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We point out that plasmons in doped graphene simultaneously enable low losses and significant wave
localization for frequencies below that of the optical phonon branch fiw,,~0.2 eV. Large plasmon losses
occur in the interband regime (via excitation of electron-hole pairs), which can be pushed toward higher
frequencies for higher-doping values. For sufficiently large dopings, there is a bandwidth of frequencies from
®p, Up to the interband threshold, where a plasmon decay channel via emission of an optical phonon together
with an electron-hole pair is nonegligible. The calculation of losses is performed within the framework of a
random-phase approximation and number conserving relaxation-time approximation. The measured DC
relaxation-time serves as an input parameter characterizing collisions with impurities, whereas the contribution
from optical phonons is estimated from the influence of the electron-phonon coupling on the optical conduc-
tivity. Optical properties of plasmons in graphene are in many relevant aspects similar to optical properties of
surface plasmons propagating on dielectric-metal interface, which have been drawing a lot of interest lately
because of their importance for nanophotonics. Therefore, the fact that plasmons in graphene could have low

losses for certain frequencies makes them potentially interesting for nanophotonic applications.
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I. INTRODUCTION

In recent years, an enormous interest has been surround-
ing the field of plasmonics, because of the variety of tremen-
dously exciting and novel phenomena it could enable. On
one hand, plasmonics seems to be the only viable path to-
ward realization of nanophotonics: control of light at scales
substantially smaller than the wavelength.!”* On the other
hand, plasmonics is a crucial ingredient for implementation
of most metamaterials, and thereby all the exciting phenom-
ena that they support,’~® including negative refraction, super-
lensing, and cloaking. However, there is one large and so far
insurmountable obstacle toward achieving this great vision:
plasmonic materials (most notably metals) have enormous
losses in the frequency regimes of interest. This greatly mo-
tivates us to explore plasmons and their losses in a newly
available material with unique properties: graphene.’-!?

Graphene is a single two-dimensional (2D) plane of car-
bon atoms arranged in a honeycomb lattice, which has only
recently been demonstrated in high-quality samples and with
superior mobilities.”"!> This material is a zero-gap semicon-
ductor, which can be doped to high values of electron or hole
concentrations by applying voltage externally,” much like in
field effect transistors (FET). While this kind of control over
electrical properties of materials is at the heart of modern
electronics, it was also demonstrated that the same procedure
(electric gating)'®!7 leads to a dramatic change in optical
properties of graphene because of its impact on the strong
interband transitions. Collective excitations (plasmons) in
graphene hold potential for technological applications as
well;'8-27 for example, coherent terahertz sources based on
plasmon amplification were suggested and discussed in Refs.
19 and 20. Graphene was predicted to support a transverse
electric (TE) mode,?® which is not present in usual 2D sys-
tems with parabolic electron dispersion. Thermoplasma po-
laritons in graphene have been discussed in Ref. 18, pointing
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out at new opportunities in the field of plasmonics.

Here, we investigate plasmons in doped graphene and
demonstrate that they simultaneously enable low losses and
significant wave localization for frequencies of the light
smaller than the optical phonon frequency w,, =02 eV.?
Interband losses via emission of electron-hole pairs (first-
order process) can be blocked by sufficiently increasing the
doping level, which pushes the interband threshold fre-
qUENCY Wiy, toward higher values (already experimentally
achieved doping levels can push it even up to near infrared
frequencies). The plasmon decay channel via emission of an
optical phonon together with an electron-hole pair (second-
order process) is inactive for w<w,, (due to energy con-
servation), however, for frequencies larger than wy),,, this de-
cay channel is non-negligible. This is particularly important
for large enough doping values when the interband threshold
Wipeer 18 ADOVE @(y: in the interval wg;, < @ < @iy, the first-
order process is suppressed, but the phonon decay channel is
open. In this article, the calculation of losses is performed
within the framework of a random-phase approximation
(RPA) and number conserving relaxation-time (RT)
approximation;?’ the measured DC relaxation-time from Ref.
9 serves as an input parameter characterizing collisions with
impurities, whereas the optical phonon relaxation times are
estimated from the influence of the electron-phonon
coupling®® on the optical conductivity.’!

In Sec. II, we provide a brief review of conventional sur-
face plasmons and their relevance for nanophotonics. In Sec.
III, we discuss the trade off between plasmon losses and
wave localization in doped graphene, as well as the optical
properties of these plasmons. We conclude and provide an
outlook in Sec. IV.

II. SURFACE PLASMONS

Surface plasmons (SPs) are electromagnetic (EM) waves
that propagate along the boundary surface of a metal and a

©2009 The American Physical Society
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FIG. 1. (Color online) (a) Schematic description of a surface plasmon (SP) on metal-dielectric interface. (b) SP dispersion curve (solid
blue line) for Ag-Si interfaces; dotted blue is the light line in Si; dashed red line denotes the SP resonance. (c) Wave localization and
propagation length for SPs at Ag-Si interface (experimental Ag losses are taken into account).

dielectric [see Fig. 1(a)]; these are transverse magnetic (TM)
modes accompanied by collective oscillations of surface
charges, which decay exponentially in the transverse direc-
tions (see, e.g., Refs. 1 and 2 and references therein). Their
dispersion curve is given by

o €.€(w)
D= c Ve +ew) M

[see Fig. 1(b)]; note that close to the SP resonance
(w=wgp), the SP wave vector [solid blue line in Fig. 1(b)] is
much larger than the wave vector of the same frequency
excitation in the bulk dielectric [dotted blue line in Fig.
1(b)]. As a result, a localized SP wave packet can be much
smaller than a same frequency wave packet in a dielectric.
Moreover, this “shrinkage” is accompanied by a large trans-
verse localization of the plasmonic modes. These features are
considered very promising for enabling nanophotonics,'~* as
well as high field localization and enhancement. A necessary
condition for the existence of SPs is €(w)<—¢, (i.e., €(w) is
negative), which is why metals are usually used. However,
SPs in metals are known to have small propagation lengths,
which are conveniently quantified (in terms of the SP wave-
length) with the ratio g,/ Jq,,; this quantity is a measure
of how many SP wavelengths can an SP propagate before it
loses most of its energy. The wave localization (or wave
“shrinkage”) is quantified as i/ N, where N, =27c/ w (the
wavelength in air). These quantities are plotted in Fig. 1(c)
for the case of Ag-Si interface, by using experimental data
(see Ref. 3 and references therein) to model silver (metal
with the lowest losses for the frequencies of interest). Near
the SP resonance, wave localization reaches its peak; how-
ever, losses are very high there resulting in a small propaga-
tion length /~0.1A;=~5 nm. At higher wavelengths one can
achieve low losses but at the expense of poor wave localiza-
tion.

III. PLASMONS AND THEIR LOSSES IN DOPED
GRAPHENE

Graphene behaves as an essentially 2D electronic system.
In the absence of doping, conduction and valence bands meet
at a point (called Dirac point) which is also the position of

the Fermi energy. The band structure, calculated in the tight
binding approximation is shown in Fig. 2(b) (see Ref. 25 and
references therein); for low energies the dispersion around
the Dirac point can be expressed as E, =nv#i|k|, where the
Fermi velocity is vp= 10° m/s, n=1 for conduction, and n
=—1 for the valence band. Recent experiments? have shown
that this linear dispersion relation is still valid even up to the
energies (frequencies) of visible light, which includes the
regime we are interested in.

Here, we consider TM modes in geometry depicted in Fig.
2(a), where graphene is surrounded with dielectrics of con-
stants €,; and €,,. Throughout the paper, for definiteness we
use €,4=4 corresponding to SiO, substrate, and €,,=1 for air
on top of graphene, which corresponds to a typical experi-
mental setup. TM modes are found by assuming that the
electric field has the form

E,=Ae“ 91, E =0, E,=Be“ 2" for x>0,

E,=De' %2> for x <0.

2)

After inserting this ansatz into Maxwell’s equations and
matching the boundary conditions [which include the con-
ductance of the 2D graphene layer, o(w,q)], we obtain the
dispersion relation for TM modes:

E = Ce=9» E =0,

€1 €2 _ U(w7 6])1

=+ = . (3)
\/2_6”_“’
q 6‘2

2
\/612 w0
C2

By explicitly writing the dependence of the conductivity on
the wave vector ¢ we allow for the possibility of nonlocal
effects, where the mean free path of electrons can be smaller
than ¢~'.33 Throughout this work, we consider the nonre-
tarded regime (¢> w/c), so Eq. (3) simplifies to
€1+ €, 2iw

q=0,=0,= ¢ (4)

2 olwgq)
Note that a small wavelength (large g) leads to a high trans-
versal localization of the modes, which are also accompanied
by a collective surface charge oscillation, similar to SPs in
metals; however, it should be understood that, in contrast to
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FIG. 2. (Color online) (a) Schematic of the graphene system and TM plasmon modes. Note that the profile of the fields looks the same
as the fields of an SP [Fig. 1(a)]. (b) Electronic band structure of graphene; to indicate the vertical scale we show the Fermi energy level for
the case Ep=1 eV. (c) Sketch of the intraband (green arrows) and interband (red arrows) single particle excitations that can lead to large
losses; these losses can be avoided by implementing a sufficiently high doping. (d) Plasmon RPA and semiclassical dispersion curves. Black
solid (RPA) and black dot-dashed (semiclassical) lines correspond to €,;=¢€,,=1; Blue dashed (RPA) and blue dotted (semiclassical) lines
correspond to €,;=4 and €,,=1. The green (lower) and rose (upper) shaded areas represent regimes of intraband and interband excitations,

respectively.

SPs, here we deal with 2D collective excitations, i.e., plas-
mons. We note that even though field profiles of plasmons in
graphene and SPs in metals look the same, these two systems
are qualitatively different since electrons in graphene are es-
sentially frozen in the transverse dimension.>* This fact and
the differences in electronic dispersions (linear Dirac cones
vs. usual parabolic) lead to qualitatively different dispersions
of TM modes in these two systems [see Fig. 1(b) and 2(d)].
To find dispersion of plasmons in graphene we need the con-
ductivity of graphene o(w,q), which we now proceed to ana-
lyze by employing the semiclassical model®* (in Sec. III A),
RPA and number conserving relaxation-time approximation?’
(in Sec. III B), and by estimating the relaxation-time due to
the influence of electron-phonon coupling®® on the optical
conductivity?' (in Sec. III C).

A. Semiclassical model

For the sake of the clarity of the presentation, we first note
that by employing a simple semiclassical model for the con-
ductivity (see Ref. 33), one obtains a Drude-like
expression:>
e’Ep i
mh? o+ i7"

(5)

o(w) =

(the semiclassical conductivity does not depend on g). Here 7
denotes the RT, which in a phenomenological way takes into
account losses due to electron impurity, electron defect, and
electron-phonon scattering. Equation (5) is obtained by as-
suming zero temperature 7= 0, which is a good approxima-
tion for highly doped graphene considered here, since Ep
>kpT. From Egs. (4) and (5) it is straightforward to obtain
plasmon dispersion relation:

mhley(€, + € i
()(2 rl r2)<1 +_>w2’
e’Er T®

g(w) = (6)

as well as losses,

(™)

In order to quantify losses one should estimate the relaxation
time 7. If the frequency w is below the interband threshold
frequency e, and if @ <wg,), then both interband damp-
ing and plasmon decay via excitation of an optical phonon
together with an electron-hole pair are inactive. In this
case, the relaxation time can be estimated from DC
measurements,>!3 i.e., it can be identified with DC relaxation
time, which arises mainly from impurities (see Refs. 9 and
13). It is reasonable to expect that impurity related relaxation
time will not display large frequency dependence. In order to
gain insight into the losses by using this line of reasoning let
us assume that the doping level is given by E;=0.64 eV
(corresponding to electron concentration of n=3
X 103 cm™); the relaxation time corresponds to DC mobil-
ity w=10000 cm®/Vs measured in Ref. 9: 7pc
=uh\nm/evp=64X10""3 s. As an example, for the fre-
quency nw=0.155 eV (\,;=8 wum), the semiclassical
model yields Rq/Tg~ 151 for losses and A,;/\,~42 for
wave localization. Note that both of these numbers are quite
favorable compared to conventional SPs [e.g., see Fig. 1(c)].
It will be shown in the sequel that for the doping value Er
=0.64 eV this frequency is below the interband loss thresh-
old, and it is evidently also smaller than the optical phonon
loss threshold f1w,,~0.2 €V, so both of these loss mecha-
nisms can indeed be neglected.

B. RPA and relaxation-time approximation

In order to take the interband losses into account, we use
the self-consistent linear response theory, also known as the
RPA,3 together with the relaxation-time (finite 7) approxi-
mation introduced by Mermin.?’ Both of these approaches,
that is, the collisionless RPA (7— ),2?2 and the RPA-RT
approximation (finite 7),2° have been applied to study
graphene. In the 7— % case, the RPA 2D polarizability of
graphene is given by:??
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x(gq,0) = —=1l(q, 0), (8)
q

where

E, 1o - f(E,
H(q’w)zi 2 f( ny.k q) f( 1,k)

Qk,nl,nz fiw + Enl,k - Enz,k+q

X|(ny,k|e™ " |ny k + @) )

Here, f(E)=(e®FP*sT1 1)~ is the Fermi distribution func-
tion, Ey is the Fermi energy and factor 4 stands for 2 spin
and 2 valley degeneracies. Note that in Eq. (8) w is given an
infinitesimally small imaginary part which leads to the fa-
mous Landau damping; that is, plasmons can decay by ex-
citing an electron-hole pair (interband and intraband scatter-
ing) as illustrated in Fig. 2(c). The effects of other types of
scattering (impurities, phonons) can be accounted for by us-
ing the relaxation-time 7 as a parameter within the RPA-RT
approach,?® which takes into account conservation of local
electron number. Within this approximation the 2D polariz-
ability is

(1 +ilwn)x(g, 0 +i/T)
1+ (il0Dx(q, +i/7)x(q,0)

Xr(q’w) = (10)

The 2D dielectric function and conductivity are respectively
given by (see Ref. 36):

PHYSICAL REVIEW B 80, 245435 (2009)

€, + €, q
rra(g,®) = == + 2 xlg,0), (1)
0
and
orpalq, 0) =—iwyx,(q,w). (12)

We note here that throughout the text only 7—bands are
taken into consideration; it is known that in graphite, higher
o—bands give rise to a small background dielectric
constant®’ at low energies, which is straightforward to imple-
ment in the formalism. Using Egs. (4) and (12) we obtain
that the properties of plasmons (i.e., dispersion, wave local-
ization and losses) can be calculated by solving

erpalq,®) =0, (13)

with complex wave vector g=¢ +iq,. The calculation is sim-
plified by linearizing Eq. (13) in terms of small ¢,/g;, to
obtain,

€1t €n 62
-+
2 260q1

%[H(ql’w)]:o’ (14)

for the plasmon dispersion, and

(g1 )]+ -~ R[T1(gy.0)] + —R{I(gr )1 - T1(gy. 0)/TL(g1.0)]}
TIw wT

q>=

yielding losses. Note that in the lowest order, the dispersion
relation (and consequently \,;/\, and the group velocity v,)
does not depend on 7. This linearization is valid when
g><<q; as the plasmon losses increase, e.g., after entering
the interband regime [the rose area in Fig. 2(d)], results from
Egs. (14) and (15) should be regarded as only qualitative.
The characteristic shape of the plasmon dispersion is shown
in Fig. 2(d). Note that the semiclassical model and the RPA
model agree well if the system is sufficiently below the in-
terband threshold [for small ¢, w(g) ~ Vq as in Eq. (6)]. By
comparing Figs. 2(d) and 1(b) we see that the dispersion for
SPs on silver-dielectric surface qualitatively differs from the
plasmon dispersion in graphene.’* While SPs’ dispersion re-
lation approaches an asymptote (w— wgp) for large ¢ values
[Eq. (1)], graphene plasmon relation gives w(g) which con-
tinuously increases [Fig. 2(d)].

Theoretically predicted plasmon losses PRg/Jg and wave
localization N;/\, are illustrated in Fig. 3 for doping level
Er=0.135 eV and relaxation time 7=1.35X 10"'* s. We ob-
serve that for this particular doping level, for wavelengths

(15)

L Ry, 0)] - ~—R[T(g), )]
qi aq,

smaller than \;,,=~7.7 wm, the system is in the regime of
high interband losses (rose shaded region). Below the inter-
band threshold, both losses and wave localization obtained
by employing RPA-RT approach are quite well described by
the previously obtained semiclassical formulas. Since the
frequencies below the interband threshold are (for the as-
sumed doping level) also below the optical phonon fre-
quency, the relaxation time can be estimated from DC mea-
surements.

At this point we also note that in all our calculations we
have neglected the finite temperature effects, i.e., T=0. To
justify this, we note that for doping values utilized in this
paper the Fermi energies are 0.135 eV=~5.2k;T, (n=1.35
X 10" ecm™) and 0.64 eV=~25kgT, (n=3X10" cm™) for
room temperature 7,=300 K. The effect of finite tempera-
ture is to slightly smear the sharpness of the interband
threshold, but only in the vicinity (~kgzT,) of the threshold.

By increasing the doping, E increases, and the region of
interband plasmonic losses moves toward higher frequencies
(smaller wavelengths). However, by increasing the doping,
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FIG. 3. (Color online) Properties of plasmons in doped graphene. Solid-lines are obtained with the number-conserving RPA calculation,
and the dashed lines with the semiclassical approach. Losses (a), field localization (wave “shrinkage”) (b), and group velocity (c) for doping
Er=0.135 eV, and relaxation time 7=1.35X 10~13 s, which corresponds to the mobility of 10 000 cm?/Vs. The upper scale in all figures

is frequency v=w/2m, whereas the rose shaded areas denote the region of high-interband losses.

the interband threshold frequency will eventually become
larger than graphene’s optical phonon frequency wg,,,: there
will exist an interval of frequencies, wop;, < @ < Wiy, Where
it is kinematically possible for the photon of frequency w to
excite an electron-hole pair together with emission of an op-
tical phonon. This second-order process can reduce the re-
laxation time estimated from DC measurements and should
be taken into account, as we show in the following subsec-
tion.

C. Losses due to optical phonons

In what follows, we estimate and discuss the relaxation
time due to the electron-phonon coupling. This can be done
by using the Kubo formula which has been utilized in Ref.
31 to calculate the real part of the optical conductivity,
Ro(w,q=0). The calculation of conductivity Ro(w,0) in-
volves the electron self-energy %(E), whose imaginary part
expresses the width of a state with energy E, whereas the real
part corresponds to the energy shift. Let us assume that the
electron self-energy stems from the electron-phonon cou-
pling and impurities,

E(E) = Ee—ph(E) + 2imp(E) . (16)
For Ee_ph we utilize a simple yet fairly accurate model de-
rived in Ref. 30: if |E—Ep|> %, then

I3, pn(E) = YE — sgn(E — Ep)hiwg,,

) (17)

while elsewhere J2,_,,(E)=0; the dimensionless constant
y=18.3% 1073 (Ref. 30) is proportional to the square of the
electron-phonon matrix element,’ i.e., the electron-phonon
coupling coefficient. In order to mimic impurities, we will
assume that 3%, (E) is a constant (whose value can be es-
timated from DC measurements). The real parts of the self-
energies are calculated by employing the Kramers-Kronig
relations. In all our calculations the cutoff energy is taken to
be 8.4 eV, which corresponds to the cutoff wave-vector k.
=7/a, where a=2.46 A. By employing these self-energies
we calculate the conductivity Ro(w,g=0), from which we
estimate the relaxation time by using Eq. (5), i.e.,

ezEF 1

(@) ~ 7w’ Rol(w,0)

(18)

for the region below the interband threshold; in deriving Eq.
(18) we have assumed Tw>1.

Figure 4 plots the real part of the conductivity and the
relaxation time for two values of doping: Ex=0.135 eV (n
=1.35X 10" cm™, solid line) and E;=0.64 eV (n=3
X 103 cm™2, dashed line). In order to isolate the influence of
the electron-phonon coupling on the conductivity and plas-
mon losses, the contribution from impurities is assumed to
be very small: J%;,(E)=10"° eV. The real part of the con-
ductivity has a universal value o=me?/2h above the inter-
band threshold value Zw=2E (for g=0), e.g., see Refs. 17,
32, and 38. We clearly see that the relaxation time is not
affected by the electron-phonon coupling for frequencies be-
low @, that is, we conclude that scattering from impurities
and defects is a dominant decay mechanism for w<wg,,
(assuming we operate below the interband threshold). How-
ever, for w> ®ophs the relaxation times in Fig. 4 are on the

4—
> (a) o . (b)
2 e
3 Lol j
£ 0.5 =] 3
< 3
oL ¥ bt
0 1 2 % 2
hw/Er A [pm]

FIG. 4. (Color online) (a) The real part of the conductivity in
units of oy=1e?/2h in dependence of frequency % w/Ep, and (b) the
corresponding relaxation time as a function of wavelength. The
contribution to Ro(w) from impurities is chosen to be negligible.
The displayed graphs correspond to two different values of doping
which yield Er=0.135 eV (solid blue line), and Ep=0.640 eV
(dashed red line). The position of the optical phonon frequency
hwg,,=~0.2 eV is depicted by the dotted vertical line in (b); dot-
dashed lines depict the values of wavelengths corresponding to 2Ep,
that is, the interband threshold value (for ¢g=0) for the two doping
concentrations.
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FIG. 5. (Color online) Properties of plasmons in doped graphene. Solid-lines are obtained with the number-conserving RPA calculation,
and the dashed lines with the semiclassical approach. Losses (a), field localization (wave “shrinkage”) (b), and group velocity (c) for doping

Er=0.64 eV; losses are calculated by using the relaxation time 7~

1_ -1 ~1
—TDC+T

o—pi» Where 7pc=06.4X 10713 s, and To—pn 18 the relaxation time

from the electron-phonon coupling for the given parameters. In the white regions (right regions in all panels), losses are determined by 7p.
In the yellow shaded regions (central regions in all panels), losses are determined by the optical phonon emission, i.e., 7,_,,. The rose shaded
areas (left region in all panels) denote the region of high interband losses. Dotted vertical lines correspond to the optical phonon frequency
0,,=0.2 eV. The upper scale in all figures is frequency v=w/2. See text for details.

order of 107'%=10"13 s, indicating that optical phonons are
an important decay mechanism.

It should be emphasized that the exact calculated values
should be taken with some reservation for the following rea-
son: strictly speaking, one should calculate the relaxation
times 7(w,q) along the plasmon dispersion curve given by
Eq. (14); namely the matrix elements which enter the calcu-
lation depend on ¢, whereas the phase space available for the
excitations also differ for g=0 and ¢ > 0. Moreover, the ex-
act value of the matrix element for electron phonon coupling
is still a matter of debate in the community (e.g., see Ref.
39). Therefore, the actual values for plasmon losses could be
somewhat different for w> w,,;,. Nevertheless, fairly small
values of relaxation times presented in Fig. 4 for > wg,,
indicate that emission of an optical phonon together with an
electron-hole pair is an important decay mechanism in this
regime. Precise calculations for ¢>0 and w>w(,, are a
topic for a future paper.

Plasmonic losses and wave localization calculated from
the RPA-RT approximation are illustrated in Fig. 5 for dop-
ing level Er=0.64 eV and the relaxation time 7 given by
=+ T__lph, where  7p=64X10""% s (mobility
10000 cm?/Vs), whereas To_pn 1S frequency dependent and
corresponds to electron-phonon coupling assuming very
clean samples [see dashed line in Fig. 4(b)]. Interband losses
[left (rose shaded) regions in all panels] are active for wave-
lengths smaller than \;,.,~ 1.7 um. In the frequency inter-
val @ > 0> wg,, [central (yellow shaded) regions in all
panels], the decay mechanism via electron phonon coupling
determines the loss rate, i.e., 7= 17,_,,. For w<w,, [right
(white) regions in all panels], the DC relaxation time 7, can
be used to estimate plasmon losses.

It should be noted that the mobility of 10000 cm?/Vs
could be improved, likely even up to mobility
100 000 cm?/Vs,'3 thereby further improving plasmon
propagation lengths for frequencies below the optical phonon
frequency. However, for these larger mobilities the calcula-
tion of losses should also include in more details the fre-
quency dependent contribution to the relaxation time from

acoustic phonons (this decay channel is open at all frequen-
cies); such a calculation would not affect losses for
> w,, where optical phonons are dominant.

IV. CONCLUSION AND OUTLOOK

In conclusion, we have used RPA and number-conserving
relaxation-time approximation with experimentally available
input parameters, and theoretical estimates for the relaxation-
time utilizing electron-phonon coupling, to study plasmons
and their losses in doped graphene. We have shown that for
sufficiently large doping values high wave localization and
low losses are simultaneously possible for frequencies below
that of the optical phonon branch w<wg,;, (i.€., Epjasmon
<0.2 eV). For sufficiently large doping values, there is an
interval of frequencies above w,, and below interband
threshold, where an important decay mechanism for plas-
mons is excitation of an electron-hole pair together with an
optical phonon (for @ <, this decay channel is inactive);
the relaxation times for this channel were estimated and dis-
cussed. We point out that further more precise calculations of
plasmon relaxation times should include coupling to the sub-
strate (e.g., coupling to surface-plasmon polaritons of the
substrate), a more precise shape of the phonon dispersion
curves,® and dependence of the relaxation time via electron-
phonon coupling on ¢>0 (see Sec. III C).

The main results, shown in Figs. 3 and 5 point out some
intriguing opportunities offered by plasmons in graphene for
the field of nanophotonics and metamaterials in infrared (i.e.,
for w<w,;). For example, we can see in those figures that
high field localization and enhancement N, /\,~200 [see
Fig. 3(b)] are possible (resulting in A\, <<50 nm), while plas-
mons of this kind could have propagation loss-lengths as
long as ~10\,, [see Fig. 5(a)]; these values (albeit at differ-
ent frequencies) are substantially more favorable than the
corresponding values for conventional SPs, for example, for
SPs at the Ag/Si interface N,/ N, ~ 20, whereas propagation
lengths are only ~0.1A, [see Fig. 1(c)]. Another interesting
feature of plasmons in graphene is that, similar to usual
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SP-systems,* wave localization is followed by a group veloc-
ity decrease; the group velocities can be of the order v,
=103-1072 ¢, and the group velocity can be low over a
wide frequency range, as depicted in Figs. 3(c) and 5(c). This
is of interest for possible implementation of novel nonlinear
optical devices in graphene, since it is known that small
group velocities can lead to savings in both the device length
and the operational power;* the latter would also be reduced
because of the large transversal field localization of the plas-
mon modes.
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