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Abstract: We develop a general framework of evaluating the Stimulated
Brillouin Scattering (SBS) gain coefficient in optical waveguides via the
overlap integral between optical and elastic eigen-modes. This full-vectorial
formulation of SBS coupling rigorously accounts for the effects of both
radiation pressure and electrostriction within micro- and nano-scale waveg-
uides. We show that both contributions play a critical role in SBS coupling
as modal confinement approaches the sub-wavelength scale. Through
analysis of each contribution to the optical force, we show that spatial
symmetry of the optical force dictates the selection rules of the excitable
elastic modes. By applying this method to a rectangular silicon waveguide,
we demonstrate how the optical force distribution and elastic modal profiles
jointly determine the magnitude and scaling of SBS gains in both forward
and backward SBS processes. We further apply this method to the study of
intra- and inter-modal SBS processes, and demonstrate that the coupling
between distinct optical modes are necessary to excite elastic modes with all
possible symmetries. For example, we show that strong inter-polarization
coupling can be achieved between the fundamental TE- and TM-like modes
of a suspended silicon waveguide.

© 2013 Optical Society of America

OCIS codes: (190.2640) Stimulated scattering, modulation, etc.; (220.4880) Optomechanics;
(190.4390) Nonlinear optics, integrated optics; (130.2790) Guided waves.

References and links
1. R. Y. Chiao, C. H. Townes, and B. P. Stoicheff, “Stimulated Brillouin scattering and coherent generation of

intense hypersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964).
2. P. Dainese, P. Russell, N. Joly, J. Knight, G. Wiederhecker, H. Fragnito, V. Laude, and A. Khelif, “Stimulated

Brillouin scattering from multi-ghz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat.
Phys. 2, 388–392 (2006).

3. A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Pho-
tonics 2, 1–59 (2010).

4. M. S. Kang, A. Nazarkin, A. Brenn, and P. S. J. Russell, “Tightly trapped acoustic phonons in photonic crystal
fibres as highly nonlinear artificial raman oscillators,” Nat. Phys. 5, 276–280 (2009).

#197459 - $15.00 USD Received 12 Sep 2013; revised 18 Nov 2013; accepted 18 Nov 2013; published 12 Dec 2013
(C) 2013 OSA 16 December 2013 | Vol. 21,  No. 25 | DOI:10.1364/OE.21.031402 | OPTICS EXPRESS  31402



5. R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden,
and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19, 8285–8290 (2011).

6. M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at x-band (11-ghz) rates,” Phys.
Rev. Lett. 102, 113601 (2009).

7. A. Byrnes, R. Pant, E. Li, D. Choi, C. G. Poulton, S. Fan, S. Madden, B. Luther-Davies, and B. J. Eggleton,
“Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Bril-
louin scattering,” Opt. Express 20, 18845–18854 (2012).

8. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics
3, 91–94 (2009).

9. M. S. Kang, A. Butsch, and P. S. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic
crystal fibre,” Nat. Photonics 5, 549–553 (2011).

10. C. G. Poulton, R. Pant, A. Byrnes, S. Fan, M. J. Steel, and B. J. Eggleton, “Design for broadband on-chip
isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides,” Opt. Express
20, 21235–21246 (2012).

11. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,”
Science 318, 1748–1750 (2007).

12. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L.
Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
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1. Introduction

Stimulated Brillouin Scattering (SBS) is a third-order nonlinear process that produces efficient
coupling between traveling-wave photons and phonons [1,2]. Nonlinear coupling through SBS
has been widely studied, yielding applications such as optical frequency conversion [3–5], ra-
dio frequency signal processing [6, 7], optical isolators [8–10] stopped light [11], slow light
[12–16], distributed temperature sensing [17], cooling [18,19], oscillator [20], and novel lasers
sources [21, 22]. Brillouin nonlinearities, which are known to be among the strongest nonlin-
earities in optical fibers, also show promise as the basis for a number of chip-scale signal pro-
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cessing applications through the use of highly nonlinear chalcogenide waveguides [5,7,10,16].
At a basic level, the versatility of Brillouin processes springs from our ability to understand
and manipulate this powerful form of photon-phonon coupling in a large variety of waveguide
systems.

Over the past several decades, various conceptually simple and useful methods have been
employed to predict the strength of SBS coupling within guided-wave systems based on modal
overlap integrals [4, 9, 23–30]. Through these treatments, which have proven remarkably ac-
curate for the prediction of SBS in microscale waveguides and fibers, one is often able view
Brillouin coupling as arising from intrinsic (or bulk) material nonlinearities. Note that the bulk
Brillouin nonlinearity is conventionally defined by a combination of the dispersive, mechani-
cal, and photoelastic properties of a given nonlinear medium [23–25]. This leads to the simple
and intuitive notion that Brillouin nonlinearities may be viewed as an intrinsic third-order
nonlinearity, akin to Raman and electronic nonlinearities. Within this paradigm, one expects
SBS coupling to scale inversely with waveguide modal area, yielding higher nonlinearities as
waveguide dimensions are reduced. This paradigm works remarkably well in predicting SBS
nonlinearities in a wide variety of fiber and waveguide systems. However, these conventional
notions of Brillouin coupling (as a bulk material nonlinearity) fail to predict SBS coupling
within nanophotonic silicon waveguides. Despite the radical enhancement of both Raman and
electronic nonlinearities in silicon nanophotonics, stimulated Brillouin scattering has entirely
eluded observation in silicon waveguides for over a decade, due to the more complex nature of
phonon confinement and photon-phonon coupling within nanoscale silicon waveguides [31].

Only recently, with the realization of hybrid photonic-phononic waveguides, has it been pos-
sible to demonstrate radically enhanced and engineerable forms of stimulated Brillouin scat-
tering in silicon nanophotonics [32]. Within such nanoscale silicon waveguides, strong light-
boundary interactions were found to have a significant impact on photon-phonon coupling. For
example, sub-wavelength confinement within high-index-contrast silicon waveguides give rise
to new radiation pressure mediated forms of SBS [31–33]. Moreover, elastic wave displace-
ments at the discontinuous boundaries of high-index-contrast waveguides also give rise to non-
linear polarization-currents that yield significant contribution to the overall Brillouin nonlinear-
ity [31]. These new contributions to SBS coupling require a treatment that accurately captures
the full-vectorial nature of these boundary interactions [31], and accounts for the emergence of
strong radiation pressure induced couplings, which have been shown to play a crucial role in
the dynamics of a range of recent nano-optomechanical systems [34–42].

In this article, we present a general method of calculating SBS gain that accurately captures
these physics of SBS coupling due to electrostriction and boundary induced radiation pres-
sures in nanoscale silicon photonics. More generally, this method is applicable to the study
of Brillouin nonlinearities in any system consisting of transparent dielectric media with any
characteristic length-scale. Through this treatment, we develop the general form of the optical
force distributions produced by the two interacting optical eigen-modes (e.g. pump and Stokes
modes) and the elastic eigen-modes which mediate photon-phonon coupling. Most previous
formulations of SBS treat the optical modes as linearly polarized and often simplify the elastic
mode as a scalar density wave. However, we show that the vector nature and the nontrivial
spatial distribution of both optical and elastic eigenmodes have to be fully considered. In what
follows, the time dependent forms of the electrostrictive and radiation pressure induced forces
are used to formulate analytical expressions for the overall Brillouin gain via an overlap in-
tegral with the guided elastic-wave eigenmodes. Full-vectorial formulations of the elastic and
electromagnetic fields allow the use of the most general form of dielectric and elastic tensors,
necessary to treat complex nanophotonic systems in this paper. Both forward-SBS (FSBS) and
backward-SBS (BSBS) geometries are explicitly treated, and both intra-modal and inter-modal
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coupling examples are given in what follows.
Throughout this paper, we refer to radiation pressure induced forces as those derived from the

Maxwell stress-tensor (or resulting from the scattering or reflection of light off of boundaries).
Whereas electrostrictive forces are defined as those resulting from the coupling of electromag-
netic energy to strain degrees of freedom through nonzero photoelastic constants. We show that
the boundary induced nonlinearities, derived from these two effects, can dominate as the mode
is confined to subwavelength- or nano-scales. With such confinement, boundary interactions
(or boundary induced nonlinearities) have a larger role to play than in microscale waveguides
due to the large fields produced at the nanoscale boundaries of high-index contrast waveguide
systems.

Armed with this formalism, we study the SBS process in a silicon rectangular waveguide.
We show that the optical forces responsible for driving FSBS processes are almost entirely
transverse. The constructive combination of electrostrictive forces and radiation pressure occurs
for certain elastic modes with matching symmetries, and results in large FSBS gain. In contrast,
the electrostrictive optical forces in the BSBS configuration are largely longitudinal, yielding
nontrivial interference between radiation pressure and electrostrictive couplings as a function of
waveguide dimension. Additionally, we show that this formulation of SBS converges perfectly
with conventional scalar SBS theories in the plane-wave limit. We further apply this formalism
to the study of inter-modal SBS processes involving inter-polarization coupling between TE-
like and TM-like modes of a silicon waveguide. Moreover, we show that by coupling optical
modes with distinct spatial symmetries, optical forces with a variety of possible symmetries
can be generated. These new degrees of freedom offer great flexibility, enabling the generation
of elastic modes with a wide range of spatial symmetries, and new forms of Brillouin coupling.

It should be noted that the existence of reflecting material boundaries within a waveguide
system can result in hybridization between transverse and longitudinal elastic waves [43]. This
elastic-mode hybridization can produce coupling to a large number of complicated eigenmodes
with disparate spatial profiles through Brillouin interactions. The following theoretical frame-
work offers a powerful and simple way to link the excitations of individual elastic mode with the
properties of pump and Stokes waves. On one hand, this framework elucidates the contributions
from individual elastic modes to the overall SBS gain coefficient. This allows for straightfor-
ward conceptualization and design of traveling-wave structures that deliberately enhance or
suppress SBS for particular elastic modes. On the other hand, this knowledge also enables one
to devise optical fields that target the generation of specific phonon modes, when considered in
the context of efficient transduction of coherent signals between optical and acoustic domains.

2. Calculating the SBS gain via overlap integral

The interference between pump and Stokes waves generates a time-varying and spatially-
dependent optical force distribution that drives excitation of Brillouin active phonons. On reso-
nance, the optical force is simultaneously frequency-matched and phase-matched to an elastic
mode, resulting in strong elastic-wave excitations in the waveguide, and efficient coupling be-
tween pump and Stokes-wave photons. We start with a general framework of calculating the
SBS gain from the field profiles of both the optical and elastic eigen-modes of a waveguide.
The axial direction of the axially invariant waveguide is designated as the x direction. In a typi-
cal SBS process, a pump wave Epei(kpx−ωpt) and a Stokes wave Esei(ksx−ωst) generate traveling
optical forces that vary in space with a wavevector q = kp− ks, and oscillate in time at the beat
frequency Ω = ωp−ωs.

Depending on the launching conditions, SBS can be categorized into forward SBS (FSBS)
and backward SBS (BSBS). In FSBS, the pump and Stokes waves are launched in the same
direction, generating nearly axially-invariant optical forces, which excite standing-wave-like
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elastic modes [4,32]. In BSBS, the pump and Stokes waves propagate along opposite directions,
generating axially-varying optical forces, which excite traveling-wave elastic modes. Besides
launching the pump and Stokes waves into the same spatial optical mode of the waveguide,
SBS can also occur with the pump and Stokes waves in disparate spatial modes, for example,
by launching into modes with different polarizations [30]. Such inter-modal SBS are important
for optical signal isolation [9, 29, 44] and Brillouin cooling of mechanical devices [19]. These
different launching conditions will be individually addressed in the later part of the article.

The optical forces that mediate SBS includes the well-known electrostriction force [19, 45],
and radiation pressure whose contribution is only recently recognized [31]. Electrostriction is
an intrinsic material nonlinearity, which arises from the tendency of materials to become com-
pressed in regions of high optical intensity. Conventionally, only the electrostriction in the form
of a body force is considered as the dominant component [24,25]. However, the discontinuities
in both optical intensities and photoelastic constants generate electrostriction pressure on ma-
terial boundaries, abundant in nanostructures. Radiation pressure is another boundary nonlin-
earity, arising from the momentum exchange of light with the material boundaries with discon-
tinuous dielectric constant [46, 47]. Radiation pressure is also radically enhanced in nanoscale
structures, exemplified in a wide variety of optomechanics applications [34–42]. In this for-
malism, by considering the superposition of all three forms of optical forces, not only can the
SBS gain coefficient be more accurately evaluated for nanoscale waveguides, one can also take
advantage of the coherent interference between these three components, to gain new degree of
freedoms of tailoring SBS process.

This total optical force, i. e. the coherent superposition of all three components mentioned
above, can excite mechanical vibrations which enable the parametric conversion between pump
and Stokes waves. Power transfer between guided pump and Stokes waves along the axis of
propagation (x) can be describe by the following relation [24]

dPs

dx
= gPpPs−αsPs. (1)

Here, Pp and Ps are the guided power of the pump and Stokes waves, and g is the SBS gain.
Through particle flux conservation, SBS gain can be expressed as [31]

g(Ω) =
ωs

2ΩPpPs
Re
〈

f,
du
dt

〉
, (2)

where f is the total optical force generated by pump and Stokes waves, and u describes the
elastic deformation of the waveguide induced by f. The inner product between two vector fields
is defined as the overlap integral over the waveguide cross-section

〈A,B〉,
∫

A∗ ·Bds. (3)

The optical power of a waveguide is given by P = vg〈E,εE〉/2, where vg is the optical group
velocity. Therefore, we have

g(Ω) =
2ωs

vgpvgs

Im〈f,u〉
〈Ep,εEp〉〈Es,εEs〉

. (4)

To further simply Eq. (4), we consider the equation governing the elastic response ue−iΩt
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under external forces fe−iΩt . We begin with the ideal case, neglecting the elastic loss [43]

−ρΩ
2ui =

∂

∂x j
ci jkl

∂ul

∂xk
+ fi. (5)

Here ρ is the mass density, and ci jkl is the elastic tensor. ci jkl has two important properties: it
is symmetric with respect to the first two and last two indices (ci jkl = c jikl , ci jlk = ci jkl); the
interchange of the first two indices and the last two does not affect the value of ci jkl : ckli j = ci jkl
[43]. In the absence of a driving force f, the equation above becomes the eigen-equation of
elastic waves. Using the symmetry properties of ci jkl , we can show that the operator in the left
hand side of the eigen-equation is Hermitian [48]. Therefore, the eigen-mode ume−iΩmt satisfies
orthogonality condition

〈um,ρun〉= δmn〈um,ρum〉. (6)

When f is present, u can be decomposed in terms of eigen-modes u = ∑m bmum. Using the
orthogonality condition, we have

bm =
〈um, f〉
〈um,ρum〉

1
Ω2

m−Ω2 . (7)

We now consider the more general and practical cases, where elastic loss is present. The com-
monly encountered elastic loss mechanisms are air damping, thermoelastic dissipation, and
clamping losses [49]. The first-order effect of loss can be captured by changing Ωm to a com-
plex value, Ωm− iΓm/2. Assuming quality factor Qm = Ωm/Γm is well above 1, we have,

bm =
〈um, f〉
〈um,ρum〉

1
ΩmΓm

Γm/2
Ωm−Ω− iΓm/2

. (8)

Inserting Eq. (8) into Eq. (4), we can see that the total SBS gain is the sum of SBS gains of
individual elastic modes, expressed as

g(Ω) = ∑
m

Gm
(Γm/2)2

(Ω−Ωm)2 +(Γm/2)2 . (9)

The SBS gain of a single elastic mode has a Lorentzian shape and a peak value of

Gm =
2ωQm

Ω2
mvgpvgs

|〈f,um〉|2

〈Ep,εEp〉〈Es,εEs〉〈um,ρum〉
. (10)

where we have used the fact that Ω� ωp,ωs and ωp ≈ ωs = ω .
Equation (10) provides a general method to calculate the SBS gain of a waveguide with arbi-

trary cross-section. For example, with the finite element method, one can numerically calculate
the pump and Stokes optical modes at a given ω and the elastic modes at the phase-matching
wavevector q= kp−ks. The SBS of each elastic mode can then be calculated by taking the over-
lap integral between the derived optical forces and the elastic displacement. Here, body forces
are integrated over the waveguide cross-section, while pressures are integrated over the waveg-
uide boundaries. Overall, Eq. (10) shows that the SBS gain is determined by the frequency
ratio, the elastic loss factor, the optical group velocities, and the overlap integral between opti-
cal forces and elastic eigen-modes. In addition, Eq. (10) provides a convenient way to separate
the effects of various optical forces. Specifically, the overlap integral is the linear sum of all

#197459 - $15.00 USD Received 12 Sep 2013; revised 18 Nov 2013; accepted 18 Nov 2013; published 12 Dec 2013
(C) 2013 OSA 16 December 2013 | Vol. 21,  No. 25 | DOI:10.1364/OE.21.031402 | OPTICS EXPRESS  31408



optical forces, which becomes
〈f,um〉= ∑

n
〈fn,um〉. (11)

The amplitudes of individual overlap integrals determine the maximal potential contribution
from each form of optical forces, while their relative phases produce the interference effect.

A key step of applying Eq. (10) is to calculate optical forces from pump and Stokes waves.
Electrostriction forces are derived from electrostriction tensor, with an instantaneous elec-
trostriction tensor is given by [45]

σi j =−
1
2

ε0n4 pi jklEkEl . (12)

where n is the refractive index, and pi jkl is the photoelastic tensor [50]. In a waveguide sys-
tem, the total electric field is given by (Epei(kpx−ωpt) + Esei(ksx−ωst))/2 + c.c. Inserting this
expression to Eq. (12), and filtering out the components with frequency Ω, we arrive at the
time-harmonic electrostrictive tensor of the form σi jei(qx−Ωt), with components

σi j =−
1
4

ε0n4 pi jkl(EpkE∗sl +EplE∗sk). (13)

Since common materials used in integrated photonics have either cubic crystalline lattice (e.g.
silicon) or are isotropic (e.g. silica glass), and most waveguide structures are fabricated to be
aligned with the principal axes of the material, we consider the crystal structure of the waveg-
uide material to be symmetric with respect to plane x = 0, plane y = 0, and plane z = 0. There-
fore, pi jkl is zero if it contains odd number of a certain component. In the contracted notation,
Eq. (13) can be written as

σxx
σyy
σzz
σyz
σxz
σxy

=−1
2

ε0n4


p11 p12 p13
p12 p22 p23
p13 p23 p33

p44
p55

p66




EpxE∗sx
EpyE∗sy
EpzE∗sz

EpyE∗sz +EpzE∗sy
EpxE∗sz +EpzE∗sx
EpxE∗sy +EpyE∗sx

 . (14)

The electrostrictive force is given by the divergence of electrostrictive tensor. In a system con-
sisting of domains of homogeneous materials, electrostrictive forces can exist inside each ma-
terial (producing an electrostriction body force), and at interfaces where discontinuous stresses
are present (yielding an electrostrictive pressure). From the divergence of Eq. (14), the elec-
trostrictive body force becomes fESei(qx−Ωt), with vector components

f ES
x = −iqσxx−∂yσxy−∂zσxz

f ES
y = −iqσxy−∂yσyy−∂zσyz (15)

f ES
z = −iqσxz−∂yσzy−∂zσzz.

Similarly, the electrostrictive pressure on the interface between material 1 and 2 is given by
FESei(qx−Ωt), with components

FES
i = (σ1i j−σ2i j)n j. (16)

Above, we assume that normal vector n points from material 1 to material 2. With a partic-
ular choice of phase, an optical mode of the waveguide, Eei(kx−ωt), can be expressed as an
imaginary-valued Ex and real-valued Ey, Ez. From Eq. (14), we can see that σxx, σyy, σzz, and
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σyz are real while σxy and σxz are imaginary. From Eqs. (15) and (16), we can also see that for
both electrostriction body force and electrostriction pressure, the transverse component is real
while the longitudinal component is imaginary.

The radiation pressure contribution to the optical force is derived from Maxwell Stress Tensor
(MST). For a dielectric system (µ = 1) without free charges (ρ = 0,J = 0), radiation pressure
is localized where the gradient of ε is nonzero [51–53]. For a heterogeneous system consisting
of regions of homogeneous materials, radiation pressure only exists on the interfaces where the
gradient of ε is nonzero. Since the magnetic fields are continuous at the dielectric boundary, one
can show that only the electric part of MST contributes to radiation pressure in this dielectric
system. The electric part of instantaneous MST is

Ti j = ε0ε(EiE j−
1
2

δi jE2). (17)

The instantaneous pressure on the interface between material 1 and 2 is

FRP
i = (T2i j−T1i j)n j. (18)

By decomposing the electric field into its normal and tangential components with respect to the
dielectric interface E = Enn+Et t, and using the boundary condition ε1E1n = ε2E2n = Dn and
E1t = E2t = Et , we can show that

FRP =−1
2

ε0E2
t (ε2− ε1)n+

1
2

ε
−1
0 D2

n(ε
−1
2 − ε

−1
1 )n. (19)

Inserting the total electric field (Epei(kpx−ωpt)+Esei(ksx−ωst))/2+ c.c to the expression above,
and filtering out the components with frequency Ω, we have a time-harmonic radiation pressure
of the form FRPei(qx−Ωt), where FRP is of the form

FRP =−1
2

ε0EptE∗st(ε2− ε1)n+
1
2

ε
−1
0 DpnD∗sn(ε

−1
2 − ε

−1
1 )n. (20)

Equation (20) reveals that radiation pressure is always normal to the dielectric interface, point-
ing from high to low index medium. For axially invariant waveguide, this also means radiation
pressure is transverse and real.

Combining Eq. (10) with the calculation of optical forces, we are ready to numerically
explore the SBS nonlinearity of nanoscale waveguides. Before that, it is instructive to com-
pare Eq. (10) with the conventional BSBS gain [25]. We can show that Eq. (10) converges to
the conventional BSBS gain under the plane-wave approximation for both optical and elas-
tic modes. Specifically, consider the coupling between two counter propagating optical plane-
waves through an elastic plane-wave. The optical plane-wave is linearly polarized in y direc-
tion. The elastic plane-wave is purely longitudinal traveling at velocity VL. Under this setup,
nonzero optical forces include the longitudinal electrostriction body force, and the transverse
components of electrostriction pressure and radiation pressure. In the plane-wave limit, only the
longitudinal electrostriction body force contributes nonzero overlap integral. This longitudinal
force component reduces to

f ES
x =−iqσxx =

1
2

iqε0n4 p12E2
y . (21)

Inserting this expression into Eq. (10), and using the fact that Ω = qVL and q = 2k, we have an
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overall Brillouin gain

G0 =
ω2n7 p2

12
c3ρVLΓ

1
A
, (22)

where A is the cross-sectional area of the waveguide. Note that this result is in perfect agreement
with the conventional BSBS computed using widely accepted scalar SBS treatments of gain
[25]. For waveguides with transverse dimension much greater than the free-space wavelength
of light, the plane-wave approximation is valid, and Eq. (10) converges to G0. For nanoscale
waveguides, Eq. (10) can deviate from G0 significantly because of the vectorial nature of optical
and elastic modes, nontrivial mode profiles, as well as the enhanced boundary nonlinearities.

3. Silicon rectangular waveguide: intra-modal coupling

In this section, we apply the general formalism to study the intramodal SBS process of a sili-
con waveguide suspended in air (Fig. 1 insert). Intramodal process is concerned with the con-
figuration where the pump and the Stokes waves are launched into the same spatial optical
mode of the waveguide. And silicon waveguides are of particular interest, because they can be
fabricated from standard SOI platforms. In addition, a suspended silicon waveguide provides
tight optical confinement through its large refractive index and nearly perfect elastic confine-
ment through a dramatic impedance mismatch with air. Moreover, since radiation pressure is
proportional to the difference of dielectric constants across waveguide boundaries and elec-
trostriction force is quadratic over refractive index, both kinds of optical forces are significantly
enhanced in high index contrast structures such as silicon waveguides. Here, we consider a
silicon waveguide with a rectangular cross-section of a by 0.9a. For silicon, we use refractive
index n = 3.5, an isotropic Young’s modulus E = 170×109 Pa, Poisson’s ratio ν = 0.28, and
density ρ = 2329kg/m3. Note that we use a simplified isotropic Young’s modulus throughout.
However, it is important to note that crystalline silicon has nontrivial elastic tensor [54] that
depends on the particular crystal orientation under consideration. These tensor properties can
easily be incorporated into elastic-mode simulations to accurately model specific experimen-
tal device configurations. For example, see Ref. [32]. In addition, we assume that the [100],
[010], and [001] symmetry direction of this crystalline silicon coincide with the x, y, and z
axis respectively. Under this orientation, the photo-elastic tensor pi jkl in the contracted notation
is [p11, p12, p44] = [−0.09,0.017,−0.051] [55]. The structure has two symmetry planes y = 0
and z = 0. Both optical modes and elastic modes are either symmetric or anti-symmetric with
respect to these planes.

We categorize the fundamental spatial modes of light in the two polarizations as Ey11 and
Ez11 (Fig. 1(a)). Ey11 is even with respect to plane z = 0 and odd with respect to plane y = 0
with a large Ey component. Ez11 has the opposite symmetries and slightly higher frequencies.
Throughout the study, we assume the pump wavelength at 1.55µm. We use a normalized length
scale a, such that the corresponding angular frequency ω is in unit of 2πc/a. Note that a differ-
ent operational frequency along the optical dispersion relations implies a different a. For intra-
modal coupling, we assume that pump and Stokes waves come from Ey11. Since Ω/ω ≈ VL/c
is on the order of 10−4, pump and Stokes waves approximately correspond to the same waveg-
uide mode Eei(kx−ωt). The induced optical force in intra-modal coupling is always symmetric
with respect to both plane y = 0 and plane z = 0. Therefore, we only need to consider elastic
modes with the same spatial symmetry (Fig. 1(b)). Using a finite element solver, we calculate
the eigen-mode of the suspended waveguide with free boundary conditions (E-modes). To il-
lustrate the hybrid nature of E-modes, we also calculate purely longitudinal modes (P-modes)
and purely transverse modes (S-modes) by forcing uy,z = 0 or ux = 0 throughout the waveg-
uide. The dispersion diagram indicates that E-modes are either P-mode like or S-mode like
at q = 0, but become a hybridized wave with both longitudinal and transverse components at
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Fig. 1. The guided optical and elastic modes of a silicon rectangular waveguide. Optical
frequency is in unit of 2πc/a, while elastic frequency is in unit of 2πVL/a. VL =

√
E/ρ =

8.54× 103m/s is the velocity of longitudinal elastic waves in bulk silicon. (a) Dispersion
relation of optical modes Ey11 and Ez11. (b) Dispersion relation of elastic modes which
have even symmetry with respect to both y = 0 and z = 0 planes. E-modes (black lines) are
the eigen-modes of the actual silicon waveguide, with silicon-air interfaces treated as free
boundaries. For comparison, the dispersion relations of purely longitudinal modes (desig-
nated as P-modes, blue curves) and purely transverse modes (designated as S-modes, red
curves) are included. They are constrained respectively with x-only displacement, and y-
z-only movements. At q = 0, E-modes manifest as either P-modes or S-modes. (c) The
displacement profiles of mode E1 through E5 at q = 0, with the peak deformation shown.
The color represents y-displacement (uy) for S-like E modes and x-displacement(ux) for
P-like E modes. Blue, white, and red correspond to negative, zero, and positive values re-
spectively. Mode E1 experience a DC longitudinal offset at Ω = 0.
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q 6= 0. At q = 0, the mirror reflection symmetry with respect to plane x = 0 is conserved . Odd
(even) modes with respect to x = 0 are purely longitudinal (transverse), separating E-modes
into P-modes and S-modes. At nonzero q, silicon-air boundaries hybridize the P-modes and the
S-modes, resulting in E-modes with both longitudinal and transverse movement. Similar to the
optical mode, we can choose a proper phase so that ux is imaginary while uy,z are real.

3.1. Forward SBS

Spontaneous forward -Brillouin light scattering (i.e. or scattering from thermally populated
phonons) was first observed in optical fiber in 1985 [56, 57]. However, in conventional op-
tical fibers forward stimulated Brillouin scattering (forward-SBS) processes are exceedingly
weak (typically orders of magnitude weaker than backward SBS). This is due to poor confine-
ment (or delocalization) of the slow-group velocity phonon modes that mediate photon-phonon
coupling in the forward scattering geometry [4, 27, 31]. However, waveguides with nanoscale
feature sizes can efficiently produce FSBS, for example, in photonic crystal fibers [4] and sus-
pended silicon waveguides [31]. The frequency of the excitable elastic modes in FSBS is pinned
by the structure, independent of the incident optical frequency. Both structures provide strong
transverse phonon confinement, and such optical-phonon-like elastic modes are automatically
phase-matched to higher orders of Stokes and anti-Stokes optical waves. The cascaded genera-
tion of such elastic modes through an optical frequency can enable efficient phonon generation
with large quantum efficiency [4].

In FSBS, Ep = Es = E and q = 0. Equation (14) can be simplified to
σxx
σyy
σzz
σyz
σxz
σxy

=−1
2

ε0n4


p11 p12 p13
p12 p22 p23
p13 p23 p33

p44
p55

p66




|Ex|2
|Ey|2
|Ez|2

2Re(EyE∗z )
0
0

 . (23)

Apparently, σxy = σxz = 0. From Eqs. (15) and (16), we conclude that f ES
x = FES

x = 0. So both
electrostriction force and radiation pressure in FSBS are transverse. We pick an operating point
at ω = 0.203(2πc/a), k = 0.75(π/a) with a = 315nm, and compute the force distribution (Fig.
2(a)). Electrostriction body force is largely in the y direction, because Ey is the dominant com-
ponent in electric field and |p11| is about five times larger than |p12|. Electrostriction pressure
points inwards, where radiation pressure points outwards. Radiation pressure is about five times
greater than electrostriction pressure. The transverse nature of optical force combined with the
fact that elastic modes are either P-modes or S-modes at q = 0 indicates that only S-modes have
nonzero FSBS gains. The corresponding FSBS gains are calculated using a mechanical quality
factor of Q = 1000 for all the elastic modes (Fig. 2(b)). As expected, only S-modes E2, E3,
and E5 have nonzero gains. Mode E2 has the largest gain of 1.72× 104m-1W-1, which comes
from a constructive combination of electrostriction (0.42×104m-1W-1) and radiation pressure
(0.44×104m-1W-1). Mode E5 has a total gain of 0.51×104m-1W-1, which mainly comes from
radiation pressure (0.36×104m-1W-1).

To illustrate the interplay between electrostriction and radiation pressure, we scale the waveg-
uide dimension a from 250nm to 2.5µm by raising the operating point in the optical dispersion
diagram from 0.16(2πc/a) to 1.61(2πc/a), and compute the corresponding FSBS gains for
mode E2 and E5 (Fig. 2(c)). For both E2 and E5, the FSBS gain from electrostriction scales as
1/a2 for large a. This can be understood by a detailed analysis of Eq. (10). Under normalization
condition 〈E,εE〉 = 1, the electrostriction tensor scales as 1/a2. Since electrostriction force is
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Fig. 2. Optical force distributions and the resultant gain coefficients of the Forward SBS. In
panels (a) and (b), the width of the waveguide is a = 315nm, and the incident optical waves
have ω = 0.203(2πc/a), and k = 0.75(π/a). The elastic waves are generated at q = 0. (a)
The force distribution of electrostriction body force density, electrostriction surface pres-
sure, and radiation pressure respectively. All three types of optical forces are transverse. (b)
Calculated FSBS gains of the elastic modes, assuming mechanical Q= 1000. Blue, red, and
green bars represent FSBS gains under three conditions: electrostriction-only, radiation-
pressure-only, and the combined effects. Only the S-like E modes have non-zero gains. (c)
The scaling relation of FSBS gains as the device dimension a is varied from 0.25µm to
2.5µm. Solid and dotted curves correspond to the gain coefficients for mode E2 and E5
respectively.
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essentially the divergence of electrostriction tensor, the total electrostriction force that apply to
the right half of the waveguide scales as 1/a3. Under normalization condition 〈um,ρum〉 = 1,
um scales as 1/a. So the overlap integral scales as 1/a2. Under a fixed quality factor, the FSBS
gain from electrostriction scales as 1/a2.

Unlike the electrostriction contributions that run parallel in different modes, the FSBS gain
from radiation pressure scales as 1/a6 for mode E5 and 1/a8 for mode E2. This can also be
understood from a breakdown of Eq. (10). Given the input power, the sum of average radiation
pressure on the horizontal and vertical boundaries of the rectangular waveguide is proportional
to (ng−np)/A, where ng (np) is the group (phase) index, and A is the waveguide cross-section
[47]. When the waveguide scales up, ng− np shrinks as 1/A. As a result, the sum of average
radiation pressure scales as 1/a4, and the FSBS gain from radiation pressure should scale as
1/a6. For mode E2, however, radiation pressures on the horizontal and vertical boundaries
generate overlap integrals with opposite signs. It is the difference rather than the sum between
the horizontal and vertical radiation pressures that determines the scaling of the FSBS gains
from radiation pressure. A closer examination reveals that although the overlap integral from
radiation pressure on the horizontal/vertical boundaries scales as 1/a4, the net overlap integral
from radiation pressure scales as 1/a5, resulting in the 1/a8 scaling of FSBS gain from radiation
pressure for mode E2.

3.2. Backward SBS

In traditional optical fibers, BSBS process is the qualitatively different from FSBS, as it is the
only configuration that allows strong photon-phonon coupling. Recent studies have demon-
strated on-chip BSBS on chalcogenide rib waveguide [5]. Chip-based BSBS process has been
applied in tunable slow light [58], tunable microwave photonic filter [59], and stimulated Bril-
louin lasers [60].

In BSBS, Ep = E, Es = E∗, and q = 2k. Equation (14) can be simplified to
σxx
σyy
σzz
σyz
σxz
σxy

=−1
2

ε0n4


p11 p12 p13
p12 p22 p23
p13 p23 p33

p44
p55

p66




E2

x
E2

y
E2

z
2EyEz
2ExEz
2ExEy

 . (24)

All components of σi j are nonzero, generating electrostriction force with both longitudinal
and transverse components. We pick an operating point at ω = 0.203(2πc/a), k = 0.75(π/a)
with a = 315nm, and compute the force distribution (Fig. 3(a)). Electrostriction body force
has large longitudinal component over the waveguide cross-section, which mainly comes from
the −iqσxx term in Eq. (15). The hybrid nature of optical forces combined with the fact that
all elastic modes are hybrid at nonzero q indicates that all elastic modes have nonzero BSBS
gains. We compute the corresponding BSBS gains using a quality factor Q = 1000 for all the
elastic modes (Fig. 3(b)). For mode E1 and E2, electrostriction force and radiation pressure add
up destructively, resulting in small BSBS gains of 0.089×104m-1W-1 and 0.086×104m-1W-1

respectively.
Next, we vary a from 250nm to 2.5µm and compute the corresponding BSBS gains for mode

E1 (Fig. 3(c)). For comparison, we also compute the conventional BSBS gain G0. The BSBS
gain from electrostriction of mode E1 decays very quickly. In contrast, G0 scales as 1/a2 as
required by Eq. (22). The reason is that, although mode E1 starts as a longitudinal plane wave
for q ≈ 0, it quickly evolves into surface-vibrating wave as q increases. There are two ways
to recover the scaling of G0. First, we can force purely longitudinal movement by consider-
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Fig. 3. Optical force distributions and the resultant gain coefficients of the Backward SBS.
In panels (a) and (b), the width of the waveguide is a = 315nm, and the incident opti-
cal waves have ω = 0.203(2πc/a), and k = 0.75(π/a). The elastic waves are generated
at q = 1.5(π/a). (a) The force distribution of electrostriction body force density, elec-
trostriction surface pressure, and radiation pressure respectively. Electrostriction have both
longitudinal and transverse components. Radiation pressure are purely transverse. (b) Cal-
culated BSBS gains of the elastic modes, assuming mechanical Q = 1000. Blue, red, and
green bars represent FSBS gains under three conditions: electrostriction-only, radiation-
pressure-only, and the combined effects.(c) The scaling relation of BSBS gains related to
mode E1 as a is varied from 0.25µm to 2.5µm, color-coded similar to panel (b). For com-
parison, gain coefficients predicted by conventional fiber BSBS theory are shown as the
solid black curve. The dotted black curve represents the electrostriction-only BSBS gain
of the constrained mode P1. Black circles represent the largest electrostriction-only BSBS
gain coefficient among all E-modes for a given a. (d) BSBS spectra near the anti-crossing
between mode E4 and E5 around q = 1.66(π/a). The mechanical quality factor Q is as-
sumed to be 100. The red lines represent the total BSBS gain. The blue and green lines
represent contributions from mode E4 and E5.
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ing P-modes in Fig. 1(b). Mode P1, the fundamental P-mode, is exactly the longitudinal plane
wave, characterized by uniform longitudinal vibrations across the waveguide cross-section and
an approximately linear dispersion relation. The BSBS from electrostriction for mode P1 does
converge to G0 (Fig. 3(c)). Second, the dispersion curve of mode P1 intersects with the dis-
persion curves of many E-modes as q increases. For a given q, the E-modes which are close
to the intersection point become P1-like with approximately uniform longitudinal vibrations
across the waveguide cross-section. The BSBS gain of these E-modes should be much larger
than other E-modes, and close to the gain of mode P1. To verify this point, we compute the
BSBS gains of a large number of E-modes. The maximal gain from electrostriction among all
the E-modes does converge to G0 as a exceeds several microns (Fig. 3(c)).

In BSBS, the operating point in the elastic dispersion diagram can be tuned by varying the
operating point in the optical dispersion diagram through phase-matching condition q = 2k.
One unique feature about the elastic dispersion diagram is the abundance of anti-cross between
the hybridized elastic modes. The two elastic modes involved in an anti-crossing point typi-
cally have disparate spatial distributions and quite different BSBS gains. These two modes will
exchange their spatial distributions and corresponding BSBS gains when q is scanned through
the anti-cross region, as demonstrated in Fig. 3(d). Figure 3(d) also show that the total gain
spectrum can have complex shapes. The frequency response method in [31] can only calculate
the aggregated gain. The eigen-mode method developed here can not only separate the contri-
butions from different elastic modes, but also parameterize the gain of individual modes with
simple physical quantities.

4. Silicon rectangular waveguide: inter-modal coupling

In this section, we explore inter-modal coupling of the same silicon rectangular waveguide
[30]. In inter-modal SBS, pump and Stokes waves can have distinct spatial distributions, which
essentially double the degree of freedoms of tailoring optical force distributions. In addition,
pump and Stokes waves can have different or even orthogonal polarizations so that the two
waves can be easily separated with a polarizing beam splitter. For the rectangular waveguide
discussed above, the optical force in intra-modal coupling is always symmetric with respect to
y = 0 and z = 0, exciting elastic modes with the matching symmetry. In inter-modal coupling,
however, optical forces with all possible symmetries can be generated, and elastic modes with
all possible symmetries can be excited. For instance, we consider the coupling between Ey11
(pump) and Ez11 (Stokes). The operating point is ω = 0.203(2πc/a), kp = 0.750(π/a), ks =
0.665(π/a), and q = 0.085(π/a) with a = 315nm. Because Ey11 and Ez11 have the opposite
symmetries with respect to both y = 0 and z = 0, the induced optical force is anti-symmetric
with respect to both planes (Fig. 4(a)). Both electrostriction body force and radiation pressure
try to pull the waveguide in one diagonal and squeeze the waveguide in the other diagonal.
Electrostriction pressure has the opposite effect, but is much weaker than the radiation pressure.

Under such optical force, elastic modes which are odd with respect to both y = 0 and z = 0
(O-modes) are excited. We calculate the SBS gains of mode O1 through O5 using a mechanical
quality factor Q = 1000 for all the modes (Fig. 4(b)). Mode O1 represents a rotation around
x axis. The overlap integral is proportional to the torque. The y component and z component
of the optical forces generate torques with opposite signs, which significantly reduces the total
overlap integral. Mode O1 still has a sizable SBS gains because of its small elastic frequency
Ω = 0.024(2πVL/a). Mode O2 represents a breathing motion along the diagonal. Its modal
profile coincides quite well with the optical force distribution. The constructive combination
between electrostriction force and radiation pressure results in large gain of 1.54×104m-1W-1.
Mode O3 only have small SBS gains since it is dominantly longitudinal while the optical forces
are largely transverse. The SBS gains of O4, O5 and higher order modes are close to zero
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Fig. 4. Optical force distributions, relavant elastic modes, and the resultant gain coefficients
of inter-modal FSBS between Ey11 (pump) and Ez11 (Stokes). The width of the waveguide
is set to be a= 315nm. The incident optical waves have ω = 0.203(2πc/a), with the pump-
wave propagation constant at kp = 0.750(π/a), and the Stokes-wave propagation constant
at ks = 0.665(π/a). The elastic waves are generated at q = 0.085(π/a). (a) The force
distribution of electrostriction body force density, electrostriction surface pressure, and ra-
diation pressure respectively. The longitudinal forces (not shown here) are negligible, in
comparison to the transverse forces. All optical forces are anti-symmetric with respect to
plane y = 0 and plane z = 0, exciting elastic modes with the matching symmetry (desig-
nated as O-modes). (b) Calculated inter-modal SBS gains, assuming mechanical Q = 1000.
The insets illustrate the displacement profiles of mode O1 through O5 at q = 0.085(π/a),
at peak deformation. ”Jet” color map is used to shown the amplitude of total displacement.
Blue and red correspond to zero and maximum respectively.
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mainly because the complicated mode profiles is spatially mismatched with the optical force
distribution: the rapid spatial oscillation of the elastic modes cancels out the overlap integrals
to a large extent.

5. Concluding remarks

In this article, we present a general framework of calculating the SBS gain via the overlap inte-
gral between optical forces and elastic eigen-modes. Our method improved upon the frequency
response representation of SBS gains [31]. By decomposing the frequency response into elastic
eigen-modes, we show that the SBS gain is the sum of many Lorentzian components which cen-
ter at elastic eigen-frequencies. The SBS gain spectrum is completely determined by the qual-
ity factor and maximal gain of individual elastic modes. Therefore, our method is conceptually
clearer and computationally more efficient than the frequency response method. Through the
study of a silicon waveguide, we demonstrate that our method can be applied to both FSBS and
BSBS, both intra-modal and inter-modal coupling, both nanoscale and microscale waveguides.
Both analytical expressions and numerical examples show that SBS nonlinearity is tightly con-
nected to the symmetry, polarization, and spatial distributions of optical and elastic modes. The
overlap integral formula of SBS gains provides the guidelines of tailoring and optimizing SBS
nonlinearity through material selection and structural design.
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