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Abstract: We derive general conditions for 100% frequency conversion in
any doubly resonant nonlinear cavity, for both second- and third-harmonic
generation via χ (2) and χ (3) nonlinearities. We find that conversion
efficiency is optimized for a certain “critical” power depending on the
cavity parameters, and assuming reasonable parameters we predict 100%
conversion using milliwatts of power or less. These results follow from
a semi-analytical coupled-mode theory framework which is generalized
from previous work to include both χ (2) and χ (3) media as well as inho-
mogeneous (fully vectorial) cavities, analyzed in the high-efficiency limit
where down-conversion processes lead to a maximum efficiency at the
critical power, and which is verified by direct finite-difference time-domain
(FDTD) simulations of the nonlinear Maxwell equations. Explicit formulas
for the nonlinear coupling coefficients are derived in terms of the linear
cavity eigenmodes, which can be used to design and evaluate cavities in
arbitrary geometries.
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1. Introduction

In this paper, we consider second- and third-harmonic generation in doubly resonant cavities.
We generalize previous experimental and theoretical work on this subject, which had focused
only on χ (2) nonlinearities in large Fabry-Perot etalons or two-dimensional ring resonators
where a scalar approximation applied [1–9], to incorporate both χ (2) and χ (3) nonlinearities
and handle the inhomogenous fully vectorial case. We then develop several results from this
generalization: whereas it is well known that 100% harmonic conversion is possible, at least in
χ (2) media, in this work we further explore and identify the conditions under which this can be
achieved. First, we demonstrate the existence of a critical input power at which harmonic gener-
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ation is maximized, in contrast to previous work that focused largely on the low-power limit in
which generation efficiency increased monotonically with input power [3]. Second, while it is
well known that harmonic conversion can be achieved at arbitarily low powers given sufficiently
long cavity lifetimes, this implies a narrow bandwidth—we show that, by combining moderate
lifetimes (0.1% bandwidth) with tight spatial confinement, 100% second- and third-harmonic
conversion can theoretically be achieved with sub-milliwatt power levels. Such low-power con-
version could find applications such as high-frequency sources [5], ultracompact-coherent op-
tical sources [10–12], imaging [13], and spectroscopy [14].

Nonlinear frequency conversion has been commonly realized in the context of
waveguides [15–18], or even for free propagation in the nonlinear materials, in which light
at one frequency co-propagates with the generated light at the harmonic frequency [19–22]. A
phase-matching condition between the two frequencies must be satisfied in this case in order to
obtain efficient conversion [5,9]. Moreover, as the input power is increased, the frequency con-
version eventually saturates due to competition between up and down conversion. Frequency
conversion in a doubly resonant cavity has three fundamental differences from this familiar
case of propagating modes. First, light in a cavity can be much more intense for the same input
power, because of the spatial (modal volume V ) and temporal (lifetime Q) confinement. We
show that this enhances second-harmonic (χ (2)) conversion by a factor of Q3/V and enhances
third-harmonic (χ (3)) conversion by a factor of Q2/V . Second, there is no phase-matching con-
dition per se for 100% conversion; the only absolute requirement is that the cavity support two
modes of the requisite frequencies. However, there is a constant factor in the power that is de-
termined by an overlap integral between the mode field patterns; in the limit of a very large
cavity, this overlap integral recovers the phase-matching condition for χ (2) processes. Third,
the frequency conversion no longer saturates—instead, it peaks (at 100%, with proper design)
for a certain critical input power satisfying a resonant condition, and goes to zero if the power
is either too small or too large.

Second-harmonic generation in cavities with a single resonant mode at the pump fre-
quency [10, 14, 23–38] or the harmonic frequency [39] requires much higher power than a
doubly resonant cavity, approaching one Watt [3, 38] and/or requiring amplification within the
cavity. (A closely related case is that of sum-frequency generation in a cavity resonant at the
two frequencies being summed [40].) Second-harmonic generation in a doubly resonant cavity,
with a resonance at both the pump and harmonic frequencies, has most commonly been ana-
lyzed in the low-efficiency limit where nonlinear down-conversion can be neglected [4–9], but
down-conversion has also been included by some authors [1–3]. Here, we show that not only
is down-conversion impossible to neglect at high conversion efficiencies (and is, in fact, neces-
sary to conserve energy), but also that it leads to a critical power where harmonic conversion
is maximized. This critical power was demonstrated numerically by Ref. 41 in a sub-optimal
geometry where 100% efficiency is impossible, but does not seem to have been clearly ex-
plained theoretically; the phenomenon (for χ (2)) was also implicit in the equations of Ref. 3 but
was not identified, probably because it occurred just beyond the range of power considered in
that work.

Previous work on third-harmonic generation in cavities considered only singly resonant cav-
ities; moreover, past work focused on the case of χ (2) materials where 3ω is generated by
cascading two nonlinear processes (harmonic generation and frequency summing) [14, 42].
Here, we examine third-harmonic generation using χ (3) materials so that only a single reso-
nant process need be designed and a different set of materials becomes available. (χ (3) third-
harmonic generation in a bulk periodic structure, with no cavity, was considered in Ref. 43.)
In a χ (3) medium, there are also self/cross-phase modulation phenomena (nonlinear frequency
shifts) that, unchecked, will prevent 100% conversion by making the frequency ratio �= 3. To
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address this mismatch, we describe how one can use two materials with opposite-sign χ (3) to
cancel the frequency-shifting effect; it may also be possible to pre-shift the cavity resonant fre-
quency to correct for the nonlinear shift. On the other hand, a χ (2) medium has no self-phase
modulation, and so in this case it is sufficient to increase the input power until 100% frequency
conversion is reached. (An “effective” self-phase modulation occurs in χ (2) media due to cas-
caded up- and down-conversion processes [44], but these processes are fully taken into account
by our model. We also consider media with simultaneous χ (2) and χ (3) nonlinearities, and show
that the latter can be made negligible.) If the critical field were too intense, then material break-
down might also be an obstacle, but we show that it is sufficient to use modes with a large
lifetime Q and small volume V so that a slow conversion due to a weak nonlinear effect has
enough time to occur.

S���

��

S���

��

S���

��

a�

�

a�

�

E���

�

Fig. 1. Top: Schematic diagram of waveguide-cavity system. Input light from a waveguide
(left) at one frequency (amplitude s1+) is coupled to a cavity mode (amplitude a1), con-
verted to a cavity mode at another frequency (amplitude a2) by a nonlinear process, and
radiated back into the waveguide (amplitude s2−). Reflections at the first frequency (s1−)
may also occur. Bottom: 1d example, formed by quarter-wave defect in a quarter-wave di-
electric stack. Dielectric material is yellow, and electric field Ez of third-harmonic mode is
shown as blue/white/red for positive/zero/negative amplitude.

In particular, we consider the general situation depicted schematically in Fig. 1: a two-mode
nonlinear cavity coupled to an input/output channel. For example, a one-dimensional realization
of this is shown in Fig. 1: a Fabry-Perot cavity between two quarter-wave stacks [45], where
the stack has fewer layers on one side so that light can enter/escape. For a nonlinear effect, we
consider specifically a χ (�) nonlinearity, corresponding essentially to a shift in the refractive
index proportional to the nonlinear susceptibility χ (�) multiplied by electric field E to the (�−
1)th power. Most commonly, one would have either a χ (2) (Pockels) or χ (3) (Kerr) effect. Such
a nonlinearity results in harmonic generation [46]: light with frequency ω is coupled to light
with frequency �ω . Therefore, if we design the cavity so that it supports two modes, one at ω
and one at �ω , then input power at ω can be converted, at least partially, to output power at �ω .

In the following, we derive a semi-analytical description of harmonic generation using the
framework of coupled-mode theory [1–3, 5, 9, 10, 14, 31, 37, 47], and then check it via direct
numerical simulation of the nonlinear Maxwell equations [7, 48, 49]. For maximum general-
ity, we derive the coupled-mode equations using two complementary approaches. First, we use
“temporal” coupled-mode theory [50, 51], in which the general form of the equations is deter-
mined only from principles such as conservation of energy and reciprocity, independent of the
specific physical problem (for example, electromagnetic or acoustic waves). Second, we apply
perturbation theory directly to Maxwell’s equations in order to obtain the same equations but
with specific formulas for the coupling coefficients in terms of the linear eigenmodes. Unlike
most previous treatments of this problem [1,2,47], we do not make a one-dimensional or scalar
approximation for the electromagnetic fields (invalid for wavelength-scale cavities), and we
consider both χ (2) and χ (3) media. (The optimization of these coupling coefficients is then the
generalization of the phase-matching criteria used in one-dimensional geometries [5].)
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2. Temporal coupled-mode theory

We derive coupled-mode equations describing the interaction of light in a multi-mode cavity
filled with nonlinear material and coupled to input/output ports, from which light can couple in
(s+) and out (s−) of the cavity. A schematic illustration of the system is shown in Fig. 1. Specif-
ically, we follow the formalism described in Ref. 50, adapted to handle nonlinearly coupled
modes with frequencies ωk. Although similar equations for the case of χ (2) media were derived
in the past [3], they do not seem to have been derived for χ (3) harmonic generation in cavi-
ties. Moreover, a derivation via the temporal coupled-mode formalism of Ref. 50 is arguably
more general than earlier developments based on a particular scalar nonlinear wave equation,
because this formalism (for a given-order nonlinearity) depends only on general considerations
such as weak coupling and energy conservation (the resulting equations hold for vector or scalar
waves in electromagnetism, acoustics, or any other weakly-coupled problem with a few simple
properties). In the next section, we will then specialize the equations to electromagnetism by
deriving explicit equations for the coupling coefficients from Maxwell’s equations.

We let ak denote the time-dependent complex amplitude of the kth mode, normalized so that
|ak|2 is the electromagnetic energy stored in this mode. We let s± denote the time-dependent
amplitude of the incoming (+) or outgoing (−) wave, normalized so that |s ±|2 is the power.
(More precisely, s±(t) is normalized so that its Fourier transform |s̃±(ω)|2 is the power at ω .
Later, we will let sk± denote the input/output power at ωk.) [In 1d, the units of |ak|2 and |s±|2
are those of energy and power per unit area, respectively. More generally, in d dimensions, the
units of |ak|2 and |s±|2 are those of energy and power per length3−d .] By itself, a linear cavity
mode decaying with a lifetime τk would be described by dak/dt = (iωk−1/τk)ak. [Technically,
such a decaying mode is not a true eigenmode, but is rather a “leaky mode” [52], corresponding
to a “quasi-bound state” in the Breit-Wigner scattering theory [53].] The decay rate 1/τ k can
be decomposed into 1/τk = 1/τe,k +1/τs,k where 1/τe,k is the “external” loss rate (absorption
etc.) and 1/τs,k is the decay rate into s−. When the weak coupling (ωkτk � 1) to s± is included,
energy conservation and similar fundamental constraints lead to equations of the form [54]:

dak

dt
=

(
iωk − 1

τk

)
ak +

√
2

τs,k
s+ (1)

s− = −s+ +

√
2

τs,k
ak (2)

This can be generalized to incorporate multiple input/output ports, direct coupling between
the ports, and so on [51]. The only unknown parameters in this model are then the frequencies
ωk and the decay rates 1/τk, which can be determined by any numerical method to solve for
the cavity modes (e.g. FDTD, below). Instead of τk, one commonly uses the quality factor
Qk = ωkτk/2.

Nonlinearity modifies this picture with two new amplitude-dependent effects: a shift in the
frequency (and decay rate) of the cavity, and a coupling of one cavity mode to another. We
neglect nonlinear effects on the input/output ports, under the assumption that intense fields
are only present in the cavity (due to spatial and temporal confinement). We will also make
two standard assumptions of nonlinear systems. First, that the nonlinearities are weak, in the
sense that we can neglect terms of order (χ (�))2 or higher; this is true in practice because
nonlinear index shifts are always under 1% lest material breakdown occur. Second, we make
the rotating wave approximation: since the coupling is weak, we only include terms for a k that
have frequency near ωk. In particular, we suppose that ωk ≈ kω1, so that ωk is the kth harmonic.
The result is that, for a given order nonlinearity, there are only a few possible new terms that
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can appear in the coupled-mode equations. In particular, for a χ (2) nonlinearity with two modes
ω1 and its second harmonic ω2, the coupled-mode equations must take the form:

da1

dt
=

(
iω1 − 1

τ1

)
a1 − iω1β1a∗1a2 +

√
2

τs,1
s+ (3)

da2

dt
=

(
iω2 − 1

τ2

)
a2 − iω2β2a2

1 +

√
2

τs,2
s+ (4)

Similarly, for a χ (3) nonlinearity with two modes ω1 and its third harmonic ω3, the coupled-
mode equations must take the form:

da1

dt
=

(
iω1

(
1−α11 |a1|2 −α13 |a3|2

)− 1
τ1

)
a1 − iω1β1(a∗1)

2a3 +

√
2

τs,1
s+ (5)

da3

dt
=

(
iω3

(
1−α33 |a3|2 −α31 |a1|2

)
− 1

τ3

)
a3 − iω3β3a3

1 +

√
2

τs,3
s+ (6)

In equations 5–6, one sees two kinds of terms. The first are frequency-shifting terms, with
coefficients αi j, dependent on one of the field amplitudes. For χ (3), this effect is known as self-
phase and cross-phase modulation, which is absent for χ (2) (under the first-order rotating-wave
approximation). The second kind of term transfers energy between the modes, with coupling
coefficients βi, corresponding to four-wave mixing for χ (3). Furthermore, we can constrain the
coupling terms βi by energy conservation: d

dt (|a1|2 + |a2|2) = 0. For χ (2), the constraint that
follows is: ω1β1 = ω2β ∗

2 ; for χ (3), the constraint is ω1β1 = ω3β ∗
3 . (This constraint holds even

in cavities with external loss as discussed in Sec. 6: energy is still conserved in the sense that the
input power must equal the output power plus the loss power, and so the harmonic conversion
term must lead to an equal energy loss and gain at ω1 and ω2,3, respectively.)

The general process for construction of these coupled-mode equations is as follows. The
underlying nonlinearity must depend on the physical, real part of the fields, corresponding to
(ak +a∗k)/2. It then follows that the χ (�) term will have � powers of this real part, giving various
product terms like a∗

1a2 (for χ (2)) and a∗1a1a1 (for χ (3)). Most of these terms, however, can be
eliminated by the rotating-wave approximation. In particular, we assume that each a k term is
proportional to ekiω multiplied by a slowly varying envelope, and we discard any product term
whose total frequency differs from kω for the da k/dt equation. Thus, a term like a∗

1a3a3 would
be proportional to e5iω , and would only appear in a da5/dt equation. (We focus on the simpler
case of doubly resonant cavities in this paper.)

At this point, the equations are already useful in order to reason about what types of quali-
tative behaviors are possible in general. In fact, they are not even specific to electromagnetism
and would also apply to other situations such as acoustic resonators. However, in order to make
quantitative predictions, one needs to know the nonlinear coefficients α i j and βi (as well as the
linear frequencies and decay rates). The evaluation of these coefficients requires a more detailed
analysis of Maxwell’s equations as described below.

3. Perturbation theory and coupling coefficients

In this section, we derive explicit formulas for the nonlinear coupling coefficients in the
coupled-mode theory of the previous section, applied to the case of electromagnetism. Unlike
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previous work, our expressions apply to the fully vectorial equations, valid for high index-
contrast materials, and we derive the χ (3) case as well as χ (2). Our derivation is closely related
to that of Ref. 55, which only considered the frequency shifting (self-phase modulation) and
not harmonic generation.

When a dielectric structure is perturbed by a small δε , a well-known result of perturbation
theory states that the corresponding change δω in an eigenfrequency ω is, to first order [45]:

δω
ω

= −1
2

∫
d3xδε|E|2∫
d3xε |E|2 = −1

2

∫
d3xE∗ ·δP∫
d3xε |E|2 (7)

where E is the unperturbed electric field and δP = δεE is the change in polarization density
due to δε . In fact, Eq. 7 is general enough to be used with any δP, including the polarization
that arises from a nonlinear susceptibility. In particular, we can use it to obtain the coupling
coefficients of the CMT.

To do so, we first compute the nonlinear first-order frequency perturbation due to the total
field E present from all of the modes. Once the frequency perturbations δω k are known, we can
re-introduce these into the coupled-mode theory by simply setting ω k → ωk +δωk in Eq. 1. By
comparison with Eqs. 3–6, we can then identify the α and β coefficients.

We consider first a χ (2) nonlinearity, with the nonlinear polarization δP given by δPi =
∑i jk εχ (2)

i jk E jEk, in a cavity with two modes E1 and E2. As before, we require that the modes

oscillate with frequency ω1 and ω2 ≈ 2ω1, respectively. Taking E = Re[E1eiω1t +E2eiω2t ] and
using the rotating-wave approximation, we can separate the contribution of δP to each δω k, to
obtain the following frequency perturbations:

δω1

ω1
= −1

4

∫
d3x ∑i jk εχ (2)

i jk

[
E∗

1i

(
E2 jE∗

1k +E∗
1 jE2k

) ]
∫

d3xε |E1|2
(8)

δω2

ω2
= −1

4

∫
d3x ∑i jk εχ (2)

i jk E∗
2iE1 jE1k∫

d3x ε |E2|2
(9)

Similarly, for a centro-symmetric χ (3) medium, δP is given by δP = εχ (3)|E|2E, with E =
Re[E1eiω1t +E3eiω3t ]. We obtain the following frequency perturbations:

δω1

ω1
= −1

8

⎡
⎣

∫
d3xεχ (3)

(
|E1 ·E1|2 +2 |E1 ·E∗

1|2 +2(E1 ·E∗
1)(E3 ·E∗

3)∫
d3x ε |E1|2

+
2 |E1 ·E3|2 +2

∣∣E1 ·E∗
3

∣∣2 +3(E∗
1 ·E∗

1)(E
∗
1 ·E3)

)
∫

d3x ε |E1|2

⎤
⎦ (10)

δω3

ω3
= −1

8

⎡
⎣

∫
d3xεχ (3)

(
|E3 ·E3|2 +2

∣∣E3 ·E∗
3

∣∣2 +2(E1 ·E∗
1)(E3 ·E∗

3)∫
d3x ε |E3|2

+
2 |E1 ·E3|2 +2

∣∣E1 ·E∗
3

∣∣2 +(E1 ·E1)(E1 ·E∗
3)

)
∫

d3x ε |E3|2

⎤
⎦ (11)
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There is a subtlety in the application of perturbation theory to decaying modes, such as those
of a cavity coupled to output ports. In this case, the modes are not truly eigenmodes, but are
rather “leaky modes” [52], and are not normalizable. Perturbative methods in this context are
discussed in more detail by [51, 52], but for a tightly confined cavity mode it is sufficient to
simply ignore the small radiating field far away from the cavity. The field in the cavity is very
nearly that of a true eigenmode of an isolated cavity.

As stated above, we can arrive at the coupling coefficients by setting ω k → ωk +δωk in Eq. 1.
However, the frequency perturbations δω k are time-independent quantities, and we need to con-
nect them to the time-dependent ak amplitudes. Therefore, to re-introduce the time dependence,
one can use the slowly varying envelope approximation: a slowly varying, time-dependent am-
plitude ak(t) is introduced into the unperturbed fields Ek → Ekak(t). The eigenmode must be
normalized so that |ak|2 is the energy, as assumed for the coupled-mode theory. Thus, we divide

each Ek by
√

1
2

∫
ε|Ek|2.

First, we consider the χ (2) medium. Carrying out the above substitutions in Eq. 1 and group-
ing terms proportional ak yields Eqs. 3–4 with αi j and βi given by:

αi j = 0 (12)

β1 =
1
4

∫
d3x ∑i jk εχ (2)

i jk

[
E∗

1i

(
E2 jE∗

1k +E∗
1 jE2k

)]
[∫

d3x ε |E1|2
][∫

d3x ε |E2|2
]1/2

(13)

β2 =
1
4

∫
d3x ∑i jk εχ (2)

i jk E∗
2iE1 jE1k[∫

d3x ε |E1|2
][∫

d3x ε |E2|2
]1/2

(14)

A similar calculation yields the χ (3) coupled-mode equations with coefficients given by:

αii =
1
8

∫
d3x εχ (3) |Ei ·Ei|2 + |Ei ·E∗

i |2[∫
d3x ε |Ei|2

]2 (15)

α31 =
1
4

∫
d3x εχ (3) |E1|2 |E3|2 + |E1 ·E3|2 +

∣∣E1 ·E∗
3

∣∣2[∫
d3x ε |E1|2

][∫
d3x ε |E3|2

] (16)

α13 = α31

β1 =
3
8

∫
d3x εχ (3)(E∗

1 ·E∗
1)(E

∗
1 ·E3)[∫

d3x ε |E1|2
]3/2 [∫

d3x ε |E3|2
]1/2

(17)

β3 =
1
8

∫
d3x εχ (3)(E1 ·E1)(E1 ·E∗

3)[∫
d3x ε |E1|2

]3/2 [∫
d3x ε |E3|2

]1/2
(18)

Note that Eqs. 12–18 verify the conditions ω1β1 = ω2β ∗
2 and ω1β1 = ω3β ∗

3 , previously de-
rived from conservation of energy—for χ (2), this requires that one apply the symmetries of the

χ (2)
i jk tensor, which is invariant under permutations of i jk for a frequency-independent χ (2) [46].

Furthermore, we can relate the coefficients α and β to an effective modal volume V , similar to
Ref. 55. In particular, the strongest possible nonlinear coupling will occur if the eigenfields are
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a constant in the nonlinear material and zero elsewhere. In this case, any integral over the fields
will simply yield the geometric volume V of the nonlinear material. Thus, for the χ (2) effect we
would obtain βi ∼ χ (2)/

√
Vε; similarly, for the χ (3) effect we would obtain αi j,βi ∼ χ (3)/Vε .

This proportionality to 1/
√

V and 1/V carries over to more realistic field profiles (and in fact
could be used to define a modal volume for these effects).

4. Numerical validation

To check the predictions of the χ (3) coupled-mode equations, we performed an FDTD simula-
tion of the one-dimensional waveguide-cavity system shown in Fig 1, whose analytical proper-
ties are uniquely suited to third-harmonic generation. (The FDTD method, including techniques
to simulate nonlinear media, is described in Ref. 56.) This geometry consists of a semi-infinite
photonic-crystal structure made of alternating layers of dielectric (ε 1 = 13 and ε2 = 1) with
period a and thicknesses given by the quarter-wave condition (d 1 =

√
ε2/(

√
ε1 +

√
ε2) and

d2 = a− d1, respectively). Such a quarter-wave stack possesses a periodic sequence of pho-
tonic band gaps centered on frequencies ω1 = (

√
ε1 +

√
ε2)/4

√
ε1ε2 (in units of 2πc/a) for the

lowest gap, and higher-order gaps centered on odd multiples of ω 1. Moreover, a defect formed
by doubling the thickness of a ε1 layer creates cavity modes at exactly the middle of every one
of these gaps. Therefore, it automatically satisfies the frequency-matching condition for third-
harmonic generation. In fact, it is too good: there will also be “ninth harmonic” generation from
ω3 to ω9. This unwanted process is removed, however, by the discretization error of the FDTD
simulation, which introduces numerical dispersion that shifts the higher-frequency modes. To
ensure the ω3 = 3ω1 condition in the face of this dispersion, we slightly perturbed the structure
(increasing the dielectric constant slightly at the nodes of the third-harmonic eigenfield) to tune
the frequencies. The simulated crystal was effectively semi-infinite, with many more layers on
the right than on the left of the cavity. On the left of the cavity, after two period of the crystal
the material is simply air (ε = 1), terminated by a perfectly matched layer (PML) absorbing
boundary region.

We excite the cavity with an incident plane wave of frequency ω 1, and compute the resulting
reflection spectrum. The reflected power at ω3, the third-harmonic generation, was then com-
pared with the prediction of the coupled-mode theory. The frequencies, decay rates, and α and
β coefficients in the coupled-mode theory were computed from a linear FDTD simulation in
which the eigenmodes were excited by narrow-band pulses. The freely available FDTD code
of [57] was employed.

The results are shown in Fig. 2, in which the output power at ω 1 and ω3 = 3ω1 is denoted
by |s1−|2 and |s3−|2, respectively, while the input power at ω1 is denoted by |s1+|2. In par-
ticular, we plot convenient dimensionless quantities: the third-harmonic conversion efficiency
|s3−|2 / |s1+|2 as a function of the dimensionless product n2 |s1+|2 in terms of the standard Kerr
coefficient n2 = 3χ (3)/4cε . There is clear agreement between the FDTD and CMT for small
values of n2 |s1+|2 (in which limit the conversion goes quadratically with n 2 |s1+|2). However, as
the input power increases, they eventually begin to disagree, marking the point where second-
order corrections are required. This disagreement is not a practical concern, however, because
the onset of second-order effects coincides with the limits of typical materials, which usually
break down for Δn/n ≡ χ (3)max|E|2/2ε > 1%. This is why we also plot the maximum index
shift Δn/n in the same figure.

Also shown in Fig. 2 is a plot of Δω1/ω1 = Re[δω1/ω1]. As expected, when Δω1 is of the
order of 1/Q1 ∼ 10−3, the frequency shift begins to destroy the frequency matching condition,
substantially degrading the third-harmonic conversion. (It might seem that Δn/n and Δω 1/ω1

should be comparable, but this is not the case because Δn/n is the maximum index shift while
Δω1/ω1 is due to an average index shift.)
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Fig. 2. Log-log plot of |s3−|2/|s1+|2 vs. n2|s1+|2 for the coupled-mode theory (grey) and
FDTD (black squares), where n2 is being varied. Also shown are the corresponding Δn/n
(dashed blue) and Δω1/ω1 (solid red) curves.

More specifically, the details of our simulation are as follows. To simulate a continuous wave
(CW) source spectrum in FDTD, we employ a narrow-bandwidth gaussian pulse incident from
the air region, which approximates a CW source in the limit of narrow bandwidth. This pulse is
carefully normalized so that the peak intensity is unity, to match the CMT. The field in the air
region is Fourier transformed and subtracted from the incident field to yield the reflected flux.
Using only two periods of quarter-wave stack on the left of the cavity we obtained two cavity
modes with real frequencies ω1 = 0.31818 (2πc/a), ω2 = 0.95454 (2πc/a) and quality factors
Q1 = 1286 and Q3 = 3726, respectively. Given these field patterns, we computed the α i j and βi

coefficients. We obtained the following coupling coefficients, in units of χ (3)/a: α11 = 4.7531×
10−4,α22 = 5.3306×10−4,α12 = α21 = 2.7847×10−4,β1 = (4.55985−0.7244i)×10−5.

5. Complete frequency conversion

We now consider the conditions under which one may achieve complete frequency conversion:
100% of the incident power converted to output at the second or third harmonic frequency. As
we shall see, this is easiest to achieve in the χ (2) case, and requires additional design criteria in
the χ (3) case.

The key fact in a χ (2) medium is that there are no frequency-shifting terms (α = 0), so the
resonance condition ω2 = 2ω1 is not spoiled as one increases the power. The only requirement
that we must impose is that external losses such as absorption are negligible (τ e,k � τs,k). In
this case, 100% conversion corresponds to setting s1− = 0 in the steady-state. Using this fact,
Eqs. 3-4 for an input source s+(t) = s1+ exp(iω1t) yields the following condition on the input
power for 100% conversion:

|s1+|2 =
2

ω2
1 |β1|2 τs,2τ2

s,1

=
ω1

2 |β1|2 Q2Q2
1

(19)

(A similar dependence of efficiency on Q2
1Q2 was previously observed [5,8], although a critical

power was not identified.) Thus, we can always choose an input power to obtain 100% conver-
sion. If Q1 ∼ Q2, then this critical power scales as V/Q3 where V is the modal volume (recall
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that β ∼ 1/
√

V ).
This is limited, however, by our first-order approximation in perturbation theory: if the input

power becomes so large that second-order effects (or material breakdown) become significant,
then this prediction of 100% conversion is no longer valid. The key condition is that the frac-
tional change in the refractive index be small: Δn/n 
 1. This can always be satisfied, in prin-
ciple: if one chooses Q1 and/or Q2 to be sufficiently large, then the critical power can be made
arbitrarily small in principle. Not only does the critical power decrease with Q 3, but the field
intensity in the cavity (|ai|2) decreases as V/Q1Q2, and thus one can avoid large Δn/n as well
as lowering the power. (Note that the field intensity goes as 1/Q2 while the power goes as 1/Q3

simply because the energy and power are related by a time scale of Q.)
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Fig. 3. Plot of first and second harmonic efficiency, |s1−|2/|s1+|2 (black) and |s2−|2/|s1+|2
(red), vs. χ(2)|s1+|. 100% power transfer from ω1 to ω2 = 2ω1 is achieved at χ(2)|s1+| =
1.8×10−3.

To illustrate second-harmonic conversion for a χ (2) medium, we plot the solution to the
coupled-mode equations as a function of input power in Fig. 3. The 100% conversion at the
predicted critical power is clearly visible. For this calculation, we chose modal parameters
similar to the ones from the FDTD computation before: ω 1 = 0.3, ω2 = 0.6, Q1 = 104, Q2 =
2×104, with dimensionless β1 = (4.55985−0.7244)×10−5.

A χ (3) medium, on the other hand, does suffer from nonlinear frequency shifts. For ex-
ample, Fig. 2, which is by no means the optimal geometry, exhibits a maximal efficiency of
|s3−|2/|s1+|2 ≈ 4× 10−3, almost three orders of magnitude away from complete frequency
conversion. On the other hand, we can again achieve 100% conversion if we can force α i j = 0,
which can be done in two ways. First, one could employ two χ (3) materials with opposite-sign
χ (3) values (e.g., as in Ref. 58). For example, if the χ (3) is an odd function around the cavity
center, then the integrals for αi j will vanish while the β integrals will not. (In practice, α 
 β
should suffice.) Second, one could pre-compensate for the nonlinear frequency shifts: design
the cavity so that the shifted frequencies, at the critical power below, satisfy the resonant con-
dition ω3 +Δω3 = 3(ω1 +Δω1). Equivalently, design the device for α i j = 0 and then adjust the
linear cavity frequencies a posteriori to compensate for the frequency shift at the critical power.
(This is closely analogous to the cavity detuning used for optical bistability [55], in which one
operates off-resonance in the linear regime so that resonance occurs from the nonlinear shift.)

If αi j is thereby forced to be zero, and we can also neglect external losses (absorption, etc.)
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as above, then 100% third-harmonic conversion (s 1− = 0) is obtained when:

|s1+|2 =

[
4

ω2
1 |β1|2 τ3

s,1τs,3

]1/2

=

[
ω1ω3

4 |β1|2 Q3
1Q3

]1/2

(20)

If Q1 ∼ Q3, then this critical power scales as V/Q2 where V is the modal volume (recall that
β ∼ 1/V ). This is precisely the scaling that was predicted for the power to obtain nonlinear
bistability in a single-mode cavity [59]. Similarly, one finds that the energy density in the cavity
(|ai|2) decreases proportional to V/

√
Q1Q3.
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Fig. 4. Plot of first and third harmonic efficiency, |s1−|2/|s1+|2 (black) and |s3−|2/|s1+|2
(red), vs. n2|s1+|2. 100% power transfer from ω1 to ω3 = 3ω1 is achieved at n2|s1+|2 =
2.8×10−4.

We demonstrate the third-harmonic conversion for α i j = 0 by plotting the solution to the
coupled-mode equations as a function of input power in Fig. 4. Again, 100% conversion is
only obtained at a single critical power. Here, we used the same parameters as in the FDTD
calculation, but with α = 0. In this case, comparing with Fig. 2, we observe that complete
frequency conversion occurs at a power corresponding to Δn/n ≈ 10 −2. This is close to the
maximum power before coupled-mode/perturbation theory becomes invalid (either because of
second-order effects or material breakdown), but we could easily decrease the critical power by
increasing Q.

For both the χ (2) and the χ (3) effects, in Figs. 3–4, we see that the harmonic conversion
efficiency goes to zero if the input power (or χ) is either too small or too large. It is not surpris-
ing that frequency conversion decreases for low powers, but the decrease in efficiency for high
powers is less intuitive. It corresponds to a well-known phenomenon in coupled-mode systems:
in order to get 100% transmission from an input port to an output port, the coupling rates to the
two ports must be matched in order to cancel the back-reflected wave [50, 60]. In the present
case, the coupling rate to the input port is ∼ 1/Q1, and the coupling rate to the output “port”
(the harmonic frequency) is determined by the strength of the nonlinear coupling. If the non-
linear coupling is either too small or too large, then the rates are not matched and the light is
reflected instead of converted. (On the other hand, we find that for large input powers, while the
conversion efficiency as a fraction of input power goes to zero, the absolute converted power
(|s2−|2 or |s3−|2) goes to a constant.)
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Finally, let us consider one other potential problem. Any physical χ (2) medium will gen-
erally also have χ (3) �= 0, so if the power is large enough this could conceivably cause a fre-
quency shift that would spoil the second-harmonic resonance even in the χ (2) device. Here,
we perform a simple scaling analysis to determine when this will occur. (Although the fre-
quency shifting could potentially be compensated for as described above, one prefers that it
be negligible to begin with.) In order to preserve the resonance condition, any fractional fre-
quency shift Δω/ω must be much smaller than the bandwidth 1/Q, or equivalently we must
have QΔω/ω 
 1. From above, Δω ∼ ωα|a|2, and |a|2 ∼ |s1+|2Q/ω . Suppose that we are
operating at the critical input power P(2) for second-harmonic conversion, from Eq. 19. It then
follows that we desire QΔω/ω ∼ Q2α/ωP(2) 
 1. It is convenient to re-express this relation-
ship in terms of P(3) ∼ ω/βQ2, the third-harmonic critical power from Eq. 19, by assuming
α ∼ β as discussed in the previous section. We therefore find that χ (3) self-phase modulation
can be ignored for χ (2) second-harmonic generation as long as P (2)/P(3) 
 1. As discussed in
the concluding remarks, this is indeed the case for common materials such as gallium arsenide,
where P(2)/P(3) ≈ 1/30 for Q ∼ 1000 and for typical values of the cavity lifetime and volume.
Moreover, since P(2)/P(3) ∼ 1/Q, one can make the ratio arbitrarily smaller if necessary (at the
expense of bandwidth) by increasing Q.

6. The Effect of Losses

In practice, a real device will have some additional losses, such as linear or nonlinear absorption
and radiative scattering. Such losses will lower the peak conversion efficiency below 100%. As
we show in this section, their quantitative effect depends on the ratio of the loss rate to the
total loss rate 1/Q. We also solve for the critical input power to achieve maximal conversion
efficiency in the presence of losses.

For a χ (2) medium with a linear loss rate 1/τe,k, we solve Eqs 3–4 for |s2−|2 and enforce
the condition for maximal conversion efficiency: d

d|s1+|2 (|s2−|2/|s1+|2) = 0. We thus obtain the

following optimal input power and conversion efficiency:

|s1+|2 =
2τs,1

ω2
1 |β1|2 τ3

1 τ2
(21)

|s2−|2
|s1+|2

=
τ1τ2

τs,1τs,2
(22)

It immediately follows that for zero external losses, i.e. τk = τs,k, Eq. 22 gives 100% conversion
and Eq. 21 reduces to Eq. 19. For small external losses τ s,k 
 τe,k, the optimal efficiency is
reduced by the ratio of the loss rates, to first order:

|s2−|2
|s1+|2

≈ 1−
(

τs,2

τe,2
+

τs,1

τe,1

)
. (23)

(A similar transmission reduction occurs in coupled-mode theory when any sort of loss is in-
troduced into a resonant coupling process [54].)

The same analysis for χ (3) yields the following critical input power and optimal efficiency:

|s1+|2 =

[
4τ2

s,1

ω2
1 |β1|2 τ5

1 τ3

]1/2

(24)

|s3−|2
|s1+|2

=
τ1τ3

τs,1τs,3
(25)
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where by comparison with Eq. 22, a first-order expansion for low-loss yields an expression of
the same form as Eq. 23: the efficiency is reduced by the ratio of the loss rates, with τ 2 replaced
by τ3.

A χ (3) medium may also have a nonlinear “two-photon” absorption, corresponding to a
complex-valued χ (3), which gives an absorption coefficient proportional to the field intensity.
This enters the coupled-mode equations as a small imaginary part added to α , even if we have
set the real part of α to zero. (The corresponding effect on β is just a phase shift.) That yields
a nonlinear (NL) τe,k of the following form, to lowest order in the loss:

1

τNL
e,1

≈ ω1 Im

[
α11

τs,1

2
|s1+|2 + α13

τ2
s,3τ3

s,1

8
ω2

3 |β3|2|s1+|6
]

(26)

1

τNL
e,3

≈ ω3 Im

[
α31

τs,1

2
|s1+|2 + α33

τ2
s,3τ3

s,1

8
ω2

3 |β3|2|s1+|6
]

. (27)

where we have simply substituted the values for the critical fields a1 =
√

2/τ1s1+ and a3 given
by Eq. 6, and grouped terms that correspond to imaginary frequency shifts. These loss rates can
then be substituted in the expression for the losses above, i.e. Eq. 25, in which case one obtains
the following optimal efficiency of third-harmonic generation, to lowest-order in the loss, not
including linear losses:

|s3−|2
|s1+|2

≈ 1− τs,3

|β1|
√

τs,3

τs,1
Im

[
α11 +3α13

τs,3
+

α13 +3α33

τs,1

]
(28)

(The linear and nonlinear losses can be combined by simply multiplying Eq. 25 and Eq. 28.)
Thus, the nonlinear loss is proportional to the ratio Imα/|β |, which is proportional to
Im χ (3)/|χ (3)|.

7. Conclusion

We have presented a rigorous coupled-mode theory for second- and third-harmonic generation
in doubly resonant nonlinear cavities, accurate to first order in the nonlinear susceptibility and
validated against a direct FDTD simulation. Our theory, which generalizes previous work on
this subject, predicts several interesting consequences. First, it is possible to design the cav-
ity to yield 100% frequency conversion in a passive (gain-free) device, even when nonlinear
down-conversion processes are included, limited only by fabrication imperfections and losses.
Second, this 100% conversion requires a certain critical input power—powers either too large
or too small lead to lower efficiency. Third, we describe how to compensate for the self-phase
modulation in a χ (3) cavity. The motivation for this work was the hope that a doubly resonant
cavity would lead to 100% conversion at very low input powers, and so we conclude our paper
by estimating the critical power for reasonable material and geometry assumptions.

A typical nonlinear material is gallium arsenide (GaAs), with χ (2) ≈ 145 pm/V and n2 =
1.5×10−13 cm2/W at 1.5μm. (Al doping is usually employed to decrease nonlinear losses near
resonance [61].) Although this has both χ (2) and χ (3) effects, we can selectively enhance one
or the other by choosing the cavity to have resonances at either the second or third harmonic.
Many well confined optical cavity geometries are available at these wavelengths and have been
used for nonlinear devices, such as ring resonators [62] or photonic-crystal slabs [63]. We will
assume conservative parameters for the cavity: a lifetime Q1 = 1000, Q2 = 2000, Q3 = 3000,
and a modal volume of 10 cubic half-wavelengths (V ≈ 10(λ/2n) 3) with roughly constant field
amplitude in the nonlinear material (worse than a realistic case of strongly peaked fields). In
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this case, the critical input power, from Eqs. 19–20, becomes approximately 70 μW for second-
harmonic generation and 2 mW for third-harmonic generation (with a moderate peak index shift
Δn/n ≈ 10−3, justifying our first-order approximation)

Future work will involve designing specific doubly resonant cavity geometries and more
precise power predictions. Using our expressions for α and β , optimized cavities for harmonic
generation can be designed using standard methods to compute the linear eigenmodes. In prac-
tice, experimentally achieving cavity modes with “exactly” harmonic frequencies, matched to
within the fractional bandwidth 1/Q, is a challenge and may require some external tuning mech-
anism. For example, one could use the nonlinearity itself for tuning, via external illumination
of the cavity with an intense “tuning” beam at some other frequency. Also, although we can
directly integrate the coupled-mode equations in time, we intend to supplement this with a lin-
earized stability analysis at the critical power. This is particularly important for the χ (3) case,
where pre-correcting the frequency to compensate the nonlinear frequency shift (self-phase
modulation) may require some care to ensure a stable solution.
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