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Cavity pattern formation with incoherent light
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We study the propagation dynamics of an incoherent light beam circulating in a passive cavity containing
noninstantaneous nonlinear media. It is shown that patterns form in this cavity in spite of spatial incoherence
of the light. We show that the pattern formation process is always associated with two consecutive thresholds.
The first(instability) threshold is unaffected by the cavity boundary conditions, whereas the second threshold
is induced by the feedback through the interplay of nonlinear gain and cavity loss.
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[. INTRODUCTION key physical mechanism responsible for the pattern forma-
tion in thisincoherent cavityExamples for noninstantaneous

Nonlinear optical systems with feedback and associatedonlinear media are photorefractive cryste$ liquid crys-
phenomena, such as pattern formafibhand cavity solitons  tals[9], polymers, etc.
[2,3], have been continuously drawing attention for several The main goal of this paper is to analyze the early stage of
reasons. On the fundamental side, the understanding of nopattern formation process in the incoherent cavity. By using
linear optical phenomena contributes immensely to the unthe stability analysis of a uniform intensity beam in the cav-
derstanding of nonlinear dynamical systems in general, andy, it is shown that the pattern formation process is always
has a direct impact on other fiel4]. Equivalent nonlinear associated with two consecutive thresholds which are deter-
phenomena appear in various areas of physics, chemical, afmined by the degree of spatial coherence, the strength of the
biological systemg4]. From the applications standpoint, nonlinearity, and the cavity feedback parameter. At the first
these systems can be engineered to perform as useful devidégeshold the beam becomes unstable, as self-focusing over-
for switching, storing, and manipulating informatifl. The ~ comes diffusive tendency of spatially incoherent light. The
phenomenon of pattern formation refers to the fact that in asecond threshold occurs when the nonlinear gain overcomes
extended nonlinear medium, above a suitable threshold, arf?e loss in a single pass. The fifghstability) threshold is
uniform intensity distribution of light becomes unstable, andindependent of the cavity boundary conditions, which is in
splits into spacetime) correlated domainfl]. In nonlinear ~ contrast to the coherent cavitiésg., see Ref10]), whereas
optical cavities, patterns can assume a variety of formsthe second threshold is an inherent cavity feature. As an in-
stripes, hexagons, rolls etf6]. Nonlinear optical cavities teresting feature of our system, we point out that if the non-

can also give rise to cavity solitori2,3,5. However, all linearity is at low(high) saturation, an increase in feedback
previous studies of nonlinear optical cavities have consideret¢ads to forwardbackward crossing over of the two thresh-
only spatially coherent light7]. olds, i.e., to switching the pattern doff).

Here we present the study of pattern formation in a non-
Iineqr optical gavity with spatially incoherent !ight. The sys- Il. PROPAGATION EQUATIONS AND BOUNDARY
tem is a passive ring cavity of length,, containing a non- CONDITIONS

linear medium (crysta) of length L<L.. The intensity

structure from the output face of the crystal is attenuated by For the analysis of the incoherent cavity, the quantities
a factore and imaged to the input face of the crystal by usingarising from coherence, such as the resonant frequencies
conventional optics. The light entering the cavity is partially (mode$ of the cavity[11], are unimportant. Hence, the the-
spatially incoherent yet quasimonochromatic, with temporabretical description cannot resort to the commonly used
coherence length.,, much shorter than the cavity length: mean-field theonf11]. Instead, a new approach with new
L<l.,n<L.. The finesse of the cavity is low, of order one or parameterge.g., the degree of spatial coherenbas to be
less, which ensures that the temporal coherence length of ttaslopted.

light is not increased by any filtering process in the cavity. We begin by deriving equations governing the dynamics.
Experimentally, this requirement can be achieved simply byWe assume that the light circulating through the cavity is
making the length of the cavity large enough, since this relinearly polarized. The slowly varying amplitude of the elec-
duces the separation between the resonant frequencigdc field cycling through the cavity for th¢th time is de-
thereby decreasing finesse. The nonlinear medium has a noseribed by a complex amplitudg;(x,z,t), wherex denotes
instantaneous response; its response time is much longtre spatial coordinate,is the propagation axis, adienotes
than (i) the characteristic time of phase fluctuations across¢ime. The spatial coherence properties and intensity of the
the beam andii) the average time of phase fluctuations be-field cycling for thejth time through the cavity are described
tween the beams from different cycles. The medium reby the mutual coherence function Bj(X;,X;,2)
sponds only to the time-averaged intengBy9]. This is the  =(#;(X2,2,t)* ¢j(x,,2,t)) [12], where bracketg---) de-
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note the time average taken over the response time of th&here K:ﬁén(l)/a|||:|mtal. Equations(4) are linearized,

medium. Since the finesse of the Ca.Vity is IOW, and the temhowever, they are still Coup|ed_ To uncoup'e E4:)’ we seek

poral coherence length of the light,, is much smaller than  their solution through the superposition of modes
the length of the cavity, the phases of the fields that are

circulated through the cavity a different number of times are " -

mutually uncorrelated, that ig ¢)=0 for j#1. Bi”(r.p,2)=¢ Ml(r,p,z)+|§2 hyM(r,p,2), (5
Under the paraxial approximatiori3], the propagation

dynamics of the mutual coherence functidds within the whereh; =&, ;- &, , ands; denotes the Kronecker delta.

nonlinear medium is given by an infinite set of coupled par-g,qy, Eqs(4) and(5), we find that the modes evolve accord-
tial differential equations

ing to
R .
i—BZ]—IEjr i;):In—k{én(h)—én(l_)}Bj(r,p,z), 1) oM T PPM; ‘ikKBgO)(p)[M r+302)
0 gz kardp Hong(l—e |2
wherej=1,2,... . In Eq.(1), the new set of spatial coordi-
nates is defined by=(x;+xX,)/2 and p=x;—X,, |. de- —Ml(r—g,o,z)). (6)
notes the time-averaged intensity=3,B,(r + p/2,0z), the 2

nonlinear response of the material isnz(l)zné
+2nyén(l), andk is the wave number of the carrién the
mediun). In the feedback loop, the light is imaged from the
z=L face of the crystal to the incident plaze=-0. Hence,
besides the propagation equatidig the mutual coherence
functionsB; are also subject to the boundary conditions

Equation(6) for the first modeM ; is equivalent to the equa-
tion describing modulation instabilityMl) in a spatially in-
coherent single-pass systéf#], which implies that the first
mode M, can experience nonlinear gain and destabilize the
beam. In contradistinction, since the right-hand side of Eq.
(6) is zero forj=2 [due to the termd,;=0], all other modes
Bj,1(r,p,2=0)=¢Bj(r,p,z=L), (2 M, j=2, satisfy equation describing the evolution of small
perturbations in dinear medium; consequently, they do not
where € denotes the cavity feedback parameter. From Egexperience any nonlinear gain.
(1), we see that diffraction is accounted for in the nonlinear Equation(6) can be solved with Fourier analysis. In order
part of the cavitythe termik ~* 9°B; /dr dp]. The boundary to satisfy conditionB;(r,p,z)=B;(r,—p,2)*, we express
conditions consider only losses since the conventional optithe modes a#/(r,p,z) =P;(r,p,2)+ P;(r,—p,2)*, where
cal system in the feedback loop images light from the output
to the input face of the crystal.

oo

Pj(r,p,Z)=f da dK €92 X (K)Aj(a)e™ Kreler,

—wJ —w

I1l. LINEAR STABILITY ANALYSIS OF A UNIFORM (7)
INTENSITY BEAM

Here, a denotes the spatial wave numbgf(a) the growth
rates A;(«) the amplitudes, anﬂj“(K) the spatial coherence
properties of the perturbations corresponding tojthenode
Bi(r,p,.2)=B{"(p)+BM(r,p,2), (3 M. The functions L{(K) are normalized so that
) ) . JAKLj(K)=1. From Egs(6) and(7) for j=1, and with the
whereB;™’(r,p,z) denotes small perturbations upon the uni- \se ofdeLi’(K)zl, we obtain an implicit integral equa-

form intensity componerBI(O)(p). Boundary condition$2) tion for the growth rate of the first modg ():
must be satisfied by the uniform intensity components

To study the stability of the uniform intensity beam, we
express the mutual coherence functions as

B{Y1(p)=€B{%(p) and by the small perturbations K ~ h(K,a)

B&i)l(r,p,0)=GB(l)(I’,p,L). From this, we express the uni- f dK=—1, (8)
j j . . . no(l—e))_»  aK

form component of thgth cycle in terms of the uniform igq+ s

component of the incident bea{®)(p) = €/ ~*B{*(p), and
find the total uniform intensity of the light in the cauvity, = 0) 2 0) .
lota=21B{?(0)=1©/(1- €); the intensity of the incident Where h(K,a)=B;7(K+a/2)—B;"(K—«/2), andBj(K)
beam is denoted b9 =B{®)(0). As long as perturbations denotes the Fourier transform Bf(p). The growth rate of

are small enough, i.eLBfl)(r,p,z)|<|B(°)(p)|, Eq. (1) can the first modeg,(«) can assume real values greater than
be linearized: ) ! zero. The growth rate of the nongrowing eigenmodes is

purely imaginarygj(«) =iKa/k, for j=2.

BO i #BY ke o W P The boundary conditionB{); (r,p,0)=B{"(r,p,L) can
K n_ij (p)§|: (B, r+ E’O’Z) be written as
—Bfl)(r—g,o,z“, @ eA@Li(K[en ~1]=F ayA(Li(K), ()
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wherej=1.2, ..., a;;=€e%", aj;,,;=—(ee%"+1), aj;.» ®max 2x10 g2 2k g%\ 12
=1, anda; =0 otherwise. From Eq9), it follows that the kK \noi-e 2 m02+ 7
coherence propertieEj(K) and amplitudesAj(a) of the 0 0 (13

non-growing modesj&2) can be expressed in terms of the

coherence propertids; (K) and amplitudeA,(«) of the first ~ Furthermore, from Eq(12), it follows that there exists a
mode. From Egs.6) and (7) for j=1, and by using Well-defined threshold at which the beam becomes modula-

FAKEE(K)=1, it follows that L¥(K) is determinedvia tonally unstable; if

h(K,a)] by the coherence of the source: K1 O(1— )> 0%, 14
LYK)=— ic h(K, @) (10) the beam is unstable.

' No(l—e) . aK’ We point out that the incoherent beam incident on the

91+ 3 cavity is unstable if and only if the same beam with intensity

enhanced by the factor (1e) ! is unstable in a single-pass
The perturbations upon the incident beam can be written asysteni14]. The factor (1 ¢€) ~* simply reflects the increase
B(ll)(r,O,O)=f°fwA|Nc(a)ei“rda+C-C-, and via boundary of total intensity in the cavity due to feedbackisa

conditions as BY(r,0,0)==7_,[B(r,0,0) =10/(1—¢€). Thus, below and at the instability threshold,
_ eBJ(l)(r,O,L)]. From these two identities and E¢5) and ~ ONe cgnnot distinguish frqm the cavity system yvith_ incidgnt
(7), we obtain intensity 1(®, and the single-pass system with intensity
19/(1— €). Physically, this equivalence is a consequence of
Ane( @) the mutual incoherence between the fields of different cycles.

(11)  The perturbations and the uniform parts of beams from dif-
ferent cycles do not interfere, but simply add up. This means
) that apart from the trivial enhancement of total intensity, the
From the analysis above, we conclude that the coherencgyyity houndary conditions do not affect the position of the
properties of the sourc®{’)(p), and the perturbations M| threshold. This is also confirmed by the fact that the
Ainc(a) upon the incident beam, determine the coherenceosition of the instability threshold, given by inequaliy),
properties and the perturbations corresponding to the fieldgoes not depend on the length of the samiplevhich is
that circulate in the cavity. Although the linear stability embedded in boundary conditiorfg). This result is in a
analysis performed in Eq§3)—(11) resembles the linear sta- sharp contrast to coherent cavit{d$], where the instability
bility analysis from Ref[14], we emphasize that there is a process is influenced by the boundary conditions through the
significant difference. Namely, together with linearized jnterference of fields from different cycles.
propagation equation@), here the solution has to obey the
cavity boundary conditiongEq. (2)], which results in a spe- V. THE CAVITY THRESHOLD
cific cavity thresholdto be explained belowthat accompa-
nies pattern formation in a cavity. Such a threshold does not In contrast to the instability threshold, the boundary con-
have a counterpart in a single-pass system such as the oneditions, through the interplay of nonlinear gain and cavity
Ref. [14]. We also emphasize that Eq&l)—(11) can be loss, induce a transition from the low to high visibility pat-
straightforwardly generalized to include 2L)D systems.  tern. To see this, we calculate the modulation depth of the
intensity pattern. From Eq$5), (7), and(11), it follows that

Al(a)=(1— 6)—1_ (@l

IV. THE INSTABILITY THRESHOLD the intensity pattern @=L is
The linear stability analysis of the uniform intensity beam  ~ ed1(a)L .
above is applicable for any type of input beam correlation ;1 Bfl)(r,O,L)=j mA,NC(a)e'“’ da-+c.c.

statistics and nonlinearity. From now on we assume that the
correlation statistics is given by Lorenzian in Fourier space,

B?(K)~(K?+K§)~*, and that the nonlinearity i$n(1)  From Eq.(15), we can estimate the modulation defthis-
=yl/(1+1/lg). In the limit Ig—c0, the nonlinearity is of ibility ) M= (I max—min)/ (I max™ | min) Of the pattern.

Kerr type, and saturable otherwise. The nonlinear ga(r) First, we calculate integrall5) numerically. We assume
follows from Eq.(8) that the noise upon the incident beam does not have any
, preferential spatial frequenay, i.e., |Ajnc(a)| is indepen-

a dent of «, while the phase oA yc(«) is random. For the
=

(15

| 0

|91(a)] == Olal +]a] illustrations of the pattern visibility, we use the following

parameters. The length of the nonlinear medium Lis
where §=K,/k denotes the degree of spatial coherence=5 mm, the wavelength of the carrier waveNs-488 nm
From Eq.(10), we find the functional dependence of the (in vacuun), and the linear part of the refractive index is
maximally destabilizing perturbatior,,, (pattern wave ny=2.3. The dependences of the modulation depth on the
vector in the low visibility regimgon the degree of coher- feedbacke and the strength of the nonlinearityn= y!(®
encef and other parameters: are displayed in Figs. 1 and 2, respectively; solid lines rep-

no 1-€
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0.50 T T

T threshold is the cavity threshold which appears when the
denominator of the integrand5) becomes zero.

Before explaining the cavity threshold, let us gain more
insight into the modulation depth of the pattern by analytical
. formulas. From Eq(15), it follows that the maximally de-

stabilizing perturbationy,,x has the largest contribution to
integral (15). The modulation depth of the maximally desta-
- bilizing perturbationa,,x (not the whole pattepnis

S o025

—_——
———

0.25 0.35 0.45 0.55 e91(amanL
. Mo, =Ca(l=e)— o, (16)

low high where paramete€, corresponds to the strength of the small
visibility intensity perturbations upon the incident beam. The dotted

curve in Fig. 1 displays the behavior nfamax. We see that
Ma, describes well the trend of the modulation depth be-

(b) havior in between the two thresholds, however, it diverges

faster than the modulation depth calculated numerically.
0.00 —_— A more accurate description can be achieved by approxi-

0.2 0.4 0.6 0.8 1.0 : ) )

¢ mately integrating expressiofl5). The growth rateg(«)
=g,(a) can be Taylor expanded around the maximally de-

FIG. 1. The modulation dept of the pattern vs the feedback stabilizing perturbationymay, 9(a@)=g(amay + %g”(amax)

parametere. Vertical solid (dashedl lines show the position of the x(a_amax)Z, and the integrandl5) is approximately

first (secondl threshold. Solid curves show calculated numeri-
cally from Eq.(15). (a) The dotted curve represents, [see Eq.

visibility
S 025

stable
stable

91(a)L *
(16)], and the dashed curve represents modulation depth calculated e - 1 2 i eg(amax)Ljefj/2\g”(amay)\L(a7amax)z
from expressior(18). (b) The region of the stable output, and of a 1 — ee91(a)L € =1 '
low and high visibility pattern. Foe close to 1, the nonlinearity is 17

highly saturated, and the pattern is switched off. The parameters

=104 ¢= 0)/] o= . . . . .
used areAn=10"", §=0.0068, and™/1s=0.1. Approximate integration oves gives the following expres-

_ ) sion for the modulation depth:
resent the values ah calculated numerically from integral

(15). Vertical lines represent the positions of the thresholds . o(amanl
as is explained in figure captions. From Figs. 1 and 2, we see m=C 1—e Liyy(ee¥ma’m)

that just after the instability threshold, the modulation depth € Jg"(ama|L '
grows until it comes close to the second threshold where the
modulation depth experiences a sudden jump. This seconvt\j/

(18

here Liy(x)=3{_,x//j* denotes the polylogarithm func-
tion. We see that Eq18) for the modulation depth contains
the term 14/|g"(a@ma|L Which expresses the spatial wave
number selectivity. Namely, if the absolute value of the de-
rivative |g”(amay| is larger, integrand17) will be more
peaked aroundy,,,,, and only a small number of spatial
frequencies close ta, 4, Will contribute to the pattern. The
functional dependence of the modulation depth from(E8)
on the feedback is displayed by a dashed curve in Fig. 1.
Evidently, the functional forn{18) does not increase mono-
tonically from the first to the second threshold but has a
minimum. This is a consequence of the spatial wave number
selectivity term 1{/|g"(ama|L. Thus, the functional form
(18) can be used to describe the modulation depth only from
that minimum up to the second threshold, i.e., when
|g"(amay|L becomes sufficiently large. From Fig. 1, we ob-
1043An 4 5 serve that the functional forrtil8) gives a good description
for the behavior of the modulation depth below the second
FIG. 2. The modulation depth wsn= y1(® for different values  threshold. In Fig. 1, the paramet€ris chosen such that the
of €; §=0.0096, and s=. mis shown from the instability thresh- minimum of the curve from expressioi8) intersects the
old up to the cavity threshol@ndicated by vertical dashed lines  numerically calculated curve for the modulation depth.

0.50

e=0.3

E o025}

0.00
1
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Now we explain the cavity threshold. In the cavity, the 1
output pattern, with preferred periodicity determined by g8
amax, 1S imaged(with some loss to the input plane, thus 6
affecting the output pattern. From the denominator in Eg. -

(15), it follows that the modulation depth of the intensity — %*
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Kerr

pattern is determined by the relation between the nonlinea
gain and cavity loss. If the nonlinear gain is smaller than the
cavity loss, the modulation depth at the input is small «
enough, so that the pattern at the input is regarded as nois
with preferential periodicity determined hy,,,,. However, 08
if the nonlinear gain is larger than the cavity loss, the inten- o6
sity structure at the input is more than just preferential noise; , ,
this structure guides the light from the input beam into its
shape. This significantly differs from the single-pass Ml, |
where the modulation depth at the input is always small, and = oF&F=——Fpt————F1-" ————Fb———FL
the pattern builds from small noi$é&4]. From Figs. 1 and 2, 0

we see that the feedback of the maximally destabilizing per-

turbation induces a rapid increase of the modulation depth, FIG. 3. The positions of the modulation instability threshold
which is referred to as the cavity threshold; it occurs approxi{solid ling) and the cavity thresholttiashed lingin the (6, €) plane
mately when the nonlinear gain becomes equal to the cavit§epending on the saturation intensity, An=10"*. White (cross-
loss, i.e., whene expgy(ema)L=1. The transition will be hatchedl region denotes stable outp{tattern, respectively
sharper for larger values of the feedback parametésee
Fig. 2). This threshold is analogous to that in many feedback

systems with gairie.g., see Ref.15]). The behavior of the |y conclusion, we have analyzed the early stage of pattern
intensity pattern in between the two thresholds correspondg,rmation process in a nonlinear optical cavity with incoher-
to noisy precursors in one-dimensional pattemns observed ign light. The nonlinear medium within the cavity has a non-
Ref. [16] _ _ instantaneous response, that is, it is unable to follow fast
We note that the features of the intensity structure aboveangom fluctuations of incoherent light. We have demon-
the cavity threshold cannot be determined from the stabilitystrated that two consecutive thresholds always accompany
analysis of Sec. Ill. However, this analysis shows that forthe process of pattern formation. In contrast to the coherent
mation of any such structure is preceded by the two ConseClzyity caseq10], the instability threshold is unaffected by
tive thresholds, and it predicts the positions of these threshne incoherent cavity boundary conditions. The secaan-
olds in parameter space spannedAuy, 6, ande (see Fig. ity) threshold is determined by the interplay of nonlinear
3). From inequality(14), it follows that the increase of co- gain and cavity loss. It appears when the nonlinear gain in
herence and/or the strength of the nonlinearity always leadsingle pass overcomes the cavity loss. For future work on
to pattern formation. The dependence of the stability on thgncoherent optical cavities, such as the one described here,
feedbacke depends on the saturation of the medium. If theye envision the study of incoherent cavity solitons, whose
medium is Kerr, or in the regime of low saturatio)(1  features are yet to be determined.
—e)‘1|g1<1, the increase of feedback acts destabilizing.
However, if the medium is in the regime of high saturation
10(1—€)"tIg'>1, then the increase of feedback leads to
the stabilization of the beam. Thus, as an interesting feature This work was supported by the German-Israeli DIP
of the cavity system, we show that in the limit of IqWigh) project, the Israeli Science Foundation, and is part of the
saturation, the increase of feedback leads to switching thBIURI program on optical spatial solitons. H.B. acknowl-
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