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Free electron radiation such as Cerenkov [1], Smith–
Purcell [2], and transition radiation [3, 4] can be greatly
affected by structured optical environments, as has been
demonstrated in a variety of polaritonic [5, 6], photonic-
crystal [7], and metamaterial [8–10] systems. However,
the amount of radiation that can ultimately be extracted
from free electrons near an arbitrary material structure
has remained elusive. Here we derive a fundamental up-
per limit to the spontaneous photon emission and energy
loss of free electrons, regardless of geometry, which illu-
minates the effects of material properties and electron ve-
locities. We obtain experimental evidence for our theory
with quantitative measurements of Smith–Purcell radia-
tion. Our framework allows us to make two predictions.
One is a new regime of radiation operation—at subwave-
length separations, slower (nonrelativistic) electrons can
achieve stronger radiation than fast (relativistic) electrons.
The second is a divergence of the emission probability in
the limit of lossless materials. We further reveal that such
divergences can be approached by coupling free electrons
to photonic bound states in the continuum (BICs) [11–
13]. Our findings suggest that compact and efficient free-
electron radiation sources from microwaves to the soft X-
ray regime may be achievable without requiring ultrahigh
accelerating voltages.

The Smith–Purcell effect epitomizes the potential of free-
electron radiation. Consider an electron at velocity β = v/c
traversing a structure with periodicity a; it generates far-field
radiation at wavelength λ and polar angle θ, dictated by [2]

λ =
a
m

(
1
β
− cos θ

)
, (1)

where m is the integer diffraction order. The absence of a
minimum velocity in Eq. (1) offers prospects for threshold-
free and spectrally tunable light sources, spanning from mi-
crowave and Terahertz [14–16], across visible [17–19], and
towards X-ray [20] frequencies. In stark contrast to the sim-
ple momentum-conservation determination of wavelength and
angle, there is no unified yet simple analytical equation for
the radiation intensity. Previous theories only offer explicit
solutions either under strong assumptions (e.g., assuming
perfect conductors or employing effective medium descrip-
tions) or for simple, symmetric geometries [21–23]. Conse-
quently, heavily numerical strategies are often an unavoidable
resort [24, 25]. The inherent complexity of the interactions

between electrons and photonic media have prevented a more
general understanding of how pronounced Smith–Purcell ra-
diation and its siblings can ultimately be for arbitrary struc-
tures, and consequently, how to design the maximum en-
hancement for free-electron light-emitting devices.

We begin our analysis by considering an electron (charge
−e) of constant velocity vx̂ traversing a generic scatterer (plas-
monic or dielectric, finite or extended) of arbitrary size and
material composition, as in Fig. 1(a). The free current den-
sity of the electron, J(r, t) = −x̂evδ(y)δ(z)δ(x − vt), generates
a frequency-dependent (e−iωt convention) incident field [27]

Einc(r, ω) =
eκρeikv x

2πωϵ0
[x̂iκρK0(κρρ) − ρ̂kvK1(κρρ)], (2)

written in cylindrical coordinates (x, ρ, ψ); here, Kn is the
modified Bessel function of the second kind [28], kv = ω/v,
and κρ =

√
k2

v − k2 = k/βγ (k = ω/c, free-space wavevec-
tor; γ = 1/

√
1 − β2, Lorentz factor). Hence, the photon

emission and energy loss of free electrons can be treated
as a scattering problem: the electromagnetic fields Finc =

(Einc,Z0Hinc)T (for free-space impedance Z0) are incident
upon a photonic medium with material susceptibility χ (a
6 × 6 tensor for a general medium), causing both absorption
and far-field scattering—i.e., photon emission—that together
comprise electron energy loss [Fig. 1(a)].

As recently shown in Refs. [29–31], for a generic elec-
tromagnetic scattering problem, passivity—the condition that
polarization currents do no net work—constrains the max-
imum optical response from a given incident field. Con-
sider three power quantities derived from Finc and the to-
tal field F within the scatterer volume V: the total power
lost by the electron, Ploss = −(1/2) Re

∫
V J∗ · E dV =

(ϵ0ω/2) Im
∫

V F†incχF dV , the power absorbed by the medium,
Pabs = (ϵ0ω/2) Im

∫
V F†χF dV , and their difference, the power

radiated to the far field, Prad = Ploss − Pabs. Treating F as
an independent variable, the total loss Ploss is a linear func-
tion of F, whereas the fraction that is dissipated is a quadratic
function of F. Passivity requires nonnegative radiated power,
represented by the inequality Pabs < Ploss, which in this frame-
work is therefore a convex constraint on any response func-
tion. Constrained maximization (see Supplementary 1) of the
energy-loss and photon-emission power quantities, Ploss and



2

fast electron

     favored

10 1 10 2 10 3

Wavelength (nm)

10 -2

10 0

10 2

10 4

| χ
|2

/I
m

 χ

Si

Ag

Au

Al

Be
Mo

Si

Ag

Au

Al

Be
Mo

visible
     +
     IRUV A/B/CEUVX-ray

(r,ω)

V

electron

radiation absorption

energy loss

(a) (b)

10
-3

10
-2

10
-1

10
0

10
1

kd

10
-15

10
-10

10
-5

10
0

P
ro

b
a

b
il

it
y

 (
a

.u
.)

(c)

β = 0.01
0.03

0.09
0.27

0.81
slow electron

      favored

d

β = v/c

        EUV
 lithography

ψ ρ

x

Au

β = 0.4

R = 40 nm

d

λ = 500 nm

L = 10 nm

4 8 12 16 20

Separation d (nm)

10 -6

10 -5

10 -4

10 -3

10 -2

P
ro

b
a

b
ili

ty
Γ/

ħ
(e

V
−

1
)

Energy loss

Photon emission

d

Au

5 nm

10 nm

β = 0.2

λ = 50 nm

4 8 12 16 20

Separation d (nm)

10 -18

10 -15

10 -12

10 -9

10 -6

P
ro

b
ab

ili
ty

/ħ
(e

V
−

1
)

d d
xΓ

n
m

−
1

Energy loss

Photon emission

(d) (e)

Figure 1. Theoretical framework and predictions. (a) The interaction between a free electron and an obstacle defined by a susceptibility
tensor χ(r, ω) within a volume V , located at a distance d, generates electron energy loss into radiation and absorption. (b) |χ|2/Imχ constrains
the maximum material response to the optical excitations of free electrons over different spectral ranges for representative materials (from
Ref. [26]) . At the X-ray and EUV regime, Si is optimal near the technologically relevant 13.5 nm (dashed circle). Contrary to the image
charge intuition for the optical excitations of electrons, low-loss dielectrics (such as Si in the visible and infrared regimes) can be superior
to metals. (c) Shape-independent upper limit showing superiority of slow or fast electrons at small or large separations; the material χ only
affects the overall scaling. (d–e) Numerical simulations (circles) compared to analytical upper limits [lines; Eq. (5a) for (d) and Eq. (6) for (e),
respectively] for the radiation (blue) and energy loss (red) of electrons (d) penetrating the center of an annular bowtie antenna and (e) passing
above a grating.

Prad, directly yields the limits

Pτ(ω) ≤ ϵ0ωξτ
2

∫
V

F†incχ
†(Imχ)−1χFinc dV, (3)

where τ ∈ {rad, loss} and ξτ accounts for a variable radiative
efficiency η (defined as the ratio of radiative to total energy
loss): ξloss = 1 and ξrad = η(1 − η) ≤ 1/4. Hereafter, we con-
sider isotropic and nonmagnetic materials (and thus a scalar
susceptibility χ), but the generalizations to anisotropic and/or
magnetic media are straightforward.

Combining Eqs. (2) and (3) yields a general limit on the
loss or emission spectral probabilities Γτ(ω)=Pτ(ω)/~ω:

Γτ(ω) ≤ αξτc
2πω2

∫
V

|χ|2
Imχ

[
κ4
ρK2

0 (κρρ) + κ2
ρk

2
v K2

1 (κρρ)
]

dV, (4)

where α is the fine-structure constant. Equation (4) imposes,
without solving Maxwell’s equations, a maximum rate of pho-
ton generation based on the electron velocity β (through kv and
κρ), the material composition χ(r), and the volume V .

The limit in Eq. (4) can be further simplified by removing
the shape dependence of V , since the integrand is positive and
is thus bounded above by the same integral for any enclos-
ing structure. A scatterer separated from the electron by a

minimum distance d can be enclosed within a larger concen-
tric hollow cylinder sector of inner radius d and outer radius
∞. For such a sector (height L and opening azimuthal an-
gle ψ ∈ [0, 2π]), Eq. (4) can be further simplified, leading
to a general closed-form shape-independent limit (see Sup-
plementary 2) that highlights the pivotal role of the impact
parameter κρd:

Γτ(ω) ≤ αξτ
2πc
|χ|2
Im χ

Lψ
β2

[
(κρd)K0(κρd)K1(κρd)

]
, (5a)

∝ 1
β2

ln
(
1/κρd

)
for κρd ≪ 1,

πe−2κρd/2 for κρd ≫ 1.
(5b)

The limits of Eqs. (4,5) are completely general; they set the
maximum photon emission and energy loss of an electron
beam coupled to an arbitrary photonic environment in either
the nonretarded or retarded regimes, given only the beam
properties and material composition. The key factors that de-
termine maximal radiation are identified: intrinsic material
loss (represented by Imχ), electron velocity β, and impact pa-
rameter κρd. The metric |χ|2/ Im χ reflects the influence of the
material choice, which depends sensitively on the radiation
wavelength [Fig. 1(b)]. The electron velocity β also appears
implicitly in the impact parameter κρd = kd/βγ, showing that
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Figure 2. Optimal electron velocities for maximal Smith–Purcell
radiation. (a) Behavior of G (β, kd), Eq. (6), whose maxima indicate
separation-dependent optimal electron velocities. Here G is normal-
ized between 0 and 1 for each separation. The limit yields sharply-
contrasting predictions: slow electrons are optimal in the near field
(kd ≪ 1) and fast electrons are optimal in the far field (kd ≫ 1). (b–
c) Energy loss (red) and radiation (blue) rates [circles: full-wave sim-
ulations; lines: grating limit, Eq. (6); shadings: shape-independent
limit, Eq. (5)] at two representative near/far-field separation distances
[white dashed slices in (a)].

the relevant length scale is set by the relativistic velocity of
the electron. The impact parameter κρd reflects the influence
of the Lorentz contraction d/γ; a well-known feature of both
electron radiation and acceleration [20, 27, 32].

A surprising feature of the limits in Eqs (4,5) is their pre-
diction for optimal electron velocities. As shown in Fig. 1(c),
when electrons are in the far field of the structure (κρd ≫ 1),
stronger photon emission and energy loss are achieved by
faster electrons—a well-known result. On the contrary, if
electrons are in the near field (κρd ≪ 1), slower electrons are
optimal. This contrasting behavior is evident in the asymp-
totics of Eq. (5b), where the 1/β2 or e−2κρd dependence is
dominant at short or large separations. Physically, the opti-
mal velocities are determined by the incident-field properties
[Eq. (2)]: slow electrons generate stronger near field ampli-
tudes although they are more evanescent (Supplementary 2).
There has been a recent interest in using low-energy electrons
for Cherenkov [10] and Smith–Purcell [33] radiation; our pre-
diction that they can be optimal at subwavelength interaction
distances underscores the substantial technological potential
of nonrelativistic free-electron radiation sources.

The tightness of the limit [Eqs. (4,5)] is demonstrated by
comparison with full-wave numerical calculations (see Meth-
ods.) in Figs. 1(d–e). Two scenarios are considered: in
Fig. 1(d), an electron traverses the center of an annular Au
bowtie antenna and undergoes antenna-enabled transition ra-
diation (η ≈ 0.07%), while, in Fig. 1(e), an electron traverses
a Au grating, undergoing Smith–Purcell radiation (η ≈ 0.9%).
In both cases, the numerical results closely trail the upper limit
at the considered wavelengths, showing that the limits can be
approached or even attained with modest effort.

Next, we specialize in the canonical Smith–Purcell setup il-
lustrated in Fig. 1(e) inset. This setup warrants a particularly
close study, given its prominent historical and practical role
in free-electron radiation. Aside from the shape-independent
limit [Eq. (5)], we can find a sharper limit (in per unit length
for periodic structure) specifically for Smith–Purcell radiation
using rectangular gratings of filling factor Λ (see Supplemen-
tary 3)

dΓτ(ω)
dx

≤ αξτ
2πc
|χ|2
Im χ
ΛG(β, kd). (6)

The function G(β, kd) is an azimuthal integral (see Supple-
mentary 3) over the Meijer G-function G3,0

1,3 [28] that arises in
the radial integration of the modified Bessel functions Kn. We
emphasize that Eq. (6) is a specific case of Eq. (4) for grating
structures without any approximations and thus can be read-
ily generalized to multi-material scenarios [see Supplemen-
tary Eq. (S37)].

The grating limit [Eq. (6)] exhibits the same asymptotics as
Eq. (5), thereby reinforcing the optimal-velocity predictions
of Fig. 1(c). The (β, kd) dependence of G, see Fig. 2(a), shows
that slow (fast) electrons maximize Smith–Purcell radiation in
the small (large) separation regime. We verify the limit pre-
dictions by comparison with numerical simulations: At small
separations [Figs. 2(b)], radiation and energy loss peak at ve-
locity β ≈ 0.15, consistent with the limit maximum; at large
separations [Figs. 2(c)], both the limit and the numerical re-
sults grow monotonically with β.

The derived upper limit also applies to Cherenkov and tran-
sition radiation, as well as bulk loss in electron energy loss
spectroscopy (EELS). For these scenarios where electrons en-
ter material bulk, a subtlety arises for the field divergence
along the electron’s trajectory [ρ = 0 in Eq. (2)] within a po-
tentially lossy medium. This divergence, however, can be reg-
ularized by introducing natural, system-specific momentum-
cutoffs [27], which then directly permits the application of our
theory (see Supplementary 6). Meanwhile, there exist addi-
tional competing interaction processes (e.g., electrons collid-
ing with individual atoms). However, they typically occur at
much smaller length scales.

We perform quantitative experimental measurement of
Smith–Purcell radiation to directly probe the upper limit.
Fig. 3(a) shows our experimental setup (see Methods and
Supplementary 7 for details). A one-dimensional 50%-
filling-factor grating (Au-covered single-crystalline Si)—the
quintessential Smith–Purcell setup—is chosen as a sample,
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Figure 3. Experimental probing of the upper limit. (a) Experimental setup. OBJ, objective (NA = 0.3); BS, beam splitter; SP, spectrometer;
CAM, camera. (b-c) SEM images of the structure in (b) top view and (c) cross-sectional view. (d) Quantitative measurement of Smith–
Purcell radiation (inset: camera image of the radiation). Solid lines mark the theoretical radiation wavelengths at the normal angle [Eq. (1)].
The envelope (peak outline) of the measured spectra (dots) follows the theoretical upper limit (shaded to account for fabrication tolerance;
calculated at each wavelength with the corresponding electron velocity for surface-normal radiation).

and shown by SEM images in Figs. 3(b-c). Free electrons
pass above and impinge onto the sample at a grazing angle of
1.5◦ under 10 to 20 kV acceleration voltages.

Fig. 3(d) depicts our measurements of first order m = 1
Smith–Purcell radiation appearing at wavelengths between
500 and 750 nm. In quantitative agreement with Eq. (1) eval-
uated at normal emission angle (solid lines), the measured ra-
diation spectra (dots) blueshift with increasing electron ve-
locity. Notably, we experimentally obtain the absolute inten-
sity of the collected radiation via a calibration measurement
(see Supplementary 7). The upper limits [Eq. (4)] for the
surface-normal emission wavelengths (λ = a/β) are evalu-
ated at the center of the interaction region [height ≈ 140 nm
(kd ≈ 1.5), varying with beam energy], and is shown with
shading in Fig. 3(d) to account for the thickness uncertainty
(±1.5 nm). The envelope spanned by the measurement peaks
follows the upper-limit lineshape across the visible spectrum:
both the theoretical limit and the measured intensities peak
near 550 nm and decrease in a commensurate manner for other
wavelengths. This lineshape originates from two competing
factors. At shorter wavelengths, the material factor |χ2|/ Im χ
decreases significantly for both Au and Si [see Fig. 1(c)],
which accounts for the reduced radiation intensity. At longer
wavelengths, the major constraint becomes the less efficient

interaction between the electrons and the structure, as the
electron-beam diameters increase for the reduced brightness
of the electron gun (tungsten) at lower acceleration voltages
(see Supplementary 7). These experimental evidences for the
upper limit are at kd ≈ 1.5 (estimated from a geometrical ray-
tracing model; see Supplementary 7), where fast electrons are
still preferred [Fig. 2(a)]. To further confirm our theory, we
also conduct a near-infrared Smith–Purcell experiment (Sup-
plementary 8) at kd ≈ 1, where the envelope lineshape of the
emission spectra again follows our prediction. Additionally,
we also obtain complementary supporting evidence (extracted
from the data in a recent work [10]) for our slow-electron-
efficient prediction (see Supplementary 9).

Finally, we turn our attention to an ostensible peculiarity
of the limits: Eq. (4) evidently diverges for lossless materi-
als (Im χ → 0), seemingly providing little insight. On the
contrary, this divergence suggests the existence of a mecha-
nism capable of strongly enhancing Smith–Purcell radiation.
Indeed, by exploiting high-Q resonances near BICs [13] in
photonic crystal slabs, we find that Smith–Purcell radiation
can be enhanced by orders of magnitude, when specific fre-
quency, phase, and polarization matching conditions are met.

A one-dimensional silicon (χ = 11.25)-on-insulator (SiO2,
χ = 1.07) grating interacting with a sheet electron beam il-
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Figure 4. Strong enhancement of Smith–Purcell radiation via high-Q resonances near a photonic bound state in the continuum (BIC).
(a) Schematic drawing of a silicon-on-insulator grating (one-dimensional photonic crystal slab: periodic in x and infinite in y). (b) Calculated
TE band structure (solid black lines) in the Γ–X direction. The area shaded in light and dark yellow indicates the light cone of air and silica,
respectively. The electron lines (blue for velocity v, and green for v/2) can phase match with either the guided modes (circles) or high-Q
resonances near a BIC (red square). (c) Upper: Incident field of electrons. Lower: resonant quality factors (left) and eigenmode profile (right)
near a BIC. (d) Strongly enhanced Smith–Purcell radiation near the BIC. (e) Vertical slices of (d). (f) The limit (shaded area) comparing with
the horizontal slice of (d), with material loss considered. Strong enhancement happens at electron velocities β = a/mλ (m = 1, 2, 3 . . .).

lustrates the core conceptual idea most clearly. The transverse
electric (TE) (Ex, Hy, Ez) band structure (lowest two bands la-
beled TE0 and TE1), matched polarization for a sheet electron
beam [Eq. (S41b)], is depicted in Fig. 4(b) along the Γ− X di-
rection. Folded electron wave vectors, kv = ω/v, are overlaid
for two distinct velocities (blue and green). Strong electron-
photon interactions are possible when the electron and photon
dispersions intersect: for instance, kv and the TE0 band inter-
sect (grey circles) below the air light cone (light yellow shad-
ing). However, these intersections are largely impractical: the
TE0 band is evanescent in the air region, precluding free-space
radiation. Still, analogous ideas, employing similar partially
guides modes, e.g., spoof plasmons [34], have been explored
for generating electron-enabled guided waves [35, 36].

To overcome this deficiency, we theoretically propose a
new mechanism for enhanced Smith–Purcell radiation: cou-
pling of electrons with BICs [13]. The latter have the ex-
treme quality factors of guided modes but are, crucially, em-
bedded in the radiation continuum, guaranteeing any result-
ing Smith-Purcell radiation into the far field. By choosing
appropriate velocities β = a/mλ (m any integer; λ the BIC
wavelength) such that the electron line (blue or green) inter-
sects the TE1 mode at the BIC [red square in Fig. 4(b)], the
strong enhancements of a guided mode can be achieved in
tandem with the radiative coupling of a continuum resonance.

In Fig. 4(c), the incident fields of electrons and the field pro-
file of the BIC indicate their large modal overlaps. The BIC
field profile shows complete confinement without radiation,
unlike conventional multipolar radiation modes (see Supple-
mentary Fig. S9). The Qs of the resonances are also provided
near a symmetry-protected BIC [13] at the Γ point. Figs. 4(d)
and (e) demonstrate the velocity tunability of BIC-enhanced
radiation—as the phase matching approaches the BIC, a di-
vergent radiation rate is achieved.

The BIC-enhancement mechanism is entirely accordant
with our upper limits. Practically, silicon has nonzero loss
across the visible and near infrared wavelengths. E.g., for
a period of a = 676 nm, the optimally enhanced radiation
wavelength is ≈ 1050 nm, at which χSi ≈ 11.25 + 0.001i [37].
For an electron–structure separation of 300 nm, we theoreti-
cally show in Fig. 4(f) the strong radiation enhancements (> 3
orders of magnitude) attainable by BIC-enhanced coupling.
The upper limit [shaded region; 2D analogue of Eq. (4), see
Supplementary 10] attains extremely large values due to the
minute material loss (|χ|2/ Im χ ≈ 105); nevertheless, BIC-
enhanced coupling enables the radiation intensity to closely
approach this limit at several resonant velocities. In the pres-
ence of absorptive channel, the maximum enhancement oc-
curs at a small offset from the BIC where the Q-matching
condition (see Supplementary 11) is satisfied, i.e., equal ab-
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sorptive and radiative rates of the resonances.

In closing, we have theoretically derived and experimen-
tally probed a universal upper limit to the energy loss and pho-
ton emission from free electrons. The limit depends crucially
on the impact parameter κρd, but not on any other detail of
the geometry. Hence, our limit applies even to the most com-
plex metamaterials and metasurfaces, given only their con-
stituents. Surprisingly in the near field slow electrons promise
stronger radiation than relativistic ones. The limit predicts
a divergent radiation rate as the material loss rate goes to
zero, and we show that BIC resonances enable such stagger-
ing enhancements. This is relevant for the generation of co-
herent Smith–Purcell radiation [14, 35, 36]. The long life-
time, spectral selectivity, and large field enhancement near a
BIC can strongly bunch electrons, allowing them to radiate
coherently at the same desired frequency, potentially enabling
low-threshold Smith–Purcell free electron lasers. The combi-
nation of this mechanism and the optimal velocity prediction
reveals prospects of low-voltage yet high-power free-electron
radiation sources. In addition, our findings demonstrate a sim-
ple guiding principle to maximize the signal-to-noise ratio for
EELS through an optimal choice of electron velocity, enabling
improved spectral resolution.

The predicted slow-electron-efficient regime still calls for
direct experimental validation. We suggest that field-emitter-
integrated free-electron devices (e.g. [10]) are ideal to confirm
the prediction due to the achievable small electron-structure
separation and high electron beam quality at relatively large
currents. Additionally, the microwave or Terahertz frequen-
cies could be suitable testing spectral ranges, where the sub-
wavelength separation requirement is more achievable.

The upper limit demonstrated here is in the spontaneous
emission regime for constant-velocity electrons, and can be
extended to the stimulated regime by suitable reformulation.
Stronger electron-photon interactions can change electron ve-
locity by a non-negligible amount that alters the radiation. If
necessary, this correction can be perturbatively incorporated.
In the case of external optical pumping [38], the upper limit
can be revised by redefining the incident field as the sum-
mation of the electron incident field and the external opti-
cal field. From a quantum mechanical perspective, this treat-
ment corresponds to stimulated emission from free electrons,
which multiplies the limit by the number of photons in that
radiation mode. This treatment could also potentially trans-
late our limit into a fundamental limit for particle accelera-
tion [39, 40], which is the time-reversal of free electron energy
loss and which typically incorporates intense laser pumping.
In the multi-electron scenario, the radiation upper limit will
be obtained in the case of perfect bunching, where all elec-
trons radiate in phase. In this case, our single-electron limit
should be multiplied by the number of electrons to correct for
the superradiant nature of such coherent radiation.
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1. GENERAL OPTICAL RESPONSE LIMIT FRAMEWORK

Intuitively, to impose the general limits on the energy loss and photon emission (cathodolumi-

nescence) from free electrons, we consider an arbitrary scatterer embedded in a possibly hetero-

geneous background. Passivity, which implies the absence of gain and that polarization currents

do no work [1] requires that the absorbed (Pabs) and scattered (Prad) powers by the target body are

non-negative. On the other hand, their sum, the electron energy loss (Ploss = Pabs + Prad), is given

by the real part of the overlap between the electron velocity and the induced field [2], similar to

the optical theorem [3].

More broadly, for an arbitrarily shaped 3D scatterer [volume V and susceptibility tensor χ(r, ω)]

impinged by the external incident field Finc = (Einc,Z0Hinc)T [for the case of free electrons, see

Eq. (2)], the absorption (dissipation) within such a medium is the work done by the total fields F

on the induced currents, given by the expression

Pabs =
ϵ0ω

2
Im

∫
V

F†χF dV. (S1)

On the other hand, the total electron energy loss represents the work done by the incident fields on

the induced currents

Ploss =
ϵ0ω

2
Im

∫
V

F†incχF dV. (S2)

As can be seen, Electron total energy loss and absorption are linear and quadratic function

of the fields, respectively. Yet electron energy loss must be greater than absorption (due to the

nonnegative scattering noted above), requiring the linear functional to be greater than the quadratic

one, a condition that cannot be satisfied for large enough currents. The inequality Pabs ≤ Ploss

thereby provides a convex constraint for the optical excitation of free electrons. Thanks to the

convex nature of the constraint Pabs ≤ Ploss and the simple expressions of the absorption and

energy loss, the optimal response can be solved analytically using variational derivatives, without

the requirement of solving the highly nonconvex Maxwell equations, thereby providing general

upper-limit expressions for electron energy loss and photon emission without approximation.

To obtain the extremum induced fields/currents for electron energy loss or photon emission

(cathodoluminescence), one can take the derivative ∂Pτ(ω)
∂F† = 0, where τ ∈ {rad, loss}. Using the

photon emission as an example, by taking

∂Prad(ω)
∂F†

=
∂(Ploss − Pabs)

∂F†
= 0, (S3)
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we have

χ
†
Finc/2i + (Imχ)F = 0, (S4)

where Imχ = (χ − χ
†
)/2i is a Hermitian matrix. From Eq. (S4), one readily finds the optimal total

field is given by Frad,opt =
i
2 (Im χ)−1χ

†
Finc. The optimal field for maximal electron energy loss

can be derived in a similar manner. Combining the optimal fields with Eq. (S1) and Eq. (S2), we

obtain the upper limit shown in Eq. (3) in the main text.

2. THREE-DIMENSIONAL SHAPE-INDEPENDENT UPPER LIMIT

We first rewrite the three-dimensional general limit equation

Γτ(ω) ≤ e2ξτ
8~ϵ0ω2π2

∫
V

|χ|2
Im χ

[
κ4
ρK

2
0(κρρ) + κ2

ρk
2
v K2

1(κρρ)
]

dV. (S5)

We assume the structure is made of a single material

Γτ(ω) ≤ e2ξτ
8~ϵ0ω2π2

|χ|2
Im χ

∫
V

[
κ4
ρK

2
0(κρρ) + κ2

ρk
2
v K2

1(κρρ)
]

dV. (S6)

We now simplify the integral

K =
∫

V

[
κ4
ρK

2
0(κρρ) + κ2

ρk
2
v K2

1(κρρ)
]

dV. (S7)

For an arbitrarily-shaped structure, whether isolated or extended, one can always find a circular

concentric hollow cylinder (height L, opening azimuthal angle ψ ∈ [0, 2π], minor radius being the

electron structure separation, major radius can be finite or infinite) that encloses it. Therefore, we

can evaluate the integral in the cylindrical coordinate

K ≤ Lψ
∫ ∞

d
ρ
[
κ4
ρK

2
0(κρρ) + κ2

ρk
2
v K2

1(κρρ)
]

dρ

= Lψ
∫ ∞

x0

x
[
κ2
ρK

2
0(x) + k2

v K2
1(x)

]
dx,

=
x2

0

2

{
κ2
ρ

[
K2

1(x0) − K2
0(x0)

]
+ k2

v

[
K0(x0)K2(x0) − K2

1(x0)
]}
,

=
x2

0

2

{
k2

v K0(x0) [K2(x0) − K0(x0)] − k2
[
K2

1(x0) − K2
0(x0)

]}
,

= x0k2
v K0(x0)K1(x0) − x2

0k2[K2
1(x0) − K2

0(x0)],

≤ x0k2
v K0(x0)K1(x0), (S8)
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where x0 = κρd. Eq. (S8) corresponds to Eq. (5a) in the maintext. In the derivation above, we use

the following relations [4]

∫
xK2

n(x)dx =
x2

2

[
K2

n(x) − Kn−1(x)Kn+1(x)
]
, (S9a)

K−1(x) = K1(x), (S9b)

K2(x) − K0(x) = 2K1(x)/x, (S9c)

K1(x) > K0(x). (S9d)
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Figure S1. (a) Longitudinal Ex and (b) transverse Eρ incident field amplitudes generated from free electrons

in the azimuthal direction ρ at different velocities β.

In the main text, the shape-independent limit has sharply-contrasting prediction on the intensity

of luminescence and energy loss of free electrons when they are in either the far or near field

[Eq. (5b)]. Fig. S1 shows that the incident fields already exhibit similar property, which naturally

translates into the upper limit via the overlap integral [Eq. (4)].

3. SMITH–PURCELL RADIATION UPPER LIMIT IN THREE DIMENSIONS FOR RECTAN-

GULAR GRATINGS

We choose coordinates such that (vt, y0, z0) depicts the trajectory of the charged particle. In the

cylindrical coordinate (ρ, ψ, x), the current density can be rewritten as

J(r, t) =
−ev
2πρ

δ(x − vt)δ(ρ)x̂. (S10)
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Fourier transform on Eq. (S10) yields the current density in the frequency domain

J(r, ω) =
−e
2πρ

eikv xδ(ρ)x̂, (S11)

whose external electromagnetic field is given by [5]

Einc(r, ω) =
e

4ωϵ0
(k2x̂ + ikv∇)H(1)

0 (iκρρ)eikv x,

=
e

4ωϵ0
[(k2 − k2

v)H(1)
0 (iκρρ)x̂ + ikv dρH

(1)
0 (iκρρ)ρ̂]eikv x,

=
e

2πωϵ0
[iκ2

ρK0(κρρ)x̂ − κρkvK1(κρρ)ρ̂]eikv x.

(S12)

where H(1)
0 is the Hankel function of the first kind with zero order. Here we utilize the relation

K0(z) = iπ
2 H(1)

0 (iz), where z is a real argument. Insert Eq. (S12) into Eq. (3) yields the general

three-dimensional limit shown in Eq. (4).

Next we consider Smith–Purcell radiation from rectangular gratings in three dimensions. The

volume integral of the evanescent field is given by∫
V
|E(r)|2 dV =

e2

4ω2ϵ2
0π

2

∫
dx

∫ π/2

−π/2
dψ

∫ ∞

d/ cosψ
ρ dρ

[
κ4
ρK

2
0(κρρ) + κ2

ρk
2
v K2

1(κρρ)
]
. (S13)

Closed-form integral can be obtained by using the relation∫ ∞

d/ cosψ
ρ dρK2

0(κρρ) =
√
π

4κ2
ρ

G3,0
1,3

(
κ2
ρd

2 sec2 ψ|3/20,1,1

)
, (S14)

and ∫ ∞

d/ cosψ
ρ dρK2

1(κρρ) =
√
π

4κ2
ρ

G3,0
1,3

(
κ2
ρd

2 sec2 ψ|3/20,0,2

)
. (S15)

Here G is the Meijer G-function [4, 6] defined as a line integral in the complex plane

G m,n
p,q

z | a1, . . . , ap

b1, . . . , bq

 = 1
2πi

∫
L

∏m
j=1 Γ(b j − s)

∏n
j=1 Γ(1 − a j + s)∏q

j=m+1 Γ(1 − b j + s)
∏p

j=n+1 Γ(a j − s)
zs ds, (S16)

where Γ is the gamma function.

Plug Eq. (S14) and Eq. (S15) into Eq. (4) yields Eq. (6) in the main text

dΓτ(ω)
dx

≤ αξτ
2πc
|χ|2

Imχ
ΛG (β, kd) , (S17a)

where

G(β, kd) = Gx(β, kd) + Gρ(β, kd), (S17b)

Gx(β, kd) =
√
π

4

∫ π/2

−π/2

dψ
β2γ2 G1,3

3,0

(
k2d2

β2γ2 sec2 ψ|3/20,1,1

)
, (S17c)

Gρ(β, kd) =
√
π

4

∫ π/2

−π/2

dψ
β2 G1,3

3,0

(
k2d2

β2γ2 sec2 ψ|3/20,0,2

)
. (S17d)

Here, kv = ω/cβ, κρ = ω/cβγ, and α = e2/4πϵ0~c.
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4. MAXIMUM OF SMITH–PURCELL RADIATION LIMIT

In Fig. 2, we discuss the limit of Smith–Purcell radiation at a given wavelength as a func-

tion of electron velocity. The electron velocity at which the limit of Smith–Purcell radiation

achieves maximum corresponds to the zero of its derivative to velocity. In Eq. (4), since the

integrand κ4
ρK

2
0(κρρ) + κ2

ρk
2
v K2

1(κρρ) is continuous and differentiable, based on the Lagrange’s

mean value theorem, there must exists some ρ0 such that
∫

V
κ4
ρK

2
0(κρρ) + κ2

ρk
2
v K2

1(κρρ) dV =[
κ4
ρK

2
0(κρρ0) + κ2

ρk
2
v K2

1(κρρ0)
]

V . Therefore,

dΓ(ω)
dβ

∝ dΓ(ω)
dκρ

dκρ
dβ
∝ dΓ(ω)

dκρ

∝ 4κ3
ρK

2
0(κρρ0) − (3κ4

ρρ0 + κ
2
ρk

2ρ0)K0(κρρ0)K1(κρρ0)

+ (4κ3
ρ + 2κρk2)K2

1(κρρ0) − ρ0κ
2
ρ(κ

2
ρ + k2)K1(κρρ0)K2(κρρ0).

(S18)

10
-2

10
-1

10
0

10
1

kd

0.2

0.4

0.6

0.8

β

+

_

Figure S2. Plot of d2N(ω)
dω dβ

∣∣∣
ρ0=2d. There is a nodal line of zero derivative that coincides with the limit maximum

in Fig. 2.

Fig. S2 is calculated using Eq. S18 where a nodal line of zero derivative appears and coincide

with the limit maximum shown in Fig. 2(a), which is consistent with our prediction of optimal

velocities as a function of kd.

5. LIMIT ASYMPTOTICS

For the asymptotic behavior of the limit, here we consider four scenarios: electrons in the near

field (kd → 0), electrons in the far field (kd → ∞), extreme nonrealistic electrons (v → 0), and

6



extreme relativistic electrons (v → c). In this section we only consider the three-dimensional

problem [Eq. (4)].

First, we consider near field kd → 0. We also assume the electron speed is intermediate so

neither β → 0 (extremely slow) nor γ → ∞ (extremely fast), which we will discuss later. In

the expression of the general limit [Eq. (4)], there are two terms in the integrand where the first

term (containing K0) is the contribution from the longitudinal polarization Ex and the second term

(containing K1) is the contribution from the transverse polarization Eρ. The hyperbolic Bessel

functions Kν in these two terms has the same argument κρρ = kρ/βγ, which also approaches zero

for ρ & d. Both K0(κρρ) and K1(κρρ) diverge when κρρ→ 0 but at different divergence rates [4]:

lim
ρ→0

K0(κρρ) ∼ − ln(κρρ/2) − γ0, (S19a)

lim
ρ→0

K1(κρρ) ∼ 1
κρρ

, (S19b)

where γ0 is the Euler–Mascheroni constant. Therefore, K1(κρρ) ≫ K0(κρρ) when κρρ → 0 and Eρ

has the major contribution to the limit.

Second, we consider electron beams in the far field kd → ∞:

lim
ρ→∞

K0(κρρ) ∼
√

π

2κρρ
e−κρρ

[
1 − 1

8κρρ
+ O(κ2

ρρ
2)
]
, (S20a)

lim
ρ→∞

K1(κρρ) ∼
√

π

2κρρ
e−κρρ

[
1 +

3
8κρρ

+ O(κ2
ρρ

2)
]
. (S20b)

Therefore, both Ex–limit and Eρ–limit decay exponentially at the same rate and Eρ–limit remains

be higher.

Third, we consider asymptotic behavior of the limit when the electrons are extremely nonrela-

tivistic (β→ 0). In this limit, we have limβ→0 κρ = kv → ∞. Thus in Eq. (4)

lim
κρ→∞

κ2
ρK0(κρρ) ∼

√
π

2κρρ
κ2
ρe
−κρρ

[
1 − 1

8κρρ
+ O(κ2

ρρ
2)
]
= 0, (S21a)

lim
κρ→∞

κρkvK1(κρρ) ∼
√

π

2κρρ
κ2
ρe
−κρρ

[
1 +

3
8κρρ

+ O(κ2
ρρ

2)
]
= 0, (S21b)

which is consistent with the fact that static charges do not generate radiation. Our computational

verification is shown in Fig. 2(b) and (c) where both the limit and numerical results approach

zero as β → 0 for either small or large separations (whether slow or fast electrons are preferred)

between the electron beams and the structure.
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Last, we consider the limit behavior when the electrons are extremely relativistic, where

limβ→1 κρ =
√
ω2/v2 − ω2/c2 = 0:

lim
κρ→0

κ2
ρK0(κρρ) ∼ κ2

ρ

[
− ln(κρρ/2) − γ0

]
= 0, (S22a)

lim
κρ→0

κρkvK1(κρρ) ∼ κρkv/κρρ = kv/ρ. (S22b)

Therefore, in this limit, Ex contribution vanishes but Eρ remains finite. The entire problem be-

comes equivalent to a plane-wave scattering problem since the incident field is purely transverse.

6. PENETRATING ELECTRON TRAJECTORIES

In the main text, we discuss electron trajectories near photonic structures. For penetrating

electron trajectories—that is, when the electron trajectory re(t) intersects χ(r) , 0 regions—a

subtlety arises: the limit, Eq. (3), then apparently diverges even in lossy materials Im χ , 0. In

specific terms, the norm-squared incident field Einc is non-integrable over the electron trajectory,

that is
∫

V
dV |Einc(r)|2 ∼

∫
V

dV |x̂ κρ ln κρρ + ρ̂ γρ−1|2 diverges if V includes regions where ρ = 0.

Here, we discuss the regularization of this divergence with emphasis on the implications to electron

energy loss spectroscopy (EELS).

Though at first sight disconcerting, the divergence is not a surprise: the direct calculation of

the EEL spectrum, Γ(ρ, ω) = e2

π~ω
Re

∫ ∞
−∞ dx Ex(ρ + xx̂, ω)e−ikvz, is also divergent for penetrating

trajectories when Im χ , 0. For an extended bulk material, of permittivity ϵ = 1 + χ, the EEL

spectrum (per unit length L) can be evaluated from the momentum-space representation of the

total field (to be introduced shortly), yielding [2]:

ΓEELS(ω) =
e2L
π~v2 Im

[(v
c
− 1
ϵ

)
ln

(q2
c + k2

v − ϵk2

k2
v − ϵk2

)]
. (S23)

The denominator of the logarithm describes the emergence of Cherenkov losses for v > c/ϵ and

is finite—in contrast, the numerator, which describes EEL due to material loss, diverges logarith-

mically in a momentum cut-off qc. Of course, the divergence is merely an artifact of an idealized

description of the system—several physical and practical considerations impose natural momen-

tum cut-offs, e.g.:

Collection angle: The collection semi-angle of the microscope’s spectrometer φ restricts momen-

tum transfer collection to in-plane momenta qρ < qc, with ~qc = mev sinφ ≃ mevφ. At typ-
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ical collection semi-angles and acceleration voltages—say, φ = 10 mrad and 100 keV—this

sets a cut-off at ~qc ≈ 2.8 × 103 eV/c, or equivalently, a spatial spread 1/qc ∼ 1 Å.

Nonlocality: Nonlocality effectively suppresses the dielectric response to large-momentum plane-

wave components, i.e., ϵ(q, ω) → 1 for q ≫ 1/a (lattice constant a). The free-electron

response is quenched even earlier, at a threshold set by the Thomas–Fermi momentum.

Electron spread: The spread, ∆R, of the electron’s in-plane density imposes a cut-off qc ∼ 1/∆R.

To summarize; the divergence of the limit for penetrating trajectories is simply the mirror of the

divergence of the direct calculation. Accordingly, the divergence’s remedy is also mirrored: the

limit is regularized upon introducing a momentum cut-off in the electron’s (incident) field Einc.

Denoting this regularized field Einc,qc , we next verify that this field is indeed regular as ρ → 0.

Coincidentally, this also outlines the derivation of the conventional, non-regularized field [Eq. (2)].

The derivation proceeds as follows: in momentum-frequency space, the electron charge density

ρ(r, t) = −eδ(r − vt) equals ρ(q, ω) = −2πeδ(ω − q · v) and is accompanied by a current density

J(q, ω) = −2πevδ(ω − q · v). Jointly with Maxwell’s equations, in the form of the wave-equation

(q2 − ϵk2)Einc = iϵ−1
0 (Jk/c − ρq/ϵ), this gives the associated electric field’s (q, ω)-representation:

Einc(q, ω) = −2πie
ϵ0

kv/c − q/ϵ
q2 − ϵk2 δ(ω − q · v). (S24)

An inverse transform then yields the (r, ω)-representation (specializing to v = vx̂ and ϵ = 1):

Einc,qc(r, ω) = −2πie
ϵ0

∫
|q|<qc

d3q
(2π)3

kv/c − q
q2 − k2 δ(ω − v · q)eiq·r

= − ie
ϵ0v

eikv x
∫
|q|ρ<qc

d2qρ
(2π)2

(kv/c − kv)x̂ − qρ
q2
ρ + k2

v − k2 eiqρ·ρ

=
ie

2πϵ0v
eikv x

[
kv

γ2

∫ qc

0
dqρ

qρJ0(qρρ)
q2
ρ + k2

v − k2︸                        ︷︷                        ︸
, Lqc → κρK0(κρρ)/γ for qc→∞

x̂ + i
∫ qc

0
dqρ

q2
ρJ1(qρρ)

q2
ρ + k2

v − k2︸                   ︷︷                   ︸
, Tqc → κρK1(κρρ) for qc→∞

ρ̂

]
, (S25)

reproducing Eq. (2) as qc → ∞ (we remind that κρ , kv/γ). Written in terms of the transverse and

longitudinal parts introduced in the above, Lqc and Tqc , the regularized version of Eq. (3) reads

Pτ(ω) ≤ e2ωξτ
16π3ϵ0v2

∫
dV
|χ|2

Imχ

(
L2

qc
+ T 2

qc

)
. (S26)

To demonstrate the limits’ finiteness, we require the small-ρ behavior of Lqc and Tqc at finite qc.

9



Since qc is large, much larger than κρ, this is straightforward—particularly for Tqc:

Tqc ,
∫ qc

0
dqρ

q2
ρJ1(qρρ)

q2
ρ + κ

2
ρ

=

∫ ∞

0
dqρ

q2
ρJ1(qρρ)

q2
ρ + κ

2
ρ

−
∫ ∞

qc

dqρ
q2
ρJ1(qρρ)

q2
ρ + κ

2
ρ

≃ κρK1(κρρ) −
∫ ∞

qc

dqρ J1(qρρ) = κρK1(κρρ) − J0(qcρ)
ρ

. (S27)

The small-ρ behavior then follows from the small-argument asymptotics of the Bessel functions

[for x ≪ 1, K1(x) = x−1 − 1
2 x

(1
2 − γem − ln 1

2 x
)
+ O(x3 ln x) and x−1J0(x) = x−1 − 1

4 x + O(x3) with

γem denoting the Euler–Mascheroni constant]:

Tqc ≃ 1
2q2

cρ +
1
2κ

2
ρ

(
γem − 1

2

)
ρ + 1

2κ
2
ρ ln

(
1
2κρρ

)
ρ, for ρ ≪ q−1

c ≪ κ−1
ρ . (S28)

Thus, the regularized transverse component Tqc vanishes as ρ → 0—for slightly larger ρ-values,

however, Tqc has a global maximum: max
qcρ

Tqc ≈ Tqc(qcρ ≈ 2.76) ≈ 0.42qc (assuming qc ≫ κρ).

The longitudinal contribution Lqc does not find as neat a closed form expression as Eq. (S27),

though it may still be expressed in terms of known functions:

Lqc ,
κρ

γ

∫ qc

0
dqρ

qρJ0(qρρ)
q2
ρ + κ

2
ρ

≃
κρ

γ

[ ∫ ∞

0
dqρ

qρJ0(qρρ)
q2
ρ + κ

2
ρ

−
∫ ∞

qc

dqρ
J0(qρρ)

qρ

]
=
κρ

γ

{
K0(κρρ) + ln 1

2qcρ + γem − 1
2

(
1
2qcρ

)2
2F3

[
1,1

2,2,2

∣∣∣∣ − (
1
2qcρ

)2
]}
, (S29)

where 2F3 is a generalized hypergeometric function with the asymptotic behavior = 1−O[(qcρ)2].

The small-ρ behavior again follows from the Bessel function asymptotics [K0(x) = − ln 1
2 x− γem +

O(x2 ln x)], such that:

Lqc ≃
κρ

γ
ln

qc

κρ
, for ρ ≪ q−1

c ≪ κ−1
ρ . (S30)

Thus, the longitudinal contribution Lqc tends to a finite, nonzero value ∝ ln qc/κρ as ρ → 0; this is

also the maximum of Lqc .

Equations (S28) and (S30) demonstrate that the ρ = 0 singularity of the incident field is regu-

larized for finite cut-offmomenta qc. This ensures that both direct calculations and limits similarly

yield finite, regularized values, with bulk contributions dependent on the cut-off momentum.

7. EXPERIMENTAL METHODS AND DATA ANALYSIS

We are able to obtain the absolute intensity of Smith–Purcell radiation by implementing a cal-

ibration measurement using a broadband (visible and near infrared) calibrated source (AvaLight-

HAL-CAL). The experimental setup for calibration is shown in Fig. S3. All the optics remain the
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Figure S3. Experimental setup of the calibration measurement.

same as Fig. 3(a) except that we replace the SEM with the calibration source. The spectral inten-

sity S 0(ω) of the calibrated source is already known from the manufacturer. Passing through all

the optics, the radiation from the calibrated source enters the spectrometer and generates a signal

count C0(ω).

With S 0(ω) and C0(ω), we are able to gauge Smith–Purcell radiation intensity S (ω) by reading

the corresponding signal count C(ω). The relation is given by

S 0(ω)
C0(ω)

=
S (ω)
C(ω)

. (S31)

This relation is valid for two reasons. First, the generated photons into the sample substrate is

negligibly small compared to the total radiation (see Fig. S4). Second, the optics and spectrom-

eter configurations remain unchanged for Smith–Purcell radiation measurement and calibration

measurement. This approach allows us to obtain the absolute radiation intensity of the collected

Smith–Purcell radiation, without knowing the loss functions of each individual optical elements

or the quantum efficiencies and EM gains of the spectrometer at each wavelength, since all these

factors will cancel out if inserted into Eq. (S31).

To calculate the number of photons generated per electron, measurement of the current from

the SEM is necessary. The currents are measured using a picoammeter connected to a built-in

Faraday cup inside the SEM chamber. The measured currents are shown in Fig. S5(a).

For comparisons with the analytical limits, we also need to evaluate the number of unit cells

Nuc of interaction and consider the beam diameters (spatial spread) of the electron beams. We

estimate the electron beam diameter D with the equation [7]

D2 = D2
0 + D2

d + D2
s + D2

c = [C2
0 + (0.6λ)2]α−2

p +
C2

sα
6
p

4
+

(
Cc
∆E
E

)2

α2
p. (S32)

Here D0 is the aberration-free Gaussian probe diameter, Dd corresponds to aperture diffraction,

Ds corresponds to spherical aberration, and Dc corresponds to chromatic aberration. Our SEM
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Figure S4. Fraction of the generated photons into the substrate for different accelerating energies at normal

emission angle (λ = a/β) for the first-order Smith–Purcell radiation.

uses a tungsten thermionic cathode, for the energy regime (10–20 keV) we use, Dd and Dc are

negligible [8]

D2 ≈ D2
0 + D2

s = C2
0α
−2
p +

C2
sα

6
p

4
, (S33)

where

C0 =
√

4I/bπ2, (S34)

b is the electron gun brightness, I is the probe current, αp is the convergence semi-angle of the

electron beam, and Cs is the spherical aberration coefficient. For the brightness b of the source,

we choose 1 × 105 A/cm2/sr for the acceleration energy 20 keV (typical value for a tungsten

source [7–9]) and scale it linearly [7–9] for other voltages. The focal length (working distance) of

our SEM is 28 mm, which corresponds to a spherical aberration coefficient Cs ≈ 300 mm [8, 9].

(a) (b)
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Figure S5. (a) Measured current of the experiment. (b) Schematic of the model to evaluate the interaction

length of the electron beam with the structure. (c) Electron structure separations d obtained from the model

(dots) and their polynomial fitting (curve; the 20 kV outlier data point dropped from fitting) for calculating

theoretical upper limits.
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For each measurement, we adjusted the SEM to achieve the smallest possible beam diameter.

In theory, this corresponds to Dmin = (4/3)3/8(C3
0Cs)1/4 for the optimal convergence semi-angle

αopt = (4/3)1/8(C0/Cs)1/4 [derived from Eq. (S33)].

In our experiment, the electron beams grazingly impinges onto the sample at an nonzero angle

of θ = 1.5◦, which leads to a finite number of unit cells where electrons strongly interact with the

structure such that the radiation contribution from other areas are negligible. The backscattering

coefficient η of the SEM can be generally estimated as [7]

η = 1/(1 + sin θ)p, (S35)

where p = 9/
√

Z and Z is the atomic number. In our case, θ = 1.5◦ and Z = 79 (Au), and

thus η ≈ 0.974, meaning that most electrons get elastically scattered and maintain their initial

momenta, which correspond to the scenario shown in Fig. S5(b). The highlighted rectangle is

treated as the region where electrons strongly interact with the structure. The number of unit

cells is consequently determined via the length of the interaction region Nuc = L/a = 2D/a sin θ.

After obtaining Nuc, the measured radiation spectral density S (ω) can be translated into emission

probability per electron per frequency per unit propagation length

dΓexpt(ω)
dx

=
eS (ω)
~ωINuca

, (S36)

which produces the measured emission probability shown in Fig. 3(d).

On the theory side, the upper limit in Fig. 3(d) is calculated for Smith–Purcell radiation at

the surface-normal emission angle (i.e., β = a/λ). The limit is evaluated at the center of the

interaction region with separation d = H/2 = D tan θ/4 sin θ [see Fig. S5(c)] by generalizing

Eq. (6). The generalization of Eq. (6), analogous to the expression of Eq. (4), is straightforward

for the inhomogeneous Au-Si grating sample: move |χ|2/Imχ into the integrand, and account for

different materials:

Γτ(ω) ≤ αξτc
2πω2

∑
mat

∫
Vmat

|χmat|2
Im χmat

[
κ4
ρK

2
0(κρρ) + κ2

ρk
2
v K2

1(κρρ)
]

dV, (S37)

where Vmat and χmat are the occupied volume and susceptibilities of the materials (mat ∈ {Si,Au}).

8. NEAR–INFRARED SMITH–PURCELL RADIATION EXPERIMENT

We also conduct near–infrared experiment to further confirm out theory with the same experi-

mental setup and a near–infrared spectrometer. A one-dimensional grating (Au-covered patterned-
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Si, see Fig. S6 inset; LightSmyth Technologies) with a longer periodicity (≈ 272 nm) is used such

that the Smith–Purcell radiation moves to near–infrared.

Adopting the same methods of data acquisition, calibration, and analysis [as those of our initial

experiment in the visible (as described in Supplementary 7)], we are able to obtain the absolute

emission probabilities for the near–infrared Smith–Purcell radiation. The new experimental results

are shown in Fig. S6, where the envelope lineshape of the emission spectra again follows our

theoretical prediction. The measured currents and the calculated electron structure separations are

shown in Fig. S7.
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Figure S6. Smith–Purcell radiation observed in the near–infrared regime and the comparison with the upper

limit theory.
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Figure S7. (a) Measured current of the near–infrared experiment. (b) Electron structure separations d

obtained from the model (dots; see Supplementary 7) and their polynomial fitting (curve) for calculating

theoretical upper limits.

In addition to the agreement between our theory and each of the experiment, the comparison

between the visible and the infrared experiment gives rise to interesting observations that further

14



confirm our theory. Two key observations can be made from the comparison. First, the absolute

emission probabilities increase by about two orders of magnitude from the visible to the near-

infarred regime—consistent with the same order of increase in the material factor of Au [see

Fig. 1(b)], which confirm the material factor dependence explicitly. Second, although the two

experiments are both in the fast-electron-efficient regime, the measured emission probabilities

feature a peak for the visible experiment, while exhibit monotonic decrease for smaller electron

energies (except for a small increase between 17 keV to 16 keV) for the near–infrared experiment.

Such a difference arises because the material response is much less dispersive in the near–infrared,

which implicitly corroborates the functional impact-parameter dependence within our upper limit.

9. COMPLEMENTARY EVIDENCE FOR THE SLOW-ELECTRON-EFFICIENT PREDICTION

In the main text, we predict that slow electrons radiate more strongly than relativistic ones

at subwavelength separation (kd ≪ 1) with structures. We also provide numerical evidence for

this prediction [Fig. 2(b-c)]. In this section, we discuss a complementary supporting evidence

for our slow-electron-efficient prediction based on data extracted from a recent work [10] that re-

ports an integrated Cherenkov radiator using hyperbolic metamaterials (Au/SiO2 layered stack).

The electron-structure separation is reduced by integrating the electron field emitter on the chip.

Ref. [10] reports the output power Pout of the device as a function of anode-cathode currents Iac and

electron energies for fixed radiation wavelengths (centered at ≈780 nm; see Fig. 2 in Ref. [10]).

These data allow us to extract the experimental emission probabilities dΓ(ω)
dx
∝∼ Pout/Iac, since the re-

ported shapes of the radiation spectra are similar for various electron energies (i.e., almost constant

emission bandwidth for various electron energies).

The probabilities are therefore shown in Fig. S8, where data reported with electron energies are

shown with extra red circles. Data points without electron energies reported in [10] are interpreted

as linearly-interpolated electron energies. As we explicitly show in Fig. 2, the lineshape of emis-

sion probabilities versus electron velocity contains one-to-one correspondence with kd. Hence, the

experimental lineshape can be fitted with the shape-independent upper limit [Eq. (5a)] to extract

the electron-structure separation d (being the only free parameter to compare with the reported

value):

Γrad(ω)
dx

∝ |χeff |2
Imχeff

1
β2

[
(κρd)K0(κρd)K1(κρd)

]
, (S38)
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Figure S8. Extra external supporting evidence for the slow-electron-efficient prediction with small electron

energies (0.25∼1.4 keV), which complements our experiments using electrons with higher energies (10∼20

keV). Extracted emission probabilities from [10] and the optimal lineshape fitting (solid lines with kd ≈

0.16) using the upper limit. The auxiliary suboptimal fittings (dashed and dotted curves) demonstrate the

uniqueness of the extracted kd value. All red curves fit data points with electron energies reported, while all

black curves fit all data points assuming linearly interpolated electron energies (see Fig. 2 in Ref.[10]).

where χeff(χAu, χSiO2 , β) is the effective susceptibility of the metamaterial, a function of the com-

posite material permittivities and the longitudinal wavevector (i.e., the electron velocity), is ex-

plicitly determined from the standard effective medium theory (see Supplementary Information

of Ref. [10] S1–S3 sections). We obtain two primary fitting results in Fig. S8, where d̂1 =

20.0 ± 2.3 nm for the solid black curve (fits all data) and d̂2 = 19.8 ± 6.7 nm for the solid red

curve (only fits the data with electron energies reported). The estimated kd ≈ 0.16 corresponds to

an optimal nonrelativistic electron velocity βopt ≈ 0.08 (see Fig. S8). We emphasize that although

the only available experimental data are below the predicted βopt, they are sufficient for us to unam-

biguously extract the kd value for the experiment. The uniqueness of the kd value is supported by

the two auxiliary suboptimal fittings (dashed and dotted curves) with either reduced or increased

kd values.

For comparison, the reported separation from the field emitter to the structure is 40 nm. Since

the electron beam in the reported device is still not theoretically ideal (not a delta function in space;

instead, with nonzero beam diameters), we consider the estimates d̂1 and d̂2, from our upper limit

theory, as good agreement with the realistic structural parameter. Hence, such an agreement serves
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as complimentary support for our prediction about the slow-electron-efficient regime.

10. UPPER LIMIT IN TWO DIMENSIONS

The limits can be derived in both the three-dimensional or the two-dimensional case. For

completeness, here we also derive the limit in the two-dimensional case, which correspond to

sheet electron beams that are assumed in Fig. 4(f).

We consider an electron sheet beam in the (x, z) plane with charge density being one electron per

nanometer, i.e., q = 1.6 × 10−19 C/nm [consistent with our unit for probability in two dimensions
d2Γ

dx dy/~ (eV−1nm−2)]. Precisely, the probability is invariant of the choice of the transverse (y) length

scale, as long as the length scale is in the same unit for both the source current density and the

probability. Here the length scale is chosen as nanometer for both of the quantities.

The source current density in the time domain can be written as J(r, t) = qvδ(z − z0)δ(x − vt)x̂.

In the frequency domain, the current density is given by

J(r, ω) = qδ(z − z0)eikv xx̂, (S39)

The induced fields are

H(r, ω) = −q
2

eikv x−κρ(z−z0)ŷ (S40a)

E(r, ω) =
q

2ωϵ0
(kvẑ − iκρx̂)eikv x−κρ(z−z0) (S40b)

for z > z0 and

H(r, ω) =
q
2

eikv x+κρ(z−z0)ŷ (S41a)

E(r, ω) = − q
2ωϵ0

(kvẑ + iκρx̂)eikv x+κρ(z−z0) (S41b)

for z < z0, where ϵ0 is the vacuum permittivity, and κρ also defined as κρ =
√

k2
v − k2, same as

the main text. where k = ω/c is the light wavevector.

Insert Eq. (S41b) into Eq. (4), we obtain the limit in two dimensions

dΓτ(ω)
dy

≤ |χ|
2

Imχ

q2ξτ(k2
v + κ

2
ρ)

32~ϵ0ω2

∫
S

e−2κρ |z−z0 | dS , (S42)

17



where S is the area defined by the profile of the structure.

As in the main text, we also consider a concrete example: Smith–Purcell radiation from a

rectangular grating with filling factor Λ. Applied the rectangular profile to Eq. (S42), the radiated

photon per frequency per electron per unit area is bounded by

d2Γτ(ω)
dx dy

≤ |χ|
2

Imχ

Λq2ξτ(k2
v + κ

2
ρ)

64~ϵ0κρω2 e−2κρd, (S43)

where d is the distance between the electron and the grating.

11. FREE ELECTRON RADIATION NEAR A BOUND STATE IN THE CONTINUUM

In photonic systems, modes below the light cone are guided modes, while modes above the

light cone are typically resonances with finite lifetime. In contrast to guided modes or resonances,

a bound state in the continuum is a perfectly confined modes with infinite lifetime embedded in

the radiation continuum (above light cone) [11].

These properties can be used to distinguish whether an optical resonance is a BIC or not. The

mode profile in Fig. 4(c) corresponds to a BIC because 1) it is obviously within the continuum

[see Fig. 4(a)]; 2) it possesses infinite lifetime without external radiation (no outgoing oscillatory

radiation in its eigenmode profile), as shown in Fig. S9(a).

BIC: Resonance:

Ex

+

_

(a) (b)

k
x
a/2π = 0.05k

x
a/2π = 0

Figure S9. Difference of a BIC and a resonance on the TE1 band of Fig. 4(a). (a) The mode profile of

a BIC decays exponentially, giving rise to infinite lifetime; (b) The mode profile of a resonance contains

oscillatory radiation into the far field, leading to finite lifetime.
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Figure S10. Smith–Purcell radiation enhancement as a function of resonant quality factors under different

background quality factors.

Next we explain the Smith-Purcell radiation enhancement near a BIC. We write down the tem-

poral coupled mode theory [12] for the coupling process

da
dt
= −iω0a − a

(
1
τbg
+

1
τr

)
+

√
2
τr

s+, (S44)

where a is the mode amplitude inside the resonances, 1/τbg is the background coupling rate (such

as material absorption and scattering loss due to fabrication impefections), 1/τr is the resonant

coupling rate (for BIC, τr = ∞), s+ is the wave amplitude carried by the electron towards the

resonances. Solving Eq. (S44) for a we have∣∣∣∣∣ a
s+

∣∣∣∣∣2 = 2/τe

(ω − ω0)2 +

(
1
τbg
+ 1

τr

)2 (S45)

Assuming on-resonance condition (ω = ω0, electron line and photonic bands intersects), to maxi-

mize the resonance amplitude for a given fixed s+, we have∣∣∣∣∣ a
s+

∣∣∣∣∣2 = 2/τr(
1
τbg
+ 1

τr

)2 ∝
Q2

tot

Qr
. (S46)

where Q = ωτ/2 for all channels and 1/Qtot = 1/Qr + 1/Qbg. It is thus evident from Eq. (S46)

that the maximal resonance enhancement is achieved when Qbg = Qr, (i.e., τbg = τr) which is the

“Q-matching condition” we refer to in the manuscript.
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As a result, the achievable radiation enhancement depends on the background radiation rate

(see Fig. S10). In our example shown in Fig. 4(f) with material absorption taken into account, the

maximal enhancement occurs at small offsets from the BIC with a Qr ≈ 103 ∼ 105.
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