conversion scheme is defined as

ηTPV =
PPV

Prad
(11)

We estimate the efficiency for several sets of parameters in Table 1. Plasma frequency, as well
as the voltage across the PV diode, is approximately matched to the PV bangap energy. Even
though our analysis has been concerned with overcoming the black body limit and not neces-
sarily maximizing the efficiency or the generated power density, the numbers for theoretical
efficiency and power density compare well with more traditional energy conversion schemes.
In thermoelectric systems one can achieve high power densities, but theoretical efficiencies are
limited to 11% (16%) for ZT = 1 (ZT = 2) at T = 600K. In addition, there is a limit to operating
temperature: ZT = 2.5 Bi2Te3/Sb2Te3 superlattice devices operate at hot-junction temperature
of 300K, while other high temperature TE alloys such as CeFe3.5Co0.5Sb12 (temperature as
high as 900K) have ZT of up to 1.5 [27]. On the other hand, state of the art far field ther-
mophotovoltaic devices can achieve theoretical efficiencies of 60% with ideal spectral control,
but these systems do not have as high power density and require high emitter temperatures for
optimal operation [28–30].

Table 1. Ideal plasmonic emitter-PV cell near-field TPV system: radiated power exchange,
Prad , generated electrical power PPV , efficiency, and the flux ratio (relative to the transferred
power between two black bodies in the far field), tabulated for a set of parameters, up to
two significant digits. We assume D = 10nm, γ = 0.01eV .

T1[K] ωg[eV ] ωp[eV ] Vo[V ] PPV [
W

cm2 ] Prad [
W

cm2 ] η [%] Hevan
Hbb

600
0.36 0.6 0.15 1.2 3.4 35 66
0.17 0.35 0.08 14 39 36 150

1200
0.36 0.6 0.25 96 160 60 31
0.17 0.35 0.12 250 470 53 55

With the ability to deliver both high efficiency and power density, as well as to operate
in the intermediate ΔT range, near-field TPV systems could be a good complement to more
conventional solid-state energy conversion schemes.

3. Alternative plasmonic thermal emitters

We have imposed no unusual requirement on the photovoltaic cell model so far. Semiconductors
with gap frequencies and absorption coefficients we have mentioned so far can be readily found
in nature. However, this is not true for the plasmonic emitter. For example, thermal excitation
of surface plasmon modes is all but impossible in bulk metals, where plasma frequencies are
in the ultraviolet range. In this section, we characterize the near-field transfer for silver as well
as indium tin oxide (ITO) emitters, the latter being a promising plasmonic material in the near
infra red.

We briefly note that by designing periodic structures, one could engineer an effective dielec-
tric response which would mimic that of a surface plasmon at the desired frequency, so called
designer surface plasmons or spoof-surface-plasmons (SSP) [31–33]. We postpone the detailed
analysis of such systems to a future paper, and briefly mention that any SSP implementation
would have to have very small feature size to accurately account for the behavior of highly
evanescent modes responsible for the majority of near-field radiation transfer. We also note that
TPV systems based on polar materials supporting surface phonon-polaritons, such as SiC, in
conjuction with very low bandgap PV cells, have been analyzed before [17].
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3.1. Silver

While the frequency of surface modes in silver is high, it is still possible for a TPV system with
silver as emitter to reach transfer rates on the order of magnitude of those between two black
bodies in the far field, especially for small separations. The mechanism behind this enhance-
ment, however, is different. Unlike before, where extremely evanescent modes carried the bulk
of radiation transfer, here it is not the excitation of surface plasmon-polaritons that is respon-
sible for transfer in the near field. Figure 6(b) shows how this transfer depends on frequency
ω and wave vector q. Here, we model permittivity of silver using a five-oscillator Lorentz-
Drude (LD) model [34]. Given that sufrace plasmon frequency of silver is around 3.75eV [35],
extremely high temperatures (on the order of several thousand kelvins) are required to excite
these surface modes to the point where they would be the dominant mechanism in near-field
energy transfer. This is impossible to achieve in practice, not least because the melting tem-
perature of silver is approximately 1235K. Since surface plasmon modes are not excited, the

Fig. 6. Silver-PV near-field TPV system. (a) Radiation transfer ratio as a function of PV
gap frequency ωg and separation D, for T1 = 1235K. (b) Contour plot of integrand in Eq.
(1) and Eq. (2), as a function of ω , q in regions below and above the vacuum light line,
respectively. This plot corresponds to Htot for ωg = 0.36eV , D = 10nm point from plot (a).
The y-axis is shared between two plots. Two dashed lines correspond to light lines for n= 1
(vacuum) and n = 3.51 (PV cell).

majority of transfer occurs between two light lines corresponding to n = 1 and n = 3.51, with
the latter being the static index of refraction of the PV cell. This is similar to the near-field
transfer between two semi-infinite, low-loss, media of index of refraction n, where the maxi-
mum transfer is known to be n2 times higher than the free space Planck distribution [16, 36].
Unlike before, high values of q are generally inaccessible, except for a small portion around the
gap frequency, which is attributed to the non-zero value of optical absorption in the PV cell.

Figure 6(a) shows the transfer ratio dependence on gap frequency and separation. While the
numerator Htot now includes both the evanescent Eq. (1) and propagating Eq. (2) modes (i.e
Htot = Hevan +Hprop), the contribution of evanescent modes is still dominant, as observed in
Fig. 6(b). Compared to the case of single, well-matched, plasmonic emitter, there is a much
weaker dependence of the transfer ratio on gap frequency, indicating similar spectral transfer
functions in Htot and Hbb. This is, again, due to the lack of surface modes and highlights the
difference in near-field energy transfer mechanisms.
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3.2. Indium tin oxide (ITO)

Indium tin oxide is a promising plasmonic material in the near infrared (NIR) because its plasma
frequency can be tailored by changing the doping level of tin [37–39]. Theoretical models,
based on density functional theory, predict plasma frequencies in ITO as low as 0.44eV , for
45% (by weight) tin doping [38]. For this case, we model dielectric permittivity as ε(ω) =
ε∞

(
1−ω2

p/(ω2 + iωγ)
)
, with ε∞ = 4, ωp = 0.44eV , and estimated plasma damping of γ ≈

0.1eV [37]. Qualitatively, the spectral near-field transfer with ITO as the emitter looks similar
to that of Fig. 2(b). The main difference comes from the fact that the strong plasma damping
coefficient in ITO broadens the spectral radiation transfer, as discussed in section 2.1.

For ITO emitter, and a PV cell with ωg = 0.36eV (InAs), we obtain generated PV power,
PPV = 0.36(34) W

cm2 , efficiency η = 12(45)%, and the transfer ratio Hevan/Hbb = 20(11), for
T1 = 600(1200)K and Vo = 0.15(0.25)V . We note that for ε∞ = 4, the ITO surface plasmon
mode frequency is ωp/

√
1+ ε−1

∞ ≈ 0.39eV . Broadened transfer spectrum, due to high plasma
damping coefficient, results in higher thermalization losses in the PV cell, lowering efficiency
compared to the pure plasmonic emitter in Table 1. Due to the broadband transfer, coupling the
same ITO emitter to a lower bandgap PV cell would result in larger power density. However,
the efficiency would be negatively affected, by the same argument as above.

Surface plasmon frequencies as low as 0.7eV have been experimentally measured in ITO
[39]. We point out that dielectric properties of ITO are heavily dependent on sample prepara-
tion parameters and annealing conditions [37, 39]; however, the theoretical predictions for ITO
presented above make it a potentially interesting material for near-field thermal emitters.

4. Exploiting surface plasmons in graphene

As mentioned, the main drawback to a described near-field TPV scheme is the lack of natural
materials with plasmon frequencies in the desired near-IR range. Recently, it has been shown
that graphene [40] can support surface plasmon modes, with tunable dispersion relation depen-
dent on doping levels [41–43]. Furthermore, the near-field radiative energy transfer coefficient
between graphene and amorphous SiO2 has been argued to exceed that of the black body limit
by ≈ 3 orders of magnitude [44, 45]. In Appendix B we argue that the same fluctuational elec-
trodynamics expression in Eq. (1) can be used to analyze near-field radiation transfer between
a suspended sheet of graphene and a PV cell. To model graphene, we assume its conductivity
is independent of in-plane wave vector q, and consists of the drude (intraband) and interband
conductivity, expressed respectively as [46]

σintra(ω,T ) =
i

ω + i/τ
e22kbT

π h̄2 ln

[
2cosh

μ
2kbT

]
(12)

σinter(ω,T ) =
e2

4h̄

[
G

(
h̄ω
2

)
+ i

4h̄ω
π

∫ ∞

0

G(ε)−G(h̄ω/2)
(h̄ω)2 −4ε2 dε

]
(13)

where G(ε) = sinh(ε/kbT )/(cosh(μ/kbT )+ cosh(ε/kbT )). Here, μ is the chemical potential
and τ the relaxation time which takes into account various electron scattering processes. The
fact that graphene is a poor absorber in the far field (and hence a poor emitter) allows us to, as
before, restrict our analysis to p-polarized evanescent modes.

In Fig. 7 we demonstrate the near-field radiation transfer between a sheet of graphene at T1

and the PV cell held at room temperature. We model the PV cell in the same manner, Eq. (3),
with ωg = 0.17eV and α0 = 0.7×104cm−1 (InSb). Using a low bandgap PV cell allows us to
better demonstrate the effects of graphene doping on near-field radiation transfer. In Fig. 7(a)
we plot the integrand in the spectral transfer function H(ω,q) to reveal the modes that dominate
the near-field transfer. We observe that the main contribution consists of a set of modes situated
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Fig. 7. Graphene-PV near-field TPV system. (a) Contour plot of integrand H(ω,q) in Eq.
(1) as a function of ω , q for parameters T1 = 600K, D = 10nm, μ = 0.2eV and τ = 10−13s.
PV cell parameters are ωg = 0.17eV , α0 = 0.7× 104cm−1. Solid (magenta) line is the
vacuum surface plasmon dispersion relation, Eq. (14), for the graphene sheet. (b) H(ω)
evaluated for different parameters with T1, D same as in (a). For comparison, black ωp-line
demonstrates H(ω) for a pure plasmonic emitter analyzed in section 2, with ωp = 0.3eV .
(c) Contour plot of the heat transfer ratio vs. the two black bodies in the far field, as a
function of T1 and D. In (c) and (d), τ = 10−13s and doping is μ = 0.25eV . (d) Electric
power generated PPV as a function of T1 where the voltage across the PV diode terminals
is Vo = 0.08V . The x-axis is shared between plots (a), (b) and plots (c), (d), respectively.

around the dispersion relation for plasmons in an isolated, suspended, sheet of graphene [41]

q = ε0
2iω

σ(ω,T )
(14)

This strong localization of surface plasmons in isolated graphene is in contrast to what we ob-
served in the dispersion relation for an isolated pure plasmonic material (section 2) in Fig. 2,
where characteristic parallel wave vectors were much smaller, i.e. the surface plasmon in air
was a lot less evanescent. To highlight the relationship between spectral control and graphene
doping, in Fig. 7(b) we show the spectral cross-section for a given frequency H(ω), simi-
lar to Eq. (7), only integrated over wave vectors q. The total transfer may then be written as
Hevan =

∫ ∞
ωg

H(ω)dω , i.e. H(ω) includes the Boltzmann factor Θ(ω,T ). We observe that dop-
ing plays an important role in shifting the spectral transfer to desired frequencies, much like
the plasma frequency in the case of a pure plasmonic emitter. For a PV cell with bandgap of
0.17eV , an intermediate doping level of μ = 0.2eV appears to be better suited for near-field
radiation transfer than either the case of higher doping (μ = 0.4eV ) or no doping. While highly
evanescent modes dominate the transfer for both graphene and pure plasmonic emitter, spec-
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tral transfer is broader in the former case. The narrow peak, corresponding to ωp = 0.3eV ,
shows that a pure plasmonic material is still better suited for frequency selectivity than doped
graphene. We also note that increased scattering (lower relaxation time τ; by an order of mag-
nitude in this case) broadens the spectral cross-section, but not by an order of magnitude.

In Fig. 7(c), we look at the integrated transfer and, as before, compare it to the far field
transfer between two black bodies. Similarly to the case for optimized plasmon frequency in
Fig. 5, we observe that transfer mediated by plasmons in graphene grows slower with emitter
temperature than that of two black bodies in the far field. More important than the emitter
temperature is the separation D. Significant, order-of-magnitude increases are obtained as two
surfaces are brought closer together, not just for flux ratio, but for power density as well, as
shown in Fig. 7(d). Appropriately tuning the doping energy to the PV cell bandgap frequency
is important, but bringing the graphene surface close to the emitter is particularly beneficial.

We show the results for efficiency and power density for graphene-as-emitter TPV system
in Table 2 (a more detailed optimization over the chemical potential and the relaxation time is
carried out in Appendix C). For comparison, we also show the results for the case when the

Table 2. Comparison between a silicon-PV and a graphene-PV near field TPV system:
radiated power exchange, Prad , generated electrical power PPV , efficiency, and the flux
ratio (relative to the transferred power between two black bodies in the far field), tabulated
for a set of parameters, up to two significant digits. We assume D = 10nm, τ = 10−13s.

Si - PV graphene - PV
T1[K] ωg[eV ] μ [eV ] Vo[V ] PPV [

W
cm2 ] Prad [

W
cm2 ] η [%] Hevan

Hbb
PPV [

W
cm2 ] Prad [

W
cm2 ] η [%] Hevan

Hbb

600
0.36 0.4 0.15 0.20 8.5 2.3 12 0.22 0.7 32 13

0.17
0.25 0.08

1.3 9.4 14 14
6.0 17 35 62

0 0.08 1.8 5.6 32 20

1200
0.36 0.4 0.25 30 130 23 11 22 38 57 7.3

0.17
0.4 0.12

43 150 29 13
120 300 40 31

0 0.12 61 140 43 15

emitter is pure silicon, with nSi = 4. In the case of silicon, the ω-q profile of the near-field
transfer is very similar to that of Fig. 6(b) (i.e. broadband in frequency), with parallel wave
vectors limited by nSi = 4 light line. As a result, both the evanescent and propagating, as well
as s and p polarized, modes contribute to power transfer when the emitter is silicon (or silver).
For graphene, only p polarized, evanescent modes are relevant.

From Table 2, we observe that lowering the bandgap increases the overall power transfer, as
in the case of a pure plasmonic emitter (Table 1). For both the plasmonic emitter and graphene,
we attribute high efficiencies to the fact that very evanescent modes, that dominate the near-field
transfer, carry negligible power for frequencies below the band gap, where the PV cell does not
absorb and the parallel wave vectors are limited by the nPV light line. For graphene, both effi-
ciency and power density are lower than in Table 1, confirming that a graphene emitter does not
have as good spectral control. However, the results are promising, especially considering there
are, save for experimental difficulties, no fundamental physical limitations to implementing a
graphene-based near field TPV system.

5. Conclusion

In this manuscript, we analyzed several different implementations of a high-efficiency near-
field TPV system. In the case of a pure plasmonic emitter we found that the best improvement,
over the transfer between two black bodies in the far field, is achieved for low bandgap PV cells,
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and emitter plasmon frequencies optimally matched to the bandgap. Ability to control plasmon
damping is also beneficial as, contrary to other applications, higher values of plasmon damping
can significantly increase the near-field power transfer. While we focused on bulk semicon-
ductor PV cells, we discussed the requirements for an ideal near-field PV cell. Realizing that
materials with the plasma frequency in the frequency range of interest cannot be found in natu-
rally occurring bulk materials, we reiterated that metals, such as silver, would not be a suitable
replacement due to difficulties of thermally exciting relevant surface modes. Besides indium
tin oxide, a promising alternative to a pure plasmonic emitter is graphene, where, by doping,
the dispersion relation can be tuned to match the PV cell bandgap. Separation gap remains an
important parameter in all cases, as significant, order-of-magnitude enhancement over the black
body transfer is achieved only for separations on the order of tens of nanometers. High theo-
retical efficiencies (≈ 40%) compared to conventional thermoelectrics, as well as high power
densities (120 W

cm2 at T = 1200K hot-side) compared to state-of-art far field TPV systems, in ad-
dition with the ability to operate in the intermediate (600−1200K) emitter temperature range,
make this a promising power conversion technology. We also note a potential application of
near-field radiation transfer in increasing the efficiency of thermoelectric devices by selectively
heating only the electrons and not the phonons [47].
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Appendix A

In this appendix we review the derivation of the expression for the spectral transfer function,
Eq. (5). The main approximation in deriving this result is that q � ω/c, i.e. we focus on modes
in the extreme near field. This allows us to approximate the p-mode reflection coefficient at the
i-0 interface (i = 1,2 for emitter, PV cell, respectively; Fig. 1) as rp

0i ≈ εi−1
εi+1 . With this in mind,

spectral transfer function from Eq. (1) becomes,

Π(ω,q) =
Im

(
ε1−1
ε1+1

)
Im

(
ε2−1
ε2+1

)
∣∣∣1−

(
ε1−1
ε1+1

)(
ε2−1
ε2+1

)
e−2qD

∣∣∣2
e−2qD (15)

For the PV interface, we define (ε2 −1)/(ε2 +1)≡ χ ′+ iχ ′′. To derive the dispersion relation
for this system, we rely on the fact that χ ′ ≈ const in the range of frequencies of interest, and
also χ ′′(ω) � χ ′. In addition, we simplify the expression for the reflection coefficient at the
plasmonic emitter interface in two limits of plasmon damping γ ,

ε1(ω)−1
ε1(ω)+1

=

⎧⎪⎨
⎪⎩

ω2
p

ω2
p−2ω2

[
1+ 2iωγ

ω2
p−2ω2

]
if γ � ω2

p−2ω2

2ω
iω2

p
2ωγ

[
1− i(ω2

p−2ω2)

2ωγ

]
if γ � ω2

p−2ω2

2ω

(16)

The dispersion relation for this system, obtained from the the pole of Eq. (15), can be approxi-
mated as

ω0(q) =
ωp√

2

√
1− χ ′e−2qD (17)
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Using Eqns. (15-17), we obtain the approximation for Π(ω), given by Eq. (5). Defining β0 =
ω2

p−2ω2
0

2ω0
, such that β = β0

χ ′′
χ ′ , we observe that for low frequencies, β0 imposes the condition

on γ , that is γ � β0 for the approximation in Eq. (16) to hold. Its maximum value is β MAX
0 =

ω2
p−2ω2

g
2ωg

(increases with decreasing frequency) where ωg is the PV gap frequency, and gives

the upper bound on γ in the low frequency range. In the high frequency limit, ω ≈ ωp/
√

2,
such condition on γ does not exist, and, generally, Eq. (5) remains valid for even higher values
of γ (up to ≈ 0.1eV ). In both γ limits in Eq. (16), Π(ω,q) is correctly approximated by Eq.
(5), as well as in the intermediate range of γ , making it, in general, a good approximation of
Eq. (1). Finally, Eq. (5) is a quasi-lorentzian, because β , in general, is a function of frequency.
However, due to small variation of χ ′′ (Fig. 4) on the scale of γ + β , it is often safe to write
β (ω)≈ β (ω0).

We briefly note that when both media are plasmonic (i.e. ε2 = ε1), the dispersion relation for
this problem can be obtained in a similar way [21], and for ω < ωp/

√
2 is given by,

ω0(q) =
ωp√

2

√
1− e−qD (18)

With this in mind, the spectral transfer function becomes

Π(ω,q) =
(γ/2)2

4(ω −ω0(q))2 + γ2 (19)

It is now easy to understand the effect of γ: while the peak of lorentzian in Eq. (19) is constant,
damping broadens the spectral transfer function Π, increasing the overall integral in Eq. (1).
Assuming γ is small enough, such that Θ(ω0 ±2γ,T )≈ Θ(ω0,T ), we can integrate Eq. (19) to
get ∫

dωΠ(ω,q) =
γ
4

[
π +2tan−1

(
2ω0

γ

)]
(20)

which, for γ � ω0, equals γπ/2, and scales linearly with γ .

Appendix B

In this section, we briefly show how, using the same fluctuational electrodynamics approach,
the expression for the near-field radiation transfer between a suspended graphene sheet and an
arbitrary semi-infinite medium reduces to Eq. (1). We recall how the spectral transfer is calcu-
lated: (i) we first derive the Green’s function relating the electric and the magnetic field to the
thermally induced currents in graphene, (ii) we estimate, using the fluctuation-dissipation theo-
rem, the correlation between these random currents, and finally, (iii) we calculate the Poynting
vector to obtain the net flux between two structures. Following the formalism of Sipe [48], the
electric and the magnetic field in each medium is split into an upward and a downward propa-
gating wave. The unit vectors for the electric field of the s and p polarized wave are ŝ = q̂× ẑ
and p̂i± = (qẑ∓ kziq̂)/ki in medium i, respectively. An electric current sources in medium 1
would generate fields in medium 2, a distance D away, according to the relation [49]

E(r,ω) =
∫

d3r′GE(r,r′,ω)j(r′) (21)

H(r,ω) =
∫

d3r′GH(r,r′,ω)j(r′) (22)
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where [49]

GE(r,r′,ω) =
−ωμ0

8π2

∫
d2q

1
kz1

(ŝTsŝ+ p̂2+Tp p̂1+)eiq(rq−r′q)+ikz2(z−D)−ikz1z′ (23)

GH(r,r′,ω) =
−n2ω
8π2c

∫
d2q

1
kz1

(− p̂2+Tsŝ+ ŝTp p̂1+)eiq(rq−r′q)+ikz2(z−D)−ikz1z′ (24)

Here ni is the index of refraction of medium i, and Ts,p is the generalized Fresnel transmission
coefficient for a two interface system, given by [48]

T =
t10t02eikz0D

1− r02r01e2ikz0D (25)

where ti j,ri j are transmission and reflection coefficients, respectively, on the i- j interface. This
expression is valid for both s and p polarization. To obtain the expression for the radiation
transfer to medium 2, we calculate the Poynting vector flux just above 0-2 interface, at z = D+.
The Poynting vector involves products of the form EαH∗

β which in turn contain current density
product terms jα jβ . The spatial correlation function between different current density sources,
in medium of conductivity σ and at temperature T , is given by the fluctuation dissipation theo-
rem [50]

〈
j∗α(r,ω) jβ (r

′,ω ′)
〉
=

Θ(ω,T )
2π

[σ(ω)+σ∗(ω)]δ (r− r′)δ (ω −ω ′)δαβ (26)

With this in mind, using Eqns. (21)-(24) and writing graphene conductivity as σδ (z), we can
express the z-component of the Poynting vector as [49]

Sz = 2Re
(
ExH

∗
y −EyH

∗
x

)
(27)

where

ExH
∗
y −EyH

∗
x =

n∗2ω2μ0

c(8π2)2

∫
d3r′

∫
d2qd2q′

1
|kz1|2

[
gE

xαgH∗
yα −gE

yαgH∗
xα

]

× Θ(ω,T1)

2π
[σ +σ∗]δ (z′)ei(q−q′)(rq−r′q)eik21(z−D)e−ikz1z′e−ik

′∗
z2(z−D)

where α = x,y (no induced current in the z direction in graphene) and we introduced the short-
hand notation for the dyadics

gE = ŝTsŝ+ p̂2+Tp p̂1+ (28)

gH =− p̂2+Tsŝ+ ŝTp p̂1+ (29)

For suspended graphene (n1 = n0 = 1), we calculate the expression above and obtain

gE
xαgH∗

yα −gE
yαgH∗

xα = |Ts|2
k∗z2

n∗2k0
+ |Tp|2 kz2

n2k0

|kz1|2
k2

0

(30)

Integrating over r′ and q′, evaluating at z = D+ and taking the real part of Eq. (28), together
with following relations for suspended graphene [46]

rG
p =

1− εG

εG
, tG

p =
1

εG
, where εG = 1+

σkz0

2ε0ω
(31)
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and

2ω
Im(rG

p )

Im(kz0)
= |tG

p |2
Re(σ)

ε0
(32)

we recover Eq. (1). Above derivation focuses on p-polarized, evanescent (q > ω/c) modes,
which contribute the most to the radiation transfer in the near field. An alternative way to derive
the near-field transfer in the case of graphene is to calculate, using reciprocity, the radiative
power exchange when medium 2 is the emitter. We then estimate the absorbed power in the
graphene sheet as the product of its conductivity σ and the surface current density that in-
plane, q-component of the electric field at z = 0 would induce. This approach confirms Eq.
(1).

Appendix C

Optimizing the heat transfer ratio as a function of chemical potential μ and relaxation time
τ (Fig. 8) leads to several conclusions. First, flux ratios calculated using μ = 0.25eV and
τ = 10−13s (Fig. 7 and Table 2) for T1 = 600(1200)K were close to their respective optimal
values. Second, slow variation of the optimal flux ratio as a function of chemical potential is
consistent with the broadband nature of spectral transfer in the case of graphene versus the
pure plasmonic emitter (Fig. 7(b)). Finally, leveling of the flux ratio for high enough values of
relaxation time, with a reduction in impurity or phonon scattering, indicates a transition to loss
processes dominated by interband transitions (13).
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Fig. 8. Optimization of the flux ratio Hevan/Hbb for graphene-PV near-field TPV system,
where ωg = 0.17eV , D = 10nm.
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