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Abstract

Material losses in metals are a central bottleneck in plasmonics for many applica-

tions. Here we propose and theoretically demonstrate that metal losses can be suc-

cessfully mitigated with dielectric particles on metallic films, giving rise to hybrid

dielectric–metal resonances. In the far field, they yield strong and efficient scatter-

ing, beyond even the theoretical limits of all-metal and all-dielectric structures. In the

near field, they offer high-Purcell-factor (>5000), high-quantum-efficiency (>90%), and

highly directional emission at visible and infrared wavelengths. Their quality factors

can be readily tailored from plasmonic-like (∼10) to dielectric-like (∼103), with wide

control over the individual resonant coupling to photon, plasmon, and dissipative chan-

nels. Compared with conventional plasmonic nanostructures, such resonances show

robustness against detrimental nonlocal effects and provide higher field enhancement

at extreme nanoscopic sizes and spacings. These hybrid resonances equip plasmonics

with high efficiency, which has been the predominant goal since the field’s inception.
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nanoparticles, nanoantennas, radiative efficiency, light scattering, spontaneous emission,

nonlocality

2



The material composition of an optical nanoresonator dictates sharply contrasting prop-

erties: metallic nanoparticles1–6 support highly subwavelength plasmons with large field

strengths, but which suffer from intrinsic material losses7–11, whereas dielectric nanoparti-

cles 12–15 support exquisite low-loss versatility, but only moderate confinement as their sizes

must generally be wavelength-scale or larger. In this Letter, we propose and theoretically

demonstrate that a combined approach—dielectric nanoparticles on metallic films—can ex-

hibit a unique combination of strong fields and high confinement alongside small dissipative

losses. We show the utility of such hybrid plasmonic dielectric resonators for (i) far-field exci-

tations, where subwavelength silicon-on-silver nanoparticles can scatter more efficiently than

is even theoretically possible for any all-metal or all-dielectric approach, and (ii) near-field

excitations, where highly directional spontaneous emission enhancements >5000 are possible

with quantum efficiencies >90% and even approaching unity. Moreover, the dielectric compo-

sition of the nanoparticle, when placed atop a metallic supporting film, should mitigate much

of the quantum- and surface-induced nonlocal damping that occurs at nanometer scales, an

effect we confirm quantitatively with a hydrodynamic susceptibility model. Furthermore, as

our approach does not rely on nanostructured metallic components, it strongly constrains

parasitic dissipation arising from fabrication imperfections. More broadly, simple geomet-

rical variations provide wide control over the individual resonant-coupling rates to photon,

plasmon, and dissipative degrees of freedom, opening a pathway to low-loss, high-efficiency

plasmonics.

Mitigating loss is a pivotal goal16–19 in plasmonics. When nanoparticles interact with

plane waves, their cross-sections are typically dominated by dissipative absorption. In the

near field, large spontaneous-emission enhancements (Purcell factors) have been demon-

strated20–24 through mode-volume squeezing, but it has been typically accompanied by sub-

50% quantum efficiencies at visible frequencies. In a recent paper25 we showed that optically

thin films enable one to break the 50% radiative-efficiency barrier in all-metal structures. A

subsequent question that emerges is whether dielectric-like near-unity efficiency and large
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plasmonic confinement can be simultaneously achieved. Previously proposed hybrid struc-

tures26,27 with separate dielectric (director) and metal (feed) functionality exhibit better

radiative efficiency, but at the cost of lower enhancements. This tradeoff suggests the no-

tion that strong and efficient plasmonic antennas are only possible at infrared frequencies16,

where they behave akin to perfect conductors and “plasmonic” effects are minor. Quan-

tum corrections in plasmonics 28–31, e.g. due to electron tunneling32–34 and nonlocality35–37,

further limit the ultimate enhancement of plasmonic resonators.

The difficulty of achieving low-loss plasmons has led to the perception that high con-

finement is simply incompatible with low loss, as large fields near/in a metal surface may

necessarily generate significant dissipation. This intuition has led to the burgeoning field

of alternative plasmonic materials19,38,39, whereby highly doped semiconductors or polar

dielectrics ideally exhibit negative real permittivities with small imaginary (lossy) parts.

There has been a complementary effort in all-dielectric nanoparticles12–14 and metamate-

rials14,15, but subwavelength resonances fundamentally require metallic components with

negative permittivities7,16,40. Material engineering has also been proposed in the form of

band engineering41 and gain offsets42. The perceived confinement–loss tradeoff is rigorously

correct for quasistatic plasmonic resonators7, in which the desired resonant frequency di-

rectly sets the fraction of the field intensity that must reside within the lossy metal7,43,44. In

closed non-radiative plasmonic systems, proper geometrical optimization of dielectric-metal

waveguides can reduce propagation losses45; in open systems, the central unanswered ques-

tion is whether their radiative coupling rates can be strongly increased such that radiation

significantly exceeds near-field dissipative losses. Here we show that open resonators com-

prising high-index, low-loss nanoparticles on metallic films can simultaneously achieve high

confinement and high radiative efficiencies, without significant dissipative loss.

Conceptual basis. We propose a hybrid dielectric–metal resonator [Fig. 1(a)] that mit-

igates restrictions from metal losses on plasmonic scattering, emission, and quality factors

to a great extent. The cylindrical symmetry implies that resonances can be labeled with in-

4



(b)

g

Metallic !lm

Dielectric gap

Dielectric 

nanoparticle

h

t

r

x
y

z

ε1

(a)

(n, m) = (1, 1)

xz

y

(n, m) = (3, 2)

g = 0g ≠ 0

xy

z

Ez

+

_

Figure 1: Hybrid dielectric–metal resonances. (a) Schematic of the structure, composed of
a metallic layer of thickness t, a dielectric spacer with gap size g, and a dielectric cylindrical
nanoparticle of permittivity ε1, height h, and radius r. For simplicity, we here consider vac-
uum as the ambient and gap media. (b) Ez mode profiles of two selected hybrid resonances,
for a Si cylinder on a Ag substrate. (Material parameters detailed in Supporting Info S1).
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dices (n,m), enumerating field variations in the radial and azimuthal directions, respectively.

Unlike the widely used all-metal “gap-plasmon” resonances46–50 (hereafter, metal–metal res-

onances), which require a nonzero gap to squeeze the field inside due to their metal-antenna-

like operation4,51, the dielectric–metal resonances strongly confine the resonant field for either

zero or nonzero gap [Fig. 1(b)].
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Figure 2: Analytical model of hybrid dielectric–metal resonances. (a) Pictorial representation
of the hybrid resonance, which approximately satisfies a Bessel-function phase-matching
condition, Eq. 1, imposed on the underlying planar structure. (b) The application of Eq. 1
illustrated in a concrete system (h = 100 nm, with ε1 = 12.25, ε2 = 1, t = ∞, and g = 0):
the underlying planar system’s plasmon dispersion (blue) and the resonant wavevectors knm
(red dashed) dictate resonant frequencies ωnm. ωp and kp denote plasma frequency and
kp = ωp/c (c being speed of light). (c) The resonant wavelengths of the (1, 1) and (2, 1) [Ez

profiles shown in (i) and (ii) respectively] modes versus cylinder radius r, as predicted by
Eq. (1) (solid lines) and numerical computations (circles).

Conceptually, the dielectric–metal resonances can be understood as the surface plasmons

of a planar multilayer metal–dielectric system restricted to specific quantized wavevectors

knm. The nanoparticle’s boundary reflects surface plasmons of general wavevector k without

phase shift. For a cylinder of radius r, the round-trip phase over the nanoparticle is given by

the Bessel function of the first kind Jn(kr). Localized resonances are supported when this

round trip phase vanishes, i.e., at the Bessel zeros Jnm:

knmr ≃ Jnm. (1)
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Resonant frequencies are obtained by sampling the multilayer surface plasmon dispersion

curve, ω(k), at the resonant wavevectors knm ≃ Jnm/r [Fig. 2(b)], as verified by the agree-

ment between analytics and numerics [Fig. 2(c)]. Eq. (1) is most accurate for low-order

resonances, when the plasmon reflection phase52 at the nanoparticle boundary is small

(Re k ≫ Im k). Eq. (1) is also generalizable to other nanoparticle geometries and more

complex multilayers.

This simple, yet accurate picture of the hybrid resonances, as part-plasmon, part-Bessel

resonances, illustrates the separation of key functionality: the plasmonic metal provides

vertical confinement, while the dielectric provides horizontal confinement and dictates the

resonant condition. External radiative coupling occurs at the low-loss dielectric–air interface,

away from the lossy metal, enabling higher radiative efficiencies than those in conventional

plasmonic nanostructures.

Far-field scattering. Metallic nanoparticles generally scatter more strongly than all-

dielectric nanoparticles. Yet this large scattering strength—as measured, e.g., by the optical

cross-section per unit particle volume—is typically accompanied by significant absorption.

Thus for many applications where absorption is undesirable (such as photovoltaics53,54),

the critical figure of merit is scattering strength accompanied by high radiative efficiency.

Here we leverage recently developed optical-response bounds to show that low-loss dielectric

nanoparticles on metallic films can achieve subwavelength scattering with large radiative effi-

ciency, surpassing all-metal and all-dielectric scatterers and approaching fundamental limits.

There has been significant interest in finding general upper bounds to optical response55,56,

and recently we developed new such bounds9–11. Passivity, which requires non-negative

absorbed and scattered powers, imposes limits to the currents that can be excited in an

absorptive scatterer, leading to bounds that are independent of shape, which account for

material loss (∝ Imχ, for material susceptibility χ), and which can incorporate radiative-

efficiency constraints. The bounds demonstrate10 that high radiative efficiency, defined

as η ≡ σsca/ (σsca + σabs) = σsca/σext (where σsca, σabs, and σext are the scattering, ab-
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sorption, and extinction cross sections, respectively), necessarily reduces the largest cross-

section per volume that can be achieved. A natural figure of merit (FOMsca) emerges:

σsca/V × 1/[η(1− η)] (equivalently, σext/σabs×σext/V ), which rewards high scattering cross-

section (σsca/V ) as well as high radiative efficiency (η ≫ 0.5). The FOMsca is subject to the

bound10

FOMsca ≡
σsca/V

η (1− η)
≤ ω

c

|χ(ω)|2

Imχ(ω)

Iinc
I0

, (2)

which depends only on the frequency ω, the material composition, and the incident field

properties. Iinc/I0 is the ratio of the incident-field intensity Iinc (including e.g., reflection

from a planar film in the absence of the nanoparticle) integrated over particle volume to

the intensity of the plane wave. Perfect radiative efficiency (η = 1) is unachievable for

lossy scatterers, such that Eq. (2) cannot diverge. Equation (2) clearly shows that low-

loss materials offer the possibility for strong and high-efficiency scattering, but all-dielectric

structures cannot reach their bounds (in most parameter regimes) for lack of subwavelength

resonances. On the other hand, by equipping dielectric nanoparticles with a subwavelength

resonant mechanism, achieved by coupling to a metallic substrate, these high limits may

actually be approached.

We compare scattering by three types of resonators—(i) a free-space, all-dielectric res-

onator, (ii) a hybrid dielectric-on-metal resonator, and (iii) a metal-on-metal resonator—

at 700 nm wavelength. For each resonator, the dielectric is Si. The free-space dielectric

resonator [Fig. 3(a)] is designed to achieve super-scattering57 (Supporting Info S2), with

η ≈ 96%, via aligned electric- and magnetic-dipole moments. The hybrid silicon-on-silver

resonator [Fig. 3(b)] is optimized to have a similar scattering cross-section, which is achieved

in roughly one-fifth of the volume and with η ≈ 93%. Finally, the radius of the Ag-on-Ag

resonator [Fig. 3(c)] is optimized by radius [cylinder height and gap size same as Fig. 3(b)

for constant Iinc]; notably, it only achieves only ≈ 17% radiative efficiency. Figure 3(d)
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Figure 3: Dielectric–metal resonances offer strong scattering accompanied by modest absorp-
tion, at combined rates that cannot be achieved by all-metal or all-dielectric structures. Top:
Scattering and absorption cross sections of nanoparticles under varying material and envi-
ronment composition: (a) Si cylinder in free-space; (b-c) Si and Ag cylinders, respectively,
above a semi-infinite Ag substrate with gap thickness g = 2nm. Geometrical parameters
(insets) are chosen to align their resonant wavelengths at 700 nm. The three structures are
all illuminated by normally-incident plane waves. In (b-c), the absorption includes the dissi-
pation in both the particle and the substrate. (d) The dielectric–metal structure shows the
highest per-volume scattering cross-section, because it simultaneously achieves large scat-
tering cross-section σsca, high radiative efficiency η, and a small particle volume V . (e) In
the visible regime, the scattering capabilities of metal–metal geometries (Ag–Ag and Au–Au
bounds), free-space metallic (Ag bound), and free-space dielectric (Si free-space) scatterers
all fall short when compared with the dielectric–metal (Si–Ag) scatterer, which also ap-
proaches its own upper bound, per Eq. (2). For the Si–Ag and Ag–Ag structures, the gap
size is fixed at 5 nm; the cylinder (both Si and Ag) height h ranges from 40 nm to 60 nm in
order to tune the resonant wavelength.
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compares the scattering strengths of the three architectures, measured by σsca/V , clearly

showing the dielectric–metal structure’s advantage, which remains compelling across visible

frequencies [Fig. 3(e)]. Fig. 3(e) compares FOMsca of different structures and includes cor-

responding bounds (shaded regions) based on the cylinder height (Supporting Info S3) due

to the oscillatory incident fields in the presence of the reflective film. Different from Fig.

3(a–d), all cross-sections in Fig. 3(e) (except the dashed line) isolate both the radiative and

absorptive contributions of the nanoparticles from that of the underlying film: specifically,

the nanoparticles define the scattering bodies while the substrates modify their environment

and are incorporated into the definitions of the incident field (Supporting Info S4). This

separation isolates the scattering properties of the nanoparticle, and is essential for many

relevant applications. For example, to design nanoparticle scatterers for maximum light

trapping in solar absorbers53,54, it is crucial for the particles to have high radiative efficiency,

whereas the absorber should operate in the opposite regime. At longer wavelengths, the scat-

tering strength of the Si cylinder (blue solid line) approaches its bound, the highest among all

bounds. By replacing the cylinder with a horizontally-aligned nanorod in the dielectric–metal

system, scattering bounds can be saturated across the entire visible spectrum (Supporting

Info Fig. S1). Including film absorption and scattering in the dielectric-metal structure (blue

dashed line), the hybrid resonance retains large FOMsca, still outperforming all-metal and

all-dielectric resonators.

The hybrid resonators have two key advantages over all-dielectric resonators, beyond

the FOMsca comparison in Fig. 3(e). First, the hybrid resonators have tunable radiative

efficiencies with commensurate tunability in their scattering strengths: for instance, if an

application requires 80% efficiency instead of 90%, the hybrid structure can be tuned to

80% radiative-efficiency mark while simultaneously gaining a factor of two in scattering per

volume (σsca/V ). In contrast, no such trade-off mechanism is effective in purely dielectric

structures. Second, while FOMsca of Eq. 2 neatly captures the advantages of simultaneously

large scattering strength and large radiative efficiency, it may overemphasize the relative
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importance of near-unity radiative efficiencies. For many applications, the ≈ 93% radiative

efficiency of the hybrid structure as shown in Fig. 3(b) is practically equivalent to the

≈ 96% radiative efficiency of the all-silicon structure of Fig. 3(a), and yet this modest

difference translates into a factor of two relative reduction in FOMsca as a consequence of

the ∝ 1/(1 − η) dependence of FOMsca. For η ∼ 1, this dependence likely overstates the

comparative benefits of radiative efficiency for most applications, skewing the assessment of

the comparative benefits of all-dielectric resonators. In the following section, we translate

this large-response, high-radiative-efficiency capability from the far field to the near field.

Near-field emission enhancements. Plasmonic losses are particularly acute in the near

field, for sources in close proximity to the resonator, as the source readily accesses lossy

channels that dissipate energy before it can escape into a propagating far-field photon or

guided plasmon. In contrast, with negligible local dissipation, dielectric–metal resonances

can provide high-Purcell, high-efficiency, and high-directionality spontaneous emission en-

hancements. A Purcell factor >5000 with quantum efficiency (including both photon and

plasmon emission) >90% can be achieved in the optical regime. Whereas some previous work

(e.g., Ref.23) has not distinguished between emission into guided plasmons and emission into

radiating photons, we separate each contribution and show that a simple geometrical recon-

figuration (increasing/reducing the metal-film thickness) can swing the emission rate from

plasmon-dominant (> 75%) to photon-dominant (> 75%) or vice versa. Directional photon

and plasmon emission can also be realized via high-order resonances.

We first demonstrate photon emission enhancement with a silicon cylinder on a semi-

infinite Ag substrate, separated by a 2 nm gap [Fig. 4(a)]. Planar dispersion analysis (Sup-

porting Info Fig. S2) suggests that this geometry should provide similar Purcell enhance-

ment, and much higher quantum efficiency, as compared to a 5 nm-gap-size metal–metal

structure. We decompose58 the enhanced emission from a z-oriented dipole into far-field

photon, guided plasmon, and local dissipative channels and obtain corresponding efficiencies

(Supporting Info S7) [Fig. 4(b)]. The (1, 1) and (1, 2) modes achieve Purcell factors (total

11



En
h

an
ce

m
e

n
t

102

103

104

Wavelength (nm)
500 600 700 800 900

Q
u

an
tu

m
 e

!
ci

e
n

cy

0

0.5

1

 (1,1) (1,2)

Γtot/Γ0

Γphoton/Γ0

Γplasmon/Γ0

Γabs/Γ0

Semi-in#nite Ag substrate (t = ∞)

(a) (b)

30

210

60

240

90

270

120

300

150

330

180 0

30

210

60

240

90

270

120

300

150

330

180 0

Plasmon propagation pattern

(n, m) = (1,2) (n, m) = (1,3)

(f )

30

60
90

120

150

180 0

(n, m) = (1,1) (n, m) = (1,2)

Photon radiation pattern

30

60
90

120

150

180 0

(c)

(i) (ii)

Finite Ag #lm (t = 5 nm)

(d)

-200 0 200
x (nm)

0

100

z 
(n

m
)

Si

5 nm Ag

Plasmon

0

30

60

|E/E0|

>5k

>90%

>75%

QErad

QEphoton

QEplasmon

103

104

Wavelength (nm)

600 800 1000 1200
0

0.5

1

 (1,1) (1,2) (1,3) (2,2) (2,3)(e)
>10k

>75%

>90%
QErad

Q
u

an
tu

m
 e

!
ci

e
n

cy
En

h
an

ce
m

e
n

t

Γtot/Γ0

Γphoton/Γ0

Γplasmon/Γ0

Γabs/Γ0

-200 0 200

x (nm)

0

100

z 
(n

m
)

Ag

SiPhoton
0

50

100

|E/E0|

x

y

x

z

xy

z

(n, m)

(n, m)

QEplasmon

QEphoton

Figure 4: High-Purcell, high-efficiency, high-directionality spontaneous emission enhance-
ment with the hybrid resonances. (a) Structure and its (1, 1) modal profile for photon emis-
sion. An r = 80 nm, h = 100 nm silicon cylinder above semi-infinite Ag with a g = 2 nm gap.
A z-oriented dipole (red arrow) is located in the middle of the gap and at x = 67 nm. (b) En-
hancement decomposition reveals strong and efficient photon emission. A high quantum
efficiency >90% and photon efficiency >75% are achieved using the (1,1) mode. (c) Far-field
photon radiation pattern of the (1, 1) and (1, 2) mode. Highly directional photon emission
is achieved using the (1, 2) mode. (d) Structure and its (1, 1) resonance profile for plasmon
emission. A finite-thickness (t = 5 nm) metallic film is considered; all other parameters
mirror those in (a). (e) Enhancement decomposition reveals strong and efficient plasmon
launching. The (1, 1) mode achieves a total radiative efficiency >90% and a plasmon effi-
ciency >75%. (f) Directional plasmon propagation with the (1, 2) and (1, 3) mode.
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enhancement) >5000 and >104, respectively. As importantly, the (1, 1) mode exhibits >90%

quantum efficiency and >75% photon efficiency. Similar efficiencies are achieved for emitters

located throughout the gap region (not shown; adopting the approach in25). In the far field

[Fig. 4(c)], the (1, 1) mode exhibits wide-angle emission, while the (1, 2) mode enables highly

directional photon emission, without the Yagi-Uda configuration26,59 or a periodic lattice60.

Even higher quantum efficiencies, with similar enhancements, are possible with alterna-

tive low-loss dielectric materials (on Ag). AlSb61 nanoparticles offer close-to-unity efficien-

cies below their 2.2 eV direct bandgap. Ge nanoparticles exhibit Purcell factors of 2 × 104

with high radiative (≈ 95%) and photon (≈ 85%) efficiencies at the technologically relevant

1.55 µm wavelength (Supporting Info Fig. S3). Relative to a previously proposed20 infrared

antenna with similar efficiency, this Purcell factor is 10 times higher.

We further demonstrate plasmon generation62 with high efficiency by using an optically

thin (t = 5nm) metal layer [Fig. 4(d)]. The thin metal improves the modal overlap between

the gap and propagating plasmons25. The Purcell factors exceed 104 for all the modes in

Fig. 4(e). Similar to the thick-metal case, high total quantum efficiencies are achieved, with

that of the (1, 1) mode still >90%. Contrary to the thick-metal case, photon emission is

suppressed while plasmon emission is strongly boosted: the plasmon efficiency exceeds 60%

for each of the (1, 1), (1, 2) and (1, 3) modes. The guided-plasmon propagation pattern

[Fig. 4(f)] reveals highly directional plasmon launching.

The use of ultra-thin metallic films is crucial to efficient plasmon generation due to the

mode-overlap improvement between the gap and propagating plasmons25. It is similarly im-

portant for the material quality of the film to remain high at such nanometric thicknesses. Re-

cent progress in thin-film synthesis, via low-temperature slow-speed (≈ 1 angstrom/minute)

epitaxial growth63 demonstrated the feasibility of fabricating pristine metallic films at ever-

smaller thicknesses. Conversely, the choice of semi-infinite thickness for the substrates con-

sidered in this section for enhanced photon emission, and throughout the paper for near-

and far-field enhancements, is primarily for simplicity and conceptual clarity. In practice,
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the behavior of the resonator will be nearly identical for any film with a thickness exceed-

ing silver’s skin depth, & 30 nm; the substrate thickness can consequently be adapted as

necessary for different experimental techniques or practical applications.

Widely Varying Quality Factors. The quasistatic properties of metals7 limit the quality

factors of conventional plasmonic resonances (typically <100 in the optical regime), imposing

severe restrictions on many plasmonic applications. In contrast, dielectric–metal resonances

provide control over the individual absorptive- and radiative-loss rates, providing options

along the entire continuum between the all-metal and all-dielectric extremes.

Using approximately lossless dielectrics, such as TiO2 at visible frequencies, plasmonic

modes with extraordinarily high quality factors can be designed (Fig. 5). As evidenced by

their field patterns [Fig. 5(a–b)], the modes of the dielectric–metal resonator partition into

dielectric-like and plasmonic-like resonances—both of which display strong field confinement

within the gap. Figure 5(c) shows the total, radiative, and absorptive quality factors (Qtot,

Qrad, and Qabs) of the resonances (Supporting Info S8). The dielectric-like modes generally

have higher Qabs than the plasmonic-like modes because of their larger field intensity in the

interior of the dielectric [Fig. 5(a)]. Unlike conventional plasmonic modes, for which Qtot is

mainly limited by material loss, here Qtot is primarily limited by radiation loss, which can be

readily tailored via the nanoparticle geometry and size. The Qtot of these resonances ranges

widely from ∼10 to ∼103, offering a wide, continuous design space for narrow- or broad-band

plasmonic applications.

Robustness to Plasmonic Quantum Corrections. Quantum phenomena beyond the clas-

sical description set the ultimate limitations on the achievable response in plasmonic nanos-

tructures. Chief among these phenomena are nonlocality, spill-out, and surface-enabled

damping28. In Ag, their joint impacts are well-described by a nonlocal, effective model—

GNOR37 (Supporting Info S9), a convective-diffusive hydrodynamic model—causing spectral

blueshifting and broadening in structures with nanoscale features. In comparison, analogous

quantum corrections in dielectrics are negligible due to the absence of free carriers. We show
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resonances. Inset: structure and dipole excitation for quality-factor extraction.
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here that the dielectric–metal resonances display increased robustness to these detrimental

quantum corrections compared to their metal–metal counterparts; taking field enhancement

as a measure, the former is even superior for gaps . 5 nm.
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Figure 6: Hybrid resonances show increased robustness to the detrimental effects of quantum
corrections than their metal–metal counterparts. The (1,1) resonances of Ag or Si nanocylin-
ders above a semi-infinite Ag film, separated by a finite gap [inset (i)]. The radius (height) of
the Si cylinder is 50 nm (40 nm). The Ag cylinder is of identical height but of variable radius,
24–34 nm, to spectrally align the distinct structures’ (nonlocal) resonance wavelength. An
effective nonlocal model37 reveals that (a) spectral blueshifting, (b) linewidth broadening,
and (c) field enhancement (at gap center) reduction, relative to classical (local) predictions,
are greatly mitigated in the hybrid resonators relative to metal–metal resonators. (d) Ac-
counting for nonlocal response, hybrid resonances exhibit higher field enhancement than
the metal–metal resonance for gap sizes . 5 nm (crossover in green marker). Inset (ii), the
induced current distribution, |Jz|, of the metal–metal resonance (gap, g = 4 nm).

Figure 6 examines these quantum corrections for 2 nm to 10 nm gap sizes, where inter-

surface electron tunneling is absent29. For both dielectric–metal and metal–metal structures

(with equal nonlocal resonant frequencies), the resonant wavelength, quality factor, and field

enhancement of the (1, 1) resonance are shown [Fig. 6(a-c)] as functions of gap size. Relative

16



to local, classical predictions, both configurations exhibit blueshifted resonant wavelengths

and reductions in quality factor and field enhancement—all of which increase as the gap

size decreases. Crucially, the metal–metal system suffers more severe reductions than its

counterpart. This observation can be attributed to two cooperating effects: first, in light

of the plasmon–Bessel framework laid out above (Fig. 2), the planar multilayer equiva-

lent approximately dictates the gap-dependent impact of quantum corrections. Accordingly,

since the surface plasmon of the planar metal–dielectric–metal system suffers increased im-

pact of quantum corrections compared to the planar dielectric–metal system (by a factor

1 + e−kg 31 and see Supporting Info Fig. S5), the metal–metal nanoparticle’s performance

is similarly reduced. Second, the metal nanoparticle’s edges host sharply varying current

densities [Fig. 6(d), inset (ii)] and consequently incur large nonlocal corrections in these

regions.

Strikingly, the relative robustness of the hybrid resonances to quantum corrections en-

ables them to demonstrate larger absolute field enhancements, for equal gap sizes . 5 nm

[Fig. 6(d)], than the high-intensity, pure-plasmonic metal–metal resonators. The enhance-

ment in the latter system deteriorates drastically at these gap sizes, due to the above-noted

distinguishing aspects. The comparative robustness of the hybrid resonances suggests a

pathway to stronger light–matter interactions in extreme nanoscale gaps64.

Discussion. In this Letter, we have shown the possibility for low-loss plasmonics by cou-

pling low-loss dielectric nanoparticles with high-confinement metallic substrates. The hybrid

dielectric–metal resonances exhibit strong and efficient scattering and near-field emission en-

hancements, large quality factors, and nonlocal robustness beyond those of conventional

plasmonic nanostructures. The combined advantages of high-confinement and near-unity ra-

diative efficiency make the hybrid platform an ideal candidate for a broad range of plasmonic

applications, such as fluorescence65, photovoltaics53,54, sensing66, and metasurfaces67.

By avoiding any structured metallic components, the architecture has practical fabri-

cation advantages. Single- or poly-crystalline metallic films exhibit much lower losses63,68
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than metallic nanoparticles (which are typically amorphous, with more severe surface rough-

ness). Moreover, this approach avoids the use of any metallic corners or tips that may

strongly absorb due to fabrication imperfections. The dielectric particles considered here

can be synthesized in colloidal form69 and subsequently deposited or, alternatively, can be

lithographically defined in situ70.

The approach to high efficiency presented here can work in tandem with future material

improvements. Just as we have shown that re-architecting common materials can improve

their plasmonic response, new, low-loss materials should be integrated into these hybrid

geometries rather than conventional all-metal structures. Graphene sheets behave optically

very much like ultrathin metallic films, and thus our approach extends to dielectric-on-

graphene architectures for efficient graphene plasmon confinement.

Looking forward, the dielectric-metal approach prompts two directions for new explo-

ration. First, the strong emission enhancement of the dielectric–metal resonances rely on

the high index contrast between the dielectric scatterer and the dielectric spacer (compris-

ing the gap). When the index contrast is reduced, the high efficiencies can be maintained

though at the expense of reduced optical confinement. Thus continued development of very-

low-index (n ≈ 1) materials, such as low-index SiO2
71, aerogels72, and low-index polymers73,

would further increase enhancements and improve efficiencies. Second, quantum effects in

dielectric and dielectric–metal structures at few-nanometer length scales are of increasing

interest, and should be explored further with alternative (e.g., time-dependent density func-

tional theory) electronic and optical models. The prospect of dielectric–metal structures

that are robust to deleterious nonlocal effects is especially enticing for the growing field of

quantum plasmonics74.
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2016, 409.

21



(31) Christensen, T.; Yan, W.; Jauho, A.-P.; Soljačić, M.; Mortensen, N. A. Phys. Rev. Lett.
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S1 Bulk material parameters

Throughout (with the exception of nonlocal calculations, see below), the material permittiv-

ity data of Ag films and nanoparticles are from Wu et al.1 and Palik2, respectively through-

out the Letter. Material loss of Ag is smaller in Wu et al.1 than in Palik2. We adopt

these distinct material parameters for distinct regions to reflect the fact that single-or poly-

crystalline metallic films exhibit much lower losses than metallic nanoparticles (which are

typically amorphous, with more severe surface roughness), as we also stated in the maintext.

The material permittivity data of Si and Au are from Palik2. The permittivity of TiO2 is

from Kim3. In all cases, both real and imaginary dispersions are included.

In the nonlocal calculations, Ag is modelled by Drude parameters (see Supporting Info

Sec. S9).

S2 Spherical harmonics decomposition

The scattering cross-section of an arbitrarily-shaped isolated scatterer in free space can be

decomposed into spherical harmonics. Proper design can spectrally align decoupled channels

that gives rise to super-scattering4. The scattered field can be projected onto a bounding

sphere with radius r around the scatterer, with the scattered electric and magnetic field

being Esca and Hsca. The electric and magnetic multipole coefficients are5

aElm =
(−i)l+1kr

h
(1)
l (kr)E0[π(2l + 1)(l + 1)]1/2

∫ 2π

0

∫ π

0

Y ∗
lm(θ, ϕ)r̂ · Esca(r) sin θ dθ dϕ, (S1)

aHlm =
(−i)lZkr

h
(1)
l (kr)E0[π(2l + 1)(l + 1)]1/2

∫ 2π

0

∫ π

0

Y ∗
lm(θ, ϕ)r̂ ·Hsca(r) sin θ dθ dϕ, (S2)

where Ylm is the scalar spherical harmonics, h
(1)
l is the Hankel function of the first kind, k is

the wavevector, E0 is amplitude of the incident field, and Z is the impedance of the ambient

2



medium. The scattering cross-section is then given by5

σsca =
π

k2

∞∑
l=1

m=l∑
m=−l

(2l + 1)[|aElm|2 + |aHlm|2], (S3)

and the terms in the summation are the contributions from different channels. Due to the

azimuthal symmetry of the nanodisk, |aE(H)
l,m | = |aE(H)

l,−m |.

We note that the spherical harmonics decomposition is no longer suitable for a scatterer

situated on a substrate, as there is no well-defined bounding sphere around the scatterer.

Moreover, there are also scattered guided waves that are not captured by spherical harmonics.

Instead, a decomposition into radiative waves and guided waves should be adopted.

S3 Scattering upper bound for a scatterer near a sub-

strate

Here we briefly present a schematic derivation for the upper bound of the scattering cross-

section of a nanoparticle on or near a substrate. Ref.6 already lays out how to derive such

bounds for the combined nanoparticle–substrate system; here, we simply show how one can

partition the system and bound the nanoparticle’s individual contribution.

The key is to define the “incident” and “scattered” fields appropriately. Instead of defin-

ing the incident field as a plane wave in free space, and the scattered field as the field arising

from the introduction of the nanoparticle and substrate, we instead define the incident field

as the field of the plane wave interacting only with the substrate, and the scattered field as

the field that arises only once the nanoparticle is added. If χs is the substrate susceptibility

and χp is the nanoparticle susceptibility, and Hvol(r) is the Heaviside function that is zero

everywhere except in the volume vol, where it is one, then the incident and scattered fields

3



are solutions of

[
∇×∇×−ω2

c2
(1 + χsHs(r))

]
Einc = 0 (S4)[

∇×∇×−ω2

c2
(1 + χpHp(r))

]
Esca =

ω2

c2
χpHp(r)Einc (S5)

subject to appropriate (radiation and plane-wave source) boundary conditions. The total

field E = Einc + Esca is the solution for the total nanoparticle–substrate system. Then we

can define the absorbed and scattered powers with respect to only the nanoparticle volume

Vp and its bounding surface Sp:

Pabs =
ε0ω

2

∫
Vp

(Imχp) |E|2 dV (S6)

Psca =
1

2
Re

∫
Sp

Esca ×H∗
sca dV. (S7)

Despite the perhaps unconventional definition of the “incident” and “scattered” fields, one

can prove that the absorbed and scattered powers are positive. The absorbed power Pabs is

clearly positive, and the scattered power Psca can be proven positive by using the divergence

theorem, to the exterior of the nanoparticle, which is simply the power radiated by the

currents excited within the nanoparticle subject to the plane-wave-plus-substrate incident

field. Given the positivity, a straightforward application of the bound approach presented

in Ref.6 leads to bounds identical in form to Eq. (58a) of Ref.6, with an additional ratio of

the average intensity of the new incident field (Iinc) to the intensity of a plane wave in free

space (I0):

σsca

V
≤ η (1− η) k

|χ|2

Imχ

Iinc
I0

. (S8)
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The radiative efficiency η is defined as the ratio between radiative and total decay rates7

η ≡ γrad
γtot

=
σsca

σsca + σabs

. (S9)

The ratio Iinc/I0 is given by an integral over the volume of the nanoparticle

Iinc
I0

=
1

Vp

∫
Vp

|Einc|2

|E0|2
dV. (S10)

For the particle–substrate system, we can write Einc = x̂
[
eikz + r⊥e

−ikz
]
, where r⊥ is the

reflection coefficient from the substrate. Then the integral of the incident-field intensity is:

∫
Vp

|Einc|2 =

∫ g+h

g

|eikz + r⊥e
−ikz|2 dz

= 1 + |r⊥|2

+ Re r⊥
sin 2k(g + h)− sin 2kg

kh
− Im r⊥

cos 2k(g + h)− cos 2kg

kh
, (S11)

where g and h are the gap size and height of the particle, respectively.

S4 Scattering and absorption of the entire particle-

substrate system and of the particle alone

Scattering and absorption cross-sections of the entire particle-substrate system, and of the

particle alone, can be explicitly separated.

For the entire system, the scattering cross-section can be obtained by taking a surface

integral of the Poynting vector S of the scattered field on a enclosed surface Ω that also

penetrates the substrate

σsca =
1

2I0

∫
Ω

n̂ · Re(S) dΩ, (S12)
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where n̂ is the unit vector pointing out of the surface and I0 is the source intensity. The

scattering cross-section includes the excitation of plasmons and photons. A volume integral

on the loss per volume inside the particle and the substrate is calculated to extract the

absorption cross-section of the whole system

σabs =
ω

2I0

∫
Vp+Vs

Im ε|E|2 dV, (S13)

where Vp and Vs are volumes of the particle and substrate, respectively. Note that substrate

volume refers to the part of the substrate that is in the vicinity of the particle, such that the

local absorption of the resonances is captured, rather than the parasite absorption of the

propagating plasmons.

For the particle itself, as we described in Section S2, its absorption cross-section can be

obtained by calculating the integral shown in Eq. S13 only in Vp

σ′
abs =

ω

2I0

∫
Vp

Im ε|E|2 dV. (S14)

The extinction of the particle is given by6

σ′
ext =

ω

2I0
Im

∫
Vp

E∗
inc ·P dV, (S15)

where Einc = x̂
[
eikz + r⊥e

−ikz
]
and P is the polarizability induced in the particle. The

scattering cross-section from the particle can be obtained as σ′
sca = σ′

ext − σ′
abs.
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S5 Bound-saturated scattering realized via silicon nanorod

on a silver film
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Figure S1: A high-aspect-ratio silicon nanorod on a silver film approaches bound-limited (sil-
icon dictated) scattering strength across visible frequencies while a free-space silicon nanorod
fall short. The shaded blue and orange area denote achievable scattering strength for Si and
Ag, respectively.

As shown in Fig. S1, in the visible regime, the architecture of a high-aspect-ratio silicon

nanorod on a silver film fully saturates the achievable scattering strength, which is dictated

by the material properties of silicon, while a free-space silicon nanorod falls short. The

shaded regions are the achievable FOMsca for silicon (blue) and silver (orange) calculated via

Eq. 2. In the Si–Ag structure, the gap size is fixed at 10 nm and the height of the nanorod

in tuned such that Iinc = I0 in Eq. 2. Hence, the silicon particle in Si–Ag structure and in

free space share the same bound. The resonant wavelength can be tuned by changing the

length of the nanorod.
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S6 Confinement and dissipative loss of dielectric-dielectric-

metal (DDM) and metal-dielectric-metal (MDM)

waveguides
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Figure S2: Dispersion of a DDM (Si-Air-Ag) and a MDM (Ag-Air-Ag) waveguide. Same
confinement is achieved within the air (a) while loss is greatly mitigated in the DDM waveg-
uide.

In Fig. S2 we show the comparisons of the highly confined plasmon dispersions in a Si-

Air-Ag waveguide (2-nm gap) and that in a Ag-Air-Ag waveguide (5-nm gap). The real

part of the plasmon wavevectors overlaps [Fig. S2(a)] within the frequency range of interest,

indicating the similar local density of states offered from the two structures. On the contrary,

the imaginary parts of the wavevectors exhibit sharp contrast, as the Si-Air-Ag waveguide

shows much lower loss. Recall the physical picture (Fig. 2) that the localized resonances are

created via truncating the superstrate of the waveguide, the hybrid resonances with a 2-nm
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gap should offer the similar Purcell enhancement as that of the metal-metal resonance with

a 5-nm gap, but equipped with much higher quantum efficiency.

S7 Decomposition and far-field patterns of plasmon

and photon emission

The decomposition of photon and plasmon radiation in the entire emission and their corre-

sponding far-field diagrams are computed using a method based on reciprocity arguments

using a freely available software package8. The near field near the nanoparticle is obtained

numerically. For photon radiation, the upper and lower half spaces (with respect to the sub-

strate) are discretized into grids labelled by (k, θ, ϕ). Mode amplitudes of free-space plane

waves are obtained by inner products between the near-field profiles and eikr. For plasmon

radiation, the mode profiles and wavevector kspp of the plasmon is calculated analytically.

The xy plane is again discretized into grids labelled by (kspp, ϕ). Thus, the mode amplitudes

of guided plasmons can be obtained by their inner products with the near field. The total

photon and plasmon radiation can be calculated by integrating the far-field intensity over

all angles.

S7.1 Spontaneous emission enhancement at infrared frequencies

The spontaneous emission enhancement of an antenna is proportional to the local density of

states, which is also proportional to the material enhancement factor |χ|2/Imχ6. At infrared

frequencies, the factor can be one order of magnitude larger than that in the optical regime,

leading to a larger Purcell factor and even higher efficiency, as shown in Fig. S3. Combined

with the good directionality [Fig. 4(c)], these dielectric-metal resonances are especially ideal

for single photon sources10.
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Figure S3: Spontaneous emission enhancement at the telecommunication wavelength using
the dielectric-metal resonance. A Purcell factor of 20000 is achieved with a radiative efficiency
∼ 95% and a photon efficiency of ∼85%. Inset shows the geometry of the structure: a
germanium9 cylinder with radius r = 135 nm and height h = 160 nm on top of a semi-
infinite silver film. The dipole emitter is located at x = 108 nm and at the center of the
2-nm gap.

S7.2 Non-vacuum spacer
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Figure S4: Spontaneous emission enhancement of the dielectric-metal resonance at optical
frequencies with a MgF2 (index ∼ 1.375) spacer. A Purcell factor of 2600 is achieved with
a radiative efficiency > 90% and a photon efficiency of > 70%. Inset shows the geometry of
the structure: a silicon cylinder with radius r = 72 nm and height h = 100 nm on top of a
semi-infinite silver film. The dipole emitter is located at x = 60 nm and at the center of the
2-nm MgF2 gap.

When the n = 1 spacer is replaced with a bulk material, such as a representative low-

index dielectrics MgF2 (index ∼ 1.375), the confinement of the localized plasmon becomes

worse, leading to a reduced Purcell factor [Fig. S4(a)]. However, the high quantum and

photon efficiencies of the emission is maintained [Fig. S4(b)]. As we have highlighted in
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the discussion, there are many new types of artificial materials that offer optical indices

much lower than those of the natural bulk materials. These artificial materials, such as the

low-index SiO2
11 (index ≈ 1), aerogels12 (index ≈ 1), and low-index polymers13, are good

candidates for the spacing layer.

S8 Quality factor decomposition

The total quality factor Qtot is obtained via axis-symmetric eigenfrequency calculation

(COMSOL), i.e., Qtot = Reω/2 Imω. The radiative and absorptive quality factors (Qrad and

Qabs) of the resonances are obtained consequently via near-field dipole excitations (Lumeri-

cal). The total (Γtot/Γ0) and radiative (Γrad/Γ0) enhancements are obtained by integrating

the Poynting vector around the dipole emitter and around the particle, respectively. As

there are spectral overlaps among the resonances [Fig. 5(c)] (although resonant peaks are

well separated), we adopt a summation of Lorentzian oscillator fitting to extract the decay

rates of each individual resonances (Γi
rad and Γi

abs)
7

Γtot/Γ0 =
∑
i

Γi
tot/Γ0

(ω − ωi)2 + Γ2
tot

, (S16)

Γrad/Γ0 =
∑
i

Γi
rad/Γ0

(ω − ωi)2 + Γ2
tot

. (S17)

Combining Eqs. S16 and S17 with Γi
abs = Γi

tot −Γi
rad, one can ready decompose the already-

known Qtot into Qrad and Qabs.

S9 Generalized nonlocal optical response

We adopt the generalized nonlocal optical response (GNOR) theory14,15 to account for quan-

tum effects in the Ag nanoantenna and substrate: this treatment of Ag has been shown to

yield results in good agreement with experiment16–18, despite its neglect of e.g. spill-out and
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its essentially phenomenological account of the mechanisms leading to Kreibig damping—in

effect, by virtue of error cancellation. The GNOR model adds a convective and diffusive

term to the conventional local constitutive equations between the induced current density

J(r, ω) and the electric field E(r, ω). Jointly with Maxwell’s equation, this produces the

following set of coupled equations:

∇×∇× E(r, ω) =
ω2

c2
ε∞E(r, ω) + iωµ0J(r, ω), (S18a)

ξ2

ω(ω + iγ)
∇[∇ · J(r, ω)] + J(r, ω) = σ(ω)E(r, ω), (S18b)

with Drude conductivity σ(ω) = iε0ω
2
p/(ω+ iγ) and permittivity ε(ω) = ε∞+ iσ/(ε0ω). The

GNOR parameter ξ sums the contributions of convective (hydrodynamic account of Fermi

pressure) and diffusive (phenomenological Kreibig damping) corrections

ξ2 = β2 +D(γ − iω), (S19)

with β2 = 3
5
v2f (Fermi velocity, vf = 1.39×106 m/s) andD = 9.62×10−4 m2/s (corresponding

to a Kreibig prefactor A = 1) for Ag15. The coupled differential equations of Eqs. (S18) are of

higher order than their local counterparts: consequently, an additional boundary condition,

n̂ · J = 0 (ensuring charge conservation), is necessary for definiteness.

This nonlocal, effective description of quantum corrections in plasmonic Ag nanostruc-

tures is representative of the experimental reality, provided adjoining surfaces are sufficiently

separated that quantum tunnelling at optical frequencies is negligible—an effect which

requires gaps . 0.5 nm19—and provided the characteristic geometric feature-sizes remain

& 1 nm. For the structures studied in this Letter, these conditions are rigorously fulfilled.
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S9.1 Bulk material parameters for GNOR calculations

We adopt a simple Drude-description of Ag’s permittivity (i.e., we ignore spectral dispersion

in ε∞):

ε = ε∞ −
ω2
p

ω(ω + iγ)
. (S20)

Specifically, for the Ag film we take ε∞ = 3.3, ωp = 1.35 × 1016 rad/s, and γ = 3.34 ×

1013 rad/s, matching the state-of-the-art material qualities attainable in Ag films1,20,21. In

Ag nanoparticles we adopt the same values, except for an increased decay-rate γ = 1.40 ×

1014 rad/s2. This distinction reflects the fact that metallic films, fabricated e.g. by low-

temperature epitaxial-growth1 or by high-temperature sputtering21, have significantly lower

Ohmic losses than that attainable in nanoparticles because of their higher crystallinity and

lower surface roughness.

The Si nanoparticles are, as noted in the Letter, treated in a local framework, with

material properties from Ref.2. We emphasize that a local treatment of Si is justified, given

the bound nature of the electrons which contribute to the optical properties of Si in the

considered frequency range.

S9.2 Numerical simulations of nanoparticle–substrate system

The calculations depicted in Fig. 6 are performed using COMSOL, achieved by numerically

solving Eqs. (S18a) and (S18b) self-consistently. We exploit the structure’s rotational sym-

metry by decomposing the incident plane waves in cylindrical harmonics which allows us to

calculate the near-field properties for each azimuthal index m separately. As our focus is

on the lowest order (1, 1) resonance, we restrict our considerations to the m = 1 channel.

This reduces the dimensionality of the computational problem from three to two, allowing

significant reductions in computational time and memory requirements.
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S9.3 Nonlocal effects in planar waveguide structures

As noted in the main text, the underlying planar three-layer waveguide approximately dic-

tates the gap-dependence of the nanoparticle on a substrate architecture, also with respect to

nonlocal effects. For this reason, we discuss here the planar three-layer waveguide (assumed

translation invariant in the xy-plane) in the context of a simple hydrodynamic (i.e. D = 0

and β ̸= 0) model. We consider two distinct setups: (i) a metal–dielectric–metal (MDM)

waveguide, built from top-and-bottom layers of a simple metal (Wigner–Seitz radius rs = 3;

corresponding to a lossless Drude metal of plasma frequency ωp = 9.0705 eV), separated by

a vacuum gap of extent g, and (ii) a dielectric–dielectric–metal (DDM) waveguide, consisting

of a bottom layer of a simple metal (rs = 3), a vacuum gap of extent g, and a top layer of

non-unity permittivity ε = 3.52.

Figure S5(a) presents the dispersion of the Ez-symmetric (antisymmetric potential) plas-

mon mode of the MDM and DDM waveguides in both local and nonlocal treatments for

three gap-sizes, obtained by numerically solving the retarded dispersion equations22. The

spectral deviation between local and nonlocal treatments, δωnonlocal
local ≡ ωnonlocal − ωlocal, is

further examined in Fig. S5(b): the MDM waveguide exhibits larger nonlocal corrections

than its DDM counterpart throughout. Working in a nonretarded framework23, the spectral

deviation can be well-approximated by a leading-order treatment in βk/ωlocal ≪ 1, allowing

the following analytical approximations for the MDM and DDM waveguides:

δωnonlocal
local

∣∣
mdm

≃ 1
2
βk

√
1 + e−kg

1− e−kg
+O[(βk)2], (S21a)

δωnonlocal
local

∣∣
ddm

≃ 1
2
βk

√
(ε+ 1) + (ε− 1)e−2kg

(ε+ 1)− (ε− 1)e−2kg
+O[(βk)2]. (S21b)

These approximate analytical expressions agree well with the fully retarded numerical results,

see Fig. S5(b), particularly for kg ≪ 1 and k ≫
√
εω/c. Moreover, they allow the synthesis

of a simple estimate of the relative impact of nonlocality—and, more broadly, any surface-
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Figure S5: Low-energy plasmon modes of MDM and DDM waveguides (defined in text) in
local and nonlocal treatments, across three gap-sizes. (a) Frequency dispersion with wave
vector k. Only modes which are bound in both bottom and top layers are depicted. (b) The
spectral deviation δωnonlocal

local between local and nonlocal treatments. Unbound (i.e. radiating)
DDM modes suffer no nonlocal correction. Nonretarded, leading-order approximations, i.e.
Eqs. (S21), agree well with the full, retarded calculations. In all cases, the DDM suffers less
nonlocal correction than the MDM.

related quantum corrections23—by their ratio:

δωnonlocal
local

∣∣
mdm

δωnonlocal
local

∣∣
ddm

≃

√√√√1 + e−kg

1− e−kg

/
(ε+ 1) + (ε− 1)e−2kg

(ε+ 1)− (ε− 1)e−2kg
≃ 1 + e−kg − 1

2

ε− 3

ε+ 1
e−2kg, (S22)

with the last step assuming kg ≫ 1. These results demonstrate that the DDM waveguide

is less impacted by nonlocal corrections than the MDM waveguide; in turn, the dielectric

nanoparticle architecture inherits this favorable aspect. In concert with a reduced nonlocal

penalty due to the absence of sharp metallic edges, this facilitates the dielectric nanoparticle

architecture’s superior robustness to gap-dependent quantum-corrections (relative to its all-

15



metallic counterpart), as discussed in main text.
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053801.

(8) Yang, J.; Hugonin, J.-P.; Lalanne, P. ACS Photon. 2016, 3, 395–402.

(9) Tauc, J.; Abraham, A. Czechoslovak Journal of Physics B 1969, 19, 1246–1254.

(10) Aharonovich, I.; Englund, D.; Toth, M. Nat. Photon. 2016, 10, 631–641.

(11) Xi, J.-Q.; Schubert, M. F.; Kim, J. K.; Schubert, E. F.; Chen, M.; Lin, S.-Y.; Liu, W.;

Smart, J. A. Nat. Photon. 2007, 1, 176–179.

(12) Sun, Y.; Forrest, S. R. Nat. Photon. 2008, 2, 483–487.

(13) Groh, W.; Zimmermann, A. Macromolecules 1991, 24, 6660–6663.

(14) Mortensen, N. A.; Raza, S.; Wubs, M.; Søndergaard, T.; Bozhevolnyi, S. I. Nat. Com-

mun. 2014, 5, 3809.

16



(15) Raza, S.; Bozhevolnyi, S. I.; Wubs, M.; Mortensen, N. A. J. Phys.: Condens. Matter

2015, 27, 183204.

(16) Raza, S.; Stenger, N.; Kadkhodazadeh, S.; Fischer, S. V.; Kostesha, N.; Jauho, A.-P.;

Burrows, A.; Wubs, M.; Mortensen, N. A. Nanophotonics 2013, 2, 131–138.

(17) Raza, S.; Kadkhodazadeh, S.; Christensen, T.; Di Vece, M.; Wubs, M.;

Mortensen, N. A.; Stenger, N. Nature Commun. 2015, 6 .
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