
FIG. 1. The KvdW analytical model predicts observable in-
verse Doppler-shifted signals and signals endowed with the
usual Doppler shift, but the usual Doppler-shifted signals are
not observed in their numerical simulations. Dispersion and
simulations are from Kozyrev and van der Weide [1].
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Kozyrev and van der Weide (KvdW) [1] claim that
waves with spatial harmonics associated with wave vectors
outside of the first Brillouin zone are the source of the
anomalous Doppler shift observed by Seddon and
Bearpark (SB) [2]. We show that this is incorrect.

KvdW argue with a phase-matching analysis (Eq. 11)
that the inverse Doppler effect in their quasicontinuum
system could be due to higher spatial harmonics but have
not demonstrated that it is due to these higher spatial
harmonics. If spatial harmonics are responsible for the
effect, then Fig. 1 shows how Eq. 11 of KvdW predicts
that other Doppler-shifted signals should be observable,
including the ‘‘usual’’ Doppler shift that would be associ-
ated with spatial harmonics within the first Brillouin zone
(i.e., the m � 0 case). KvdW’s numerical analysis shows
that these spatial harmonics have amplitudes more than
3 times larger than the backward wave spatial harmonics
claimed to give rise to the inverse effect and should there-
fore provide a readily observable peak. However, the usual
Doppler shift is not present in the numerical simulations of
KvdW (shown in Fig. 1) nor is it observed in the experi-
ments and simulations of SB (0.3 and 0.43 GHz for the first
and second reflections from the shock, respectively, in the
0.285 shock speed case).

Furthermore, the inverse Doppler effect has been ob-
served by SB in their simulations of a discrete transmission
line [2] where spatial harmonics cannot be defined and,
therefore, the KdvW explanation does not apply [3]. KvdW
state that the discrete model of SB, ‘‘. . .does not allow us to
distinguish a particular spatial harmonic due to the discrete
nature of the model.’’ A discrete system has no spatial
harmonics to distinguish between. The discrete model of
SB and the quasicontinuum model of KvdW are not iden-
tical physical systems in this regard.

We believe the reason the usual Doppler shift is not
observed (and is much smaller than predicted by the
KvdW analytical analysis) is related to the unusual nature
of the reflecting surface that the shock front represents [3–
5]. In our work on shocklike wave propagation in periodic
media [3,4], we have found that the shock front does not
reflect with a constant phase shift like a metal mirror, as
assumed by the KvdW analytical analysis. Instead, the
shock front endows reflected radiation with a time-
dependent phase shift. Our theory was developed for 1D
periodic systems with normal dispersion of the type ad-
dressed in the Letter of KvdW. This theory has no require-
ment for a transmitted wave to exist in the preshock
transmission line, as claimed by KvdW. It predicts that
the shock front rise time (or thickness) affects the reflected
radiation: the normal Doppler shift and other anomalous
shifts can be observed when the shock rise distance is much
less than 1 lattice unit (a condition that may not be achiev-
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able in a nonlinear transmission line), and the inverse
Doppler shift will dominate in the limit of a thick shock
front. Under the experimental conditions of SB, the shock
front rise time is greater than 1 ns and transit time of the
shock over each discrete unit is about 0.4 ns, so there are at
least 2–3 discrete elements in the shock front at any time.
In our work on reversed Doppler effects in shocked pho-
tonic crystals [4] we found that similar or greater front
thicknesses lead to the domination of the reflected radia-
tion by the inverse Doppler-shifted signal that is observed
in the experiments and simulations of SB and the simula-
tions of KvdW.
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