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2D materials provide a platform for strong light–matter interactions, creating wide-ranging de-
sign opportunities via new-material discoveries and new methods for geometrical structuring. We
derive general upper bounds to the strength of such light–matter interactions, given only the optical
conductivity of the material, including spatial nonlocality, and otherwise independent of shape and
configuration. Our material figure of merit shows that highly doped graphene is an optimal material
at infrared frequencies, whereas single-atomic-layer silver is optimal in the visible. For quantities
ranging from absorption and scattering to near-field spontaneous-emission enhancements and radia-
tive heat transfer, we consider canonical geometrical structures and show that in certain cases the
bounds can be approached, while in others there may be significant opportunity for design improve-
ment. The bounds can encourage systematic improvements in the design of ultrathin broadband
absorbers, 2D antennas, and near-field energy harvesters.

2D materials [1, 2] and emerging methods [3–8] for
patterning 2D layers and their surroundings are opening
an expansive design space, exhibiting significantly differ-
ent optical [9–11] (and electronic) properties from their
3D counterparts. In this Letter, we identify energy con-
straints embedded within Maxwell’s equations that im-
pose theoretical bounds on the largest optical response
that can be generated in any 2D material, in the near
or far field. The bounds account for material loss as
encoded in the real part of a material’s conductivity—
in the case of a spatially local conductivity tensor σ,
they are proportional to

∥∥σ† (Reσ)
−1

σ
∥∥—and are oth-

erwise independent of shape and configuration. We de-
rive the bounds through convex constraints imposed by
the optical theorem [12–14] and its near-field analogue,
leveraging a recent approach we developed for spatially
local 3D materials [15]. In addition to accommodat-
ing nonlocal models, this work demonstrates starkly dif-
ferent near-field dependencies of 2D and 3D materials.
For graphene, the 2D material of foremost interest to
date, the bounds bifurcate into distinctive low- and high-
energy regimes: the low-energy bounds are proportional
to the Fermi level, whereas the high-energy bounds are
proportional to the fine-structure constant, α, for any ge-
ometrical configuration. We find that far-field bounds on
the extinction cross-section can be approached by ellipti-
cal graphene disks, whereas the near-field bounds on the
local density of states [16–20] and radiative heat transfer
rate [21–26] cannot be approached in prototypical flat-
sheet configurations. The bounds presented here provide
a simple material figure of merit to evaluate the emerg-
ing zoo of 2D materials, and offer the prospect of greater
optical response via computational design. The material
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figure of merit can guide ongoing efforts in 2D-material
discovery, while the general bounds can shape and drive
efforts towards new levels of performance and better op-
tical components.

Plasmonics in 2D materials opens the possibility for
stronger light–matter interactions, which may be useful
for technological applications, including single-molecule
imaging [27–30] and photovoltaics [31, 32], as well as
for basic-science discoveries, such as revealing forbidden
transitions [33], and achieving unity optical absorption
in graphene through optical impedance matching [5, 34–
36]. Theoretical work towards understanding optical re-
sponse in 2D materials has focused on analytical expres-
sions using specific geometrical [5, 9, 37] or metamaterial-
based [38] models, but from a design perspective such
assumptions are restrictive. Quasistatic sum rules can
yield upper limits on the cross-section [39, 40], but
have been restricted to far-field quantities and isotropic
and spatially local materials. A well-known microwave-
engineering bound, known as Rozanov’s theorem [41], of-
fers a bandwidth limit as a function of material thickness,
but its contour-integral approach requires perfectly con-
ducting boundaries that are not applicable for 2D mate-
rials at optical frequencies. Here, we find constraints that
do yield 2D-material optical-response bounds given only
the material properties. We provide a general framework
to derive limits to any optical-response quantity (includ-
ing cross-sections, spontaneous-emission enhancements,
and radiative-heat exchange), and we present computa-
tional results suggesting pathways to approach the new
bounds. For a broad class of hydrodynamic nonlocal-
conductivity models [42, 43], which capture several im-
portant nonclassical features at length scales approaching
the quantum regime, we derive general bounds in terms
of a constitutive-relation operator. We show that the
nonlocal response is necessarily bounded above by the
local-response bounds; further, by exploiting the qua-
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sistatic nature of interactions at nonlocal length scales,
we show that the maximum response must be reduced in
proportion to a ratio of the scatterer size to the effective
“diffusion” length.

To derive general scattering bounds, consider a 2D
scatterer embedded in a possibly heterogeneous back-
ground. Passivity, which implies the absence of gain
and that polarization currents do no work [44], requires
that the powers absorbed (Pabs) and scattered (Pscat)
by the target body are non-negative [15]. These al-
most tautological conditions in fact dictate bounds on
the largest currents that can be excited at the surface
of any 2D structure. The key is that their sum, extinc-
tion (Pext = Pabs +Pscat), is given by the imaginary part
of a forward-scattering amplitude, which is a well-known
consequence of the optical theorem [12–14]. For an ar-
bitrarily shaped 2D scatterer with area A that supports
electric surface currents K (a magnetic-current general-
ization is given in the Supp. Info.), the absorbed and
extinguished powers are given by [13, 45]

Pabs =
1

2
Re

∫
A

E∗ ·KdA (1a)

Pext =
1

2
Re

∫
A

E∗inc ·KdA, (1b)

where, in the latter expression,
∫
A
E∗inc · K dA is a

forward-scattering amplitude. A key feature of the opti-
cal theorem is that the extinction is the real part of an
amplitude, which is linear in the induced currents. By
contrast, absorption is a quadratic function of the cur-
rents/fields. Yet extinction must be greater than absorp-
tion (due to the Pscat ≥ 0 condition noted above), requir-
ing the linear functional to be greater than the quadratic
one, a condition that cannot be satisfied for large enough
currents. The inequality Pabs ≤ Pext thereby provides a
convex constraint for any optical-response function. Any
optical-response maximization can thus be formulated as
an optimization problem subject to this convex passivity
constraint [15]. For a generic figure of merit f(E) of the
fields (or, equivalently, currents), the design problem can
be written

maximize f(E)

subject to Pabs(E) ≤ Pext(E).
(2)

Thanks to the convex nature of the constraint Pabs ≤
Pext and the simple expressions for Pabs and Pext, Equa-
tion (2) can often be solved analytically—unlike the
highly nonconvex Maxwell equations—thereby providing
general upper-bound expressions without approximation.

To find bounds that solve Eq. (2), we must specify a
relationship between the field E and the induced current
K. To maintain generality we assume only that they are
related by a linear operator L,

LK = E, (3)

where in different size, material, and parameter regimes,
L may represent anything from a density-functional-
theory operator [46] or a hydrodynamic model [43, 47],

to a simple scalar conductivity. For a scalar con-
ductivity σ, L = 1/σ. Given this current–field re-
lation, the quadratic dependence of absorption on in-
duced current, per Eq. (1a), is made explicit: Pabs =
(1/2) Re

∫
A
K∗ LKdA. If we choose the figure of merit

to be the absorbed or scattered power, then straightfor-
ward variational calculus (see Supp. Info.) from Eq. (2)
yields the bounds

Pα ≤
1

2
βα

∫
A

E∗inc · (ReL)
−1

Einc dA, (4)

where α denotes absorption, scattering, or extinction.
The variable β takes the values

βα =

{
1, α = absorption or extinction
1
4 , α = scattering,

(5)

which represent a power-balance asymmetry: absorption
and extinction are maximized when Pabs = Pext, whereas
scattering is maximized when Pscat = Pabs = Pext/2, akin
to conjugate-matching conditions in circuit theory [48].
Equation (4) sets a general bound, at any frequency,
given only the incident field and the (material-driven)
field–current relationship, dictated by the operator L.
The bounds apply in the far field, where Einc might be
a plane wave or Bessel beam, as well as the near field,
where Einc might be the field emanating from dipolar
sources. Further below, we show that (ReL)

−1
can be

considerably simplified in the case when L is the differ-
ential operator arising in nonlocal hydrodynamic models.
First, however, we simplify Eq. (4) for the important case
of a spatially local conductivity.

A local conductivity σ, relating currents at any point
on the surface to fields at the same point, by K = σE,
is the primary response model employed in the study
of optical and plasmonic phenomena, in two as well as
three dimensions. In 2D materials, it is common to
have off-diagonal contributions to the conductivity (e.g.
through magnetic-field biasing), and thus we allow σ to
be a general 2× 2 matrix (implicitly restricting E to its
two components locally tangential to the 2D surface).
Given that L = σ−1, the term involving L in the bound
of Eq. (4) can be written: (ReL)

−1
= σ† (Reσ)

−1
σ.

In far-field scattering, the quantity of interest is typ-
ically not the total absorbed or scattered power, but
rather the cross-section, defined as the ratio of the power
to the average beam intensity. The scattering cross-
section, for example, is given by σscat = Pscat/Iinc, where
Iinc = |Einc|2avg/2Z0. Then, the bound of Eq. (4) simpli-
fies for the absorption, scattering, and extinction cross-
sections to

σα
A
≤ βαZ0

∥∥∥σ† (Reσ)
−1

σ
∥∥∥
2

(6)

where Z0 is the impedance of free space, βα is defined
above in Eq. (5), and ‖ · ‖2 denotes the induced ma-
trix 2-norm [49] (which is the largest singular value of
the matrix). The power of Eq. (6) is its simplicity—the
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scattering efficiency of any 2D scatterer, whether it is a
periodic array of circles [5], a spherical coating [50], an
isolated strip [37], or in any other configuration, has an
upper bound defined solely by its material conductivity.
We show below that simple ellipses can approach within
≈ 10% of the bounds, and that structures with two ad-
ditional degrees of freedom can approach within < 1% of
the bounds.

A key feature of the approach outlined here is that
the optical response of a 2D material of interest can be
cleanly delineated (without approximation) from the re-
sponse of any “background” structures. Our formulation
relies on the passivity constraints Pscat, Pabs > 0, and
yet the choice of “incident” and “scattered” fields is ar-
bitrary, as long as they sum to the total fields. As an
example, there is significant interest in integrating 2D
materials with photonic crystals [6, 7]; we can define the
incident field that controls the bounds in Eqs. (4,6) as
the field in the presence of only the photonic crystal, and
the scattered field as arising only from the addition of
the 2D layer above it. The limits of Eqs. (4,6), as well
as the limits derived below, then capture the maximum
achievable enhancement due to the 2D material itself,
subject to its inhomogeneous environment. Throughout
this Letter we focus on free-standing graphene to under-
stand its unique optical response, noting that generaliza-
tion involving substrates and more complex surrounding
structures can follow precisely this prescription.

Near-field optical response, in the presence of nearby
emitters, is at least as important as far-field response.
Here we find bounds to two important near-field quan-
tities: (i) the local density of states (LDOS), which is
a measure of the spontaneous-emission rate of a single
excited dipole near the scatterer, and (ii) near-field ra-
diative heat transfer, which is a measure of the radia-
tion exchange between two bodies at different tempera-
tures. The (electric) LDOS at a point x is proportional
to the power radiated by an (orientation-averaged) elec-
tric dipole at that point, and is given by the expression
ρ = (1/πω) Im

∑
j pj ·Ej(x), where Ej is the electric field

excited by the dipole with moment pj , and where the sum
over j = x, y, z accounts for orientation-averaging [16].
The expression for ρ shows that LDOS is dictated by a
causal amplitude (not a squared amplitude), exhibiting
similar mathematical structure to extinction. The source
of the similarity is that both extinction and LDOS can be
decomposed into radiative and nonradiative components,
which for the LDOS we denote by ρrad and ρnr, respec-
tively. The nonradiative part of the LDOS is given by
the absorption in the scattering body (which is often an
antenna), and per Eq. (1a) is quadratic in the induced
currents. Unlike far-field scattering, in the near field,
the incident field increases rapidly at smaller distances d
(|E| ∼ 1/d3). Thus, the same convex-optimization prob-
lem laid out in Eq. (2) leads to distance-dependent LDOS
bounds via the replacements Pext → ρ and Pabs → ρnr.
For an arbitrarily shaped 2D surface separated from the
emitter by some minimum distance d, the bounds are

(Supp. Info.):

ρα
ρ0
≤ 3βα

8 (k0d)
4Z0

∥∥∥σ† (Reσ)
−1

σ
∥∥∥
2

(7)

where α in this context denotes the total, radia-
tive, or nonradiative component of the LDOS, k0 =
ω/c, and ρ0 is the free-space electric-dipole LDOS,
ρ0 = ω2/2π2c3. Again βα represents a power-balance
(conjugate-matching) condition, and takes the value 1
for nonradiative or total LDOS and 1/4 for the ra-
diative LDOS. Equation (7) includes the highest-order
(∼ 1/d3) term from the incident electric field; lower-order
terms (∼ 1/d2, 1/d) are generally negligible in the high-
enhancement regimes of interest, as discussed quantita-
tively in Ref. [15]. The 3/8 coefficient in Eq. (7) is for the
common case in which the surface is separated from the
emitter by a separating plane; if the scattering body sur-
rounds the emitter across a solid angle Ω, the bound in
Eq. (7) is multiplied by 4Ω. Equation (7) provides a gen-
eral answer to the question of how efficient and effective
a 2D optical antenna can be.

Radiative heat transfer (RHT), in which a warm body
transfers energy to a colder one via photon exchange,
is also subject to optical-response bounds. It has long
been known [21–23] that near-field RHT can surpass the
blackbody limit, as evanescent tunneling can outpace ra-
diative exchange. Yet general limits to the process in
conventional 3D materials had been unknown until our
recent work [51]. The total RHT rate, H, is given by
the net flux from one body at temperature T1 to an-
other at temperature T2, typically expressed as (Ref. [25])
H1→2 =

∫∞
0

Φ(ω) [Θ(ω, T1)−Θ(ω, T2)] dω, where Φ(ω)
is a temperature-independent energy flux and Θ is the
Planck spectrum. The flux Φ is the power absorbed by
the second body, having been emitted from the first, such
that it is similar to the scattering problem bounded by
Eq. (6). A key distinction is that the (incoherent) sources
are in the interior of one of the scattering bodies, inval-
idating the conventional optical theorem. This difficulty
can be circumvented by breaking the flux transfer into
two scattering problems, connected by a generalized [52]
reciprocity relation (the material conductivity does not
need to be reciprocal), as outlined in Ref. [51]. The key
distinction in the case of 2D materials is the dimension-
ality of the domain over which the field intensities are
evaluated, which for bodies with identical conductivities
σ leads to the bound

Φ

ΦBB
≤ 3

2 (k0d)
4Z

2
0

∥∥∥σ† (Reσ)
−1

σ
∥∥∥2
2
, (8)

where d is the minimum separation distance between
the arbitrarily shaped bodies, ΦBB = k20A/4π

2 is the
blackbody limit (for infinite area A) [25], and the con-
ductivity term is squared due to potential contributions
from each body (see Supp. Info.). As for the LDOS
bounds, Eq. (8) assumes a separating plane between the
bodies; corrugated surfaces that are interlaced (but non-
touching) have bounds of the same functional form but
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FIG. 1. A simple material figure of merit (FOM),
Z0

∥∥σ† (Reσ)−1 σ
∥∥
2

for conductivity σ, dictates the maxi-
mum optical response that can be generated in 2D materi-
als. Experimentally tabulated or analytically modeled op-
tical data can be compared to assess optimal materials as
they emerge. Here, we compare: graphene at different Fermi
levels (solid black lines) and magnetic-biasing (dashed black
line), AA-stacked bilayer graphene (dark red), hBN (green),
MoS2 (purple), the anisotropic conductivity components of
black phosphorous (BP, pink and dark purple), and three 2D
metals, Al (red), Ag (blue), and Au (gold). High-Fermi-level
graphene and 2D silver offer the largest possible responses at
infrared and visible wavelengths, respectively. The inset com-
pares graphene at THz frequencies to the topological insulator
Bi2Se3, which can have a surprisingly large FOM.

with different numerical prefactors. An interesting 2D-
specific aspect of Eqs. (7,8) is that they exhibit identical
1/d4 distance dependencies, whereas for 3D bodies, RHT
increases more slowly for smaller separations (∼ 1/d2)
than does the LDOS (∼ 1/d3).

The fundamental limits of Eqs. (6–8) share a com-
mon dimensionless material “figure of merit” (FOM),

Z0

∥∥σ† (Reσ)
−1

σ
∥∥
2
. The FOM, which simplifies to

Z0|σ|2/Reσ for a scalar conductivity, captures the in-
trinsic tradeoffs between high conductivity for large re-
sponse and high losses that dissipate enhancement, and
can be used to identify optimal materials. In Fig. 1 we
plot the FOM across a range of frequencies, using ex-
perimentally measured or analytically modeled material
data for common 2D materials of interest: graphene, for
various Fermi levels [53], magnetic biasing [54], and AA-
type bilayer stacking [55] (at 300 K), hBN [56], MoS2 [57],
black phosphourous (BP) [11], Bi2Se3 (at THz frequen-
cies [58]), and metals Ag, Al, and Au, all taken to
have 2D conductivities dictated by a combination [39]
of their bulk properties and their interlayer atomic spac-
ing. Strongly doped graphene (EF = 0.6 eV) offers the
largest possible response across the infrared, whereas 2D
Ag tends to be better in the visible. At THz frequen-

cies, where graphene’s potential is well-understood [59–
61], the topological insulator Bi2Se3 shows promise for
even larger response. More broadly, the simple ma-
terial FOM, |σ|2/Reσ or its anistropic generalization∥∥∥σ† (Reσ)

−1
σ
∥∥∥, offers a metric for evaluating emerging

(e.g. silicene [62], phosphorene [63, 64]) and yet-to-be-
discovered 2D materials.

In the following we specialize our considerations to
graphene, the standard-bearer for 2D materials, to ex-
amine the degree to which the bounds of Eqs. (6–8)
can be attained in specific structures. We adopt the
conventional local description, including intra- and in-
terband dispersion. Appropriate modifications [37, 53]
are included to account for a finite intrinsic damping
rate, γ = 1/τ =

(
1012 eV/s

)
/EF, which is taken as

Fermi-level-dependent (corresponding to a Fermi-level-
independent mobility), with a magnitude mirroring that
adopted in Ref. [37]. Figure 2 shows the cross-section
bounds (dashed lines), per Eq. (6), alongside graphene
disks (with EF = 0.4 eV) that approach the bounds at
frequencies across the infrared. For simplicity, we fix
the aspect ratio of the disks at 2:1 and simply reduce
their size to increase their resonant frequency; each disk
achieves ≈ 85% of its extinction cross-section bound.
The disk diameters are kept greater than 10 nm to en-
sure the validity of our local description. We employ a
fast quasistatic solver [65] to compute the response of the
ellipses, which is verified with a free-software implemen-
tation [66] of the boundary element method (BEM) [67]
for the full electrodynamic problem with the surface con-
ductivity incorporated as a modified boundary condi-
tion [45]. If edge scattering, or any other defect, were
to increase the damping rate, such an increase could
be seamlessly incorporated in the bounds of Eqs. (6–8)
through direct modification of the conductivity. In the
Supp. Info., we show that with two extra geometrical
degrees of freedom (e.g., a “pinched ellipse”), one can
reach > 99.6% of the bound. The cross-section bounds
can also be used as bounds on the fill fraction of graphene
required for perfect absorption in a planar arrangement,
and they suggest the potential for an order-of-magnitude
reduction relative to the best known results [5]. Con-
versely, such room for improvement could be used to
significantly increase the perfect-absorption bandwidth
beyond the modern state-of-the-art.

The bounds simplify analytically at the low- and
high-frequency extremes. In these regimes, graphene’s
isotropic conductivity is real-valued and comprises sim-
ple material and fundamental constants, such that the
material FOM is approximately

Z0

∥∥∥σ† (Reσ)
−1

σ
∥∥∥
2
≈ Z0σ ≈

{
4α
(
EF

~γ
)

ω � γ

πα ω � 2EF/~.
(9)

The low-frequency proportionality to EF/~γ arises as a
consequence of the intraband contributions to the con-
ductivity, in contrast to the interband dominance at high
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FIG. 2. Upper limits (dashed lines) to the extinction cross-
section of graphene scatterers of varying Fermi level, pat-
terned into any shape, alongside the computed response of el-
liptical graphene disks of varying sizes for EF = 0.4 eV (green,
solid). The bounds, per Eq. (6), depend on graphene’s 2D
conductivity and incorporate the extent to which losses can
be overcome. The disks reach within ≈ 85% of the bounds,
and in the Supp. Info. we show that slightly more exotic
shapes can reach > 99% of the bounds. Simple asymptotic
expressions for the bounds emerge at low (dash–dot lines) and
high frequencies. In the high-frequency limit, the limits con-
verge to πα, and are thereby reached with a simple flat sheet
(inset).

frequencies. Interband contributions to the conductivity
are often ignored at energies below the Fermi level, but
even at those energies they are responsible for a sizable
fraction of the loss rate, thus causing the quadratic roll-
off (derived in Supp. Info.) of the maximum efficiency
seen on the left-hand side of Fig. 2.

Famously, at high frequencies a uniform sheet of
graphene has a scattering efficiency σ/A ≈ πα (Refs. [68–
70]). Interestingly, Fig. 2 and Eq. (9) reveal that πα is
the largest possible scattering efficiency, for any shape
or configuration of graphene, at those frequencies. Per
the incident-field discussion above, it is possible to in-
crease the absolute absorption of a plane wave at those
frequencies by structuring the background (e.g. with a
photonic-crystal slab supporting the graphene), but the
percentage of the background field intensity that can be
absorbed by the graphene is necessarily ≤ πα, no matter
how the graphene is structured. The right-hand side of
Fig. 2 shows the bounds for each Fermi level converg-
ing to πα, with the inset magnifying the high-energy re-
gion and showing that the response of a flat sheet indeed
reaches the bound.

The near-field LDOS and RHT limits are more chal-
lenging to attain. We study the LDOS near a flat
sheet of graphene, the most common 2D platform for
spontaneous-emission enhancements to date [9, 71, 72],
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FIG. 3. Comparison of the LDOS above a flat graphene
sheet (dashed lines) to the LDOS bounds for any structure
(solid lines), for multiple frequencies (colored lines) and as a
function of the emitter–graphene separation distance d (with
EF = 0.4 eV). For larger separations and higher frequencies,
the LDOS above a flat sheet follows the ideal ∼ 1/d4 scal-
ing, but at shorter separations and lower frequencies (where
the response is potentially largest), the optimal-frequency re-
sponse follows a ∼ 1/d3 envelope. The inset shows of ratio of
the flat-sheet LDOS to the upper bound, showing that there
is the potential for 1–2 orders of magnitude improvement.

and show that there is a large performance gap between
the flat-sheet response and the fundamental limits of
Eq. (7). There are two key factors that control the
near-field bounds (for both LDOS and RHT): the ma-
terial FOM |σ|2/Reσ, and a “near-field enhancement
factor” 1/d4, for emitter–sheet distance d. The 1/d4

near-field enhancement factor is particularly interesting,
because it increases more rapidly than in 3D materials
(for which the LDOS [15] and RHT [51] bounds scale
as 1/d3 and 1/d2, resp.). In Fig. 3, we show the LDOS
as a function of the emitter–graphene separation, for a
fixed Fermi level EF = 0.4 eV and a range of frequencies
(colored solid lines). The bounds for each frequency are
shown in the colored dashed lines, and the ratio of the
LDOS ρ to the LDOS bound ρbound is shown in the in-
set. For low and moderate frequencies, there is an ideal
distance at which the LDOS most closely approaches its
frequency-dependent bound, whereas the high-frequency
regime (e.g. ~ω = 0.7 eV) is almost distance-insensitive
due to high losses.

Figure 3 shows two asymptotic distance-scaling trends.
First, at high frequencies and/or large separations (50 nm
to 1 µm), the LDOS enhancement scales as 1/(k0d)4. We
show in the Supp. Info. that in this regime the LDOS fur-
ther exhibits the material-enhancement factor |σ|2/Reσ,
falling short of the bound only by a factor of 2. In this
regime, the LDOS is dominated by a “lossy-background”
contribution [71], which is insensitive to details of the
plasmonic mode, and due instead predominantly to in-
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the disk and flat-sheet RHT rates suggests the possibility of
significant improvement via patterning.

terband absorption in graphene (permitted even below
2EF for nonzero temperatures). Of more interest may
be the opposite regime—higher frequencies at smaller
separations—which are known [73] to have reduced dis-
tance dependencies. It is crucial to note that the bounds
presented in this Letter are not scaling laws; instead,
at each frequency and distance they represent indepen-
dent response limits. We see in Fig. 3 that for each indi-
vidual frequency, ρ/ρ0 flattens towards a constant value
at very small distances, because the corresponding plas-
mon surface-parallel wavenumber is smaller than 1/d and
does not change; however, the envelope formed over many
frequencies (for a given separation d) shows a 1/(k0d)3

as higher-wavenumber plasmons are accessed at smaller
distances. This suggests a simple potential approach to
reach the bound: instead of finding a geometrical con-
figuration that approaches the bound at all frequencies
and separations, concentrate on finding a structure that
reaches the bound at a single frequency and separation
of interest. A “family” of structures that combine to ap-
proach the bounds over a large parameter regime may
then naturally emerge.

Near-field RHT shows similar characteristics, in which
the bounds may be approached with flat graphene sheets
at specific energy, Fermi-level, and separation-distance
parameter combinations. As a counterpart to the LDOS
representation of Fig. 3, in Fig. 4 we fix the separa-
tion distance at 10 nm and plot the frequency-dependent
RHT [74] for three Fermi levels. The respective bounds,

from Eq. (8), show the same “dip” as seen in the inset
of Fig. 2(b), which occurs at the frequency where the
imaginary part of the conductivity crosses zero. At these
frequencies, the RHT between flat sheets can approach
the bounds. However, at other frequencies, where the
potential RHT is significantly larger, the flat sheets fall
short by orders of magnitude, as depicted in Fig. 4 at
EF = 0.5 eV. The flat-sheet case falls short due to near-
field interference effects: as the sheets approach each
other, the plasmonic modes at each interface interact
with each other, creating a level-splitting effect that re-
duces their maximum transmission to only a narrow band
of wavevectors [15]. By contrast, for two dipolar circles in
a quasistatic approximation (Fig. 4 inset), the RHT be-
tween the two bodies can approach its respective bound.
These examples suggest that patterned graphene sheets,
designed to control and optimize their two-body interfer-
ence patterns, represent a promising approach towards
reaching the bounds and thereby unprecedented levels
of radiative heat transfer. In the Supp. Info., we show
that achieving RHT at the level of the bound, even over
the narrow bandwidths associated with plasmonic reso-
nances, would enable radiative transfer to be greater than
conductive transfer through air at separations of almost
1µm, significantly larger than is currently possible [15].

Having examined the response of graphene structures
in the local-conductivity approximation, we now recon-
sider nonlocal conductivity models. For structures in
the 2–10 nm size range, below the local-conductivity
regime but large enough to not necessitate fully quantum-
mechanical models, hydrodynamic conductivity equa-
tions [42, 43, 47], or similar gradient-based models of
nonlocality [54, 75], can provide an improved account
of the optical response. In a hydrodynamic model, the
currents behave akin to fluids with a diffusion constant
D and convection constant β (both real-valued), with a
current–field relation given by [43][

−i
ε0ωω2

p

(
β2 +D (γ − iω)

)
∇∇ ·+σ−1loc

]
︸ ︷︷ ︸

L

K = E, (10)

where σloc, ωp, and γ are the local conductivity, plasma
frequency, and damping rate of the 2D material, respec-
tively. Per Eq. (4), the 2D-material response bounds
depend only on the Hermitian part of the L operator,
denoted by an underbrace in Eq. (10). Before deriving
bounds dependent on the hydrodynamic parameters, we
note that the grad–div hydrodynamic term in Eq. (10)
cannot increase the maximum optical response. The op-
erator −∇∇· is a positive semidefinite Hermitian oper-
ator (for the usual L2-space overlap-integral inner prod-
uct), shown by integration by parts in conjunction with
the no-spillout boundary condition. The Hermiticity of
the grad–div operator means that the Hermitian part of
L is given by ReL = (L+L†)/2 = − D

ω2
p
∇∇ · + Reσ−1loc .

Because −∇∇· is a positive-semidefinite addition to

the positive-semidefinite term Reσ−1loc ,
∥∥∥(ReL)

−1
∥∥∥ ≤
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(
Reσ−1loc

)−1
= |σloc|2/Reσloc. Thus the nonlocal re-

sponse is subject to the bound imposed by the underlying
local conductivity, demonstrating that nonlocal effects of
this type cannot surpass the local-conductivity response
explored in depth above.

We can further show that hydrodynamic nonlocal-
ity necessarily reduces the maximum achievable opti-
cal response in a given 2D material, by exploiting the
quasistatic nature of electromagnetic interactions at the
length scales for which nonlocal effects manifest. The
key insight required to derive bounds subject to the
nonlocal current–field relation, Eq. (10), is that the ab-
sorbed power can be written as a quadratic form of
both the currents K as well as ∇ · K (proportional
to the induced charge): Pabs = (1/2) Re

∫
A
K∗ · E =

1/2
∫
A

[a(∇ ·K∗)(∇ ·K) + bK∗ ·K], where a = D/ω2
p

and b = Re(σ−1loc). Similarly, the extinction can be writ-
ten as a linear function of either K or ∇ ·K (exploiting
the quasistatic nature of the fields), such that Pabs ≤ Pext

offers two convex constraints for the generalized nonlocal-
conductivity problem. We defer to the Supp. Info. for a
detailed derivation of general figures of merit under this
constraint, and state a simplified version of the result for
the extinction cross-section. The additional ∇ ·K con-
straint introduces a size dependence in the bound, in the
form of a “radius” r that is the smallest bounding sphere
of the scatterer along the direction of the incident-field
polarization. Defining a plasmonic “diffusion” length

`D =
√
cD/ω2

p (for speed of light c), the variational-

calculus approach outlined above yields an analogue of
Eq. (6) in the presence of a hydrodynamic nonlocality:

σext
A
≤

(Z0
|σloc|2

Reσloc

)−1
+

(
r2

`2D

)−1−1 . (11)

Equation (11) has an appealing, intuitive interpretation:
the cross-section of a scatterer is bounded above by a
combination of the local-conductivity bound and a non-
local contribution proportional to the square of the ratio
of the size of the scatterer to the “diffusion” length. Thus
as the size of the particle approaches `D, and goes below
it, there must be a significant reduction in the maximal
attainable optical response. There is ambiguity as to
what the exact value of D, or equivalently `D, should be
in 2D materials such as graphene; the bounds developed
serve as an impetus for future measurement or simula-
tion, to delineate the sizes at which the local/non-local
transition occurs. Conversely, since the bound shows a
dramatic reduction at sizes below `D, Eq. (11) can serve
as a means to extract this nonlocal property of any 2D
material from experimental measurements.

General limits serve to contextualize a large design

space, pointing towards phenomena and performance lev-
els that may be possible, and clarifying basic limiting
factors. Here we have presented a set of optical-response
bounds for 2D materials, generalizing recent 3D-material
bounds [15, 51] to incorporate both local and nonlocal
models of 2D conductivities. We further studied the
response of standard graphene structures—ellipses and
sheets—relative to their respective bounds, showing that
the far-field absorption efficiency bounds can be reliably
approached within 10%, but that the near-field bounds
are approached only in specific parameter regimes, sug-
gesting the possibility for design to enable new levels of

response. The figure of merit
∥∥∥σ† (Reσ)

−1
σ
∥∥∥ can serve

to evaluate new 2D materials as they are discovered, and
their optical properties are measured. Our results point
to a few directions where future work may further clar-
ify the landscape for 2D-material optics. One topic of
current interest is in patterned gain and loss [76, 77]
(esp. PT -symmetry [78–80]), which exhibit a variety of
novel behaviors, from exceptional points to loss-induced
transparency. Our bounds depend on passivity, which
excludes gain materials, but in fact the bounds only re-
quire passivity on average, i.e., averaged over the struc-
ture. Thus Eqs. (4–8) should be extensible to patterned
gain–loss structures. A second area for future work is in
exploration of quantum models of the L operator. We
have shown here explicit bounds for the cases of local
and hydrodynamic conductivities, but there is also sig-
nificant interest in quantum descriptions of the response.
Through, for example, density-functional theory [81], an-
alytical bounds in such cases may lead to a continuum
of optical-response limits across classical, semi-classical,
and quantum regimes.
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I. OPTIMIZED STRUCTURE TO REACH
WITHIN 1% OF EXTINCTION BOUND

In this section we show that the bounds can be reached
to within 1% through simple optimization of the scatter-
ing structure. The elliptical disks considered in the main
text only have two degrees of freedom, one of which is a
scaling parameter that solely shifts the frequency. Thus,
we consider the “pinched ellipse” structure depicted in
Fig. S1. Utilizing the angle θ in the two-dimensional
plane of the structure, the boundary of a simple ellipse
can be parameterized as x = a cos θ, y = sin θ. We gen-
erate the pinched ellipse via the parameterization:

x = a cos θ (S.1a)

y = sin θ
[
1 + de−|x(θ)|s/w

]
(S.1b)

where a, d, s, and w are free parameters. Many different
combinations can lead to good performance; from simple

∗ Corresponding author: owen.miller@yale.edu
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FIG. S1. (a) “Pinched ellipse” geometry, described by
Eq. (S.1), with the parameters in Eq. (S.2). The pinched
ellipse geometry has a mode with 99.6% of the maximum
polarizability possible, such that the response is almost per-
fectly concentrated at a single resonant frequency. (b) Spec-
tral response of the pinched-ellipse geometry, for two different
scaling factors (given by the widths of the structures). The
response achieves 99.6% of the general bound.

unconstrained optimizations, the values

a = 53.788 (S.2a)

d = 3.0917 (S.2b)

s = 3.6358 (S.2c)

w = 0.3964 (S.2d)

reach near-ideal performance. The performance of such a
structure is exhibited not only in the peak of the spectral
response but also in the quasistatic polarizability. The
quasistatic polarizability of a 2D scatterer, α(ω), can be

mailto:owen.miller@yale.edu
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decomposed into a complete set of modes that are or-
thonormal under a properly chosen inner product. The
polarizabilities of the modes, αn for mode n, must satisfy
the sum rule [1] ∑

n

αn ≤ ||Ω|| (S.3)

where ||Ω|| is the total surface area of the scatterer.
The capability of a structure to reach the bounds de-

veloped in the main text is directly related to whether
its response is concentrated into a single mode at the
frequency of interest. The elliptical disks of the main
text have oscillator strengths, i.e., mode polarizabilities,
of approximately 90%, explaining their large extinction
cross-sections that reach within 10% of the bounds. For
the pinched ellipse of Fig. S1, the parameter values in
Eq. (S.2) yield a normalized oscillator strength of 99.6%,
as computed by a quasistatic integral-equation solver [2]
and shown in Fig. S1(a). Such a large oscillation strength
indicates that the scatterer should reach 99.6% of the ex-
tinction bound, which we verify numerically. The nearly
ideal spectral response is shown in Fig. S1(b), for two
scaled versions of the ellipse shown in Fig. S1(a) with
the parameters given in Eq. (S.2).

II. OPTIMAL CONDUCTIVE HEAT
TRANSFER THROUGH GRAPHENE

We showed in Eq. (8) of the main text that near-
field radiative heat transfer (RHT) has a unique 1/d4

separation-distance dependence for 2D materials, in-
creasing more rapidly than the 1/d3 dependence of 3D
materials. Here we consider the potential for a 2D
material such as graphene to exhibit large radiative
heat transfer relative to the large conductive heat trans-
fer rate for two bodies separated by micron-scale air
gaps. As discussed in the main text, the total ra-
diative heat transfer between two bodies is given by
H =

∫
Φ(ω) [Θ(ω, T1)−Θ(ω, T2)] dω. For a small tem-

perature differential between the bodies, the conductance
(heat transfer per unit temperature) per area A is termed
the radiative heat transfer coefficient and is given by

hrad =
1

A

∫
Φ(ω)

∂Θ

∂T
dω =

1

A
kB

∫
Φ(ω)f(ω) dω, (S.4)

where

f(ω) =

(
~ω
kBT

)2
e~ω/kBT(

e~ω/kBT − 1
)2 (S.5)

For common 2D materials such as graphene, the material
loss rates are sufficiently small that resonant response is
sharply peaked, with a width determined by the mate-
rial loss. For resonant response the distribution of Φ(ω)
will be much sharper than the Boltmann-like distribution
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FIG. S2. Optimal radiative heat-transfer coefficient for near-
field energy exchange between graphene structures operating
at the maximum theoretical flux rate, over a bandwidth dic-
tated by the material loss rate. At 300 K it is possible for
graphene RHT to surpass conductive transfer through air at
≈ 350 nm separation distance; at 1500 K, it is possible at
almost 800 nm separations. The theoretical RHT coefficient
increases with the resonant wavelength, λres, due to the in-
creasing material FOM |σ|2/Reσ of graphene with increasing
wavelength.

f(ω) in the integrand. Thus we can approximate h by

hrad ≈
1

A
kBf(ωres)

∫
Φ(ω) dω (S.6)

≈ 1

A
kBf(ωres)Φ(ωres)

π∆ω

2
(S.7)

where ωres is the peak resonant frequency, and the second
approximation assumed a Lorentzian distribution for Φ,
with ∆ω as the full-width at half-maximum of the dis-
tribution. For a plasmonic material such as graphene,
we can model the bandwidth through the quality factor:

Q = ω
∆ω = | Imσ|

Reσ , which is the 2D-material version of the
well-known expression Q = |Reχ|/ Imχ (Refs. [3, 4]).
For graphene and similar materials at optical frequen-
cies, Imσ ≈ |σ|. Thus if we use the minimal material-
dependent bandwidth ∆ω ≈ ωres Reσ/|σ|, and insert
the bound for Φ/A from Eq. (8) in the main text into
Eq. (S.7), we find a bound on the radiative heat-transfer
coefficient:

hrad ≤
3

16π2

kBωres

d2
f(ωres)

|σ|3Z2
0

Imσ

1

k2
resd

2
. (S.8)

Note that this is not a strict bound, but rather an indi-
cation of what is possible, if the single-frequency bounds
derived in the text can be reached over a typical plas-
monic bandwidth (which is significantly narrower than
the RHT flux rates seen in Fig. 4 of the main text).
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Figure S2 shows the heat-transfer coefficient in
graphene if Eq. (S.8) can be met. We fix the Fermi level
at 0.6 eV, consider two temperatures: T = 300 K and
T = 1500 K, for a resonant wavelength λres swept from
3µm to 5µm. For the sake of comparison, we include
the conductive heat-transfer coefficient through air, tak-
ing the thermal conductivity to be κair = 0.026 W/m2 ·K
(Ref. [5]). An exciting feature of Fig. S2 is the length
scale at which heat transfer may become dominated
by radiative rather than conductive heat transfer. For
300 K, this transition can occur at separation distances
larger than 300 nm, and for 1500 K, the transition can
happen beyond 800 nm, separations orders of magnitude
larger than those required with conventional designs.

III. GRAPHENE MATERIAL FIGURE OF
MERIT: SECOND-ORDER APPROXIMATION

A surprise in the material figure of merit of graphene
is the extent to which interband contributions play a sig-
nificant role in the peak magnitude of the response even
at energies smaller than the Fermi level. The simpli-
fied expressions for graphene’s material FOM given in
Eq. (9) of the main text are asymptotic expressions, and
the low-energy expression is only valid for ω � γ, where
γ is the small material loss rate. In this section, we de-
rive a higher-order correction that more accurately de-
scribes a broader frequency range. For ~ω < 2EF, the
low-temperature (T � EF/kB) approximations of the
intra- and interband conductivities are

σintra =
ie2

4π~
4EF

~(ω + iγ)
(S.9a)

σinter = − ie2

4π~
ln

(
2EF + ~(ω + iγ)

2EF − ~ (ω + iγ)

)
. (S.9b)

A Taylor expansion in frequency (with small parameter
~(ω + iγ)/2EF) yields an inverse total conductivity of

(Z0σ)
−1 ' − i

α

~(ω + iγ)

4EF

(
1 +

~2(ω2 − γ2 + 2iγω)

4E2
F

)
.

(S.10)

Inserting the inverse conductivity of Eq. (S.10) into the
cross-section bound, Eq. (6) of the main text, yields the
approximate graphene bound:(σext

A

)
bound

=
[
Re (Z0σ)

−1
]−1

' 4α

(
EF

~γ

)
− α ~γ

EF

[
3

(
ω

γ

)2

− 1

]
(S.11)

Equation (S.11) predicts a quadratic reduction in
graphene’s material figure of merit (and thus its response
bounds) as a function of energy. As shown in Fig. S2,
the quadratic dependence is a good approximation of the
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FIG. S3. Comparison of the extinction bounds, (σext/A)bound,
for graphene with the full local-response-approximation
(LRA) conductivity (solid) and with the second-order approx-
imation in Eq. (S.11) (dash-dot). Even at frequencies below
the Fermi level, inclusion of the interband terms, resulting
in the quadratic dependence evident here, yields much better
agreement than the intraband-only expression (dashed).

full local-response material conductivity for energies well
below twice the Fermi level. Note that the frequency-
dependent second term in Eq. (S.11) arises entirely from
interband contributions to the conductivity, which are a
crucial limiting factors even at frequencies well below the
Fermi level.

IV. VARIATIONAL-CALCULUS DERIVATION
OF UPPER BOUNDS

Here we provide the intermediate mathematical steps
in the derivation of the bounds that appear in Eqs. (4–8)
of the main text. For generality, we also accommodate
the possibility of magnetic surface currents in addition
to electric surface currents. We denote the fields as com-
ponents of a six-vector ψ,

ψ =

(
E
H

)
(S.12)

and the electric (K) and magnetic (N) surface currents
as components of a six-vector φ:

φ =

(
K
N

)
(S.13)
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Then we can write the absorption and extinction as the
inner products of the fields and currents:

Pabs =
1

2
Re 〈ψ, φ〉 (S.14)

Pext =
1

2
Re 〈ψinc, φ〉 (S.15)

where the inner product is defined by 〈a, b〉 =
∫
A
a†bdA.

For the most general bounds in the main text, Eq. (4),
we assume only that the fields are currents are related by
some linear operator L,

Lφ = ψ, (S.16)

where we have generalized the L operator from the main
text, to include magnetic currents.

The simplest bound to derive is the one for scat-
tered power. We substitute the constitutive equation,
Eq. (S.16), in the equations for absorption and extinc-
tion, and write the scattered power as the difference be-
tween extinction and absorption:

Pscat =
1

2

[
1

2
〈ψinc, φ〉+

1

2
〈φ, ψinc〉 − 〈φ, (ReL)φ〉

]
(S.17)

Note that by passivity ReL is positive-definite (for a
scalar isotropic conductivity, ReL > 0 is equivalent to
Reσ > 0). Thus the negative term in Eq. (S.17) is
a positive-definite quadratic function of the currents φ,
whereas the first two positive terms are only linear in φ.
Thus Pscat is inherently bounded by constraints imposed
by the optical-theorem form of the extinction. We can
find the extremum by setting the variational derivative
δ/δφ∗ equal to zero:

δPscat

δφ∗
=

1

4
ψinc −

1

2
(ReL)φ = 0 (S.18)

which implies that the optimal currents are given by

φ =
1

2
(ReL)

−1
ψinc (S.19)

For these optimal currents, the scattered power is given
by direct substitution of Eq. (S.19) into Eq. (S.17), yield-
ing

Pscat ≤
1

8

〈
ψinc, (ReL)

−1
ψinc

〉
. (S.20)

Equation (S.20) is the magnetic-current generalization
of the scattered-power component of Eq. (4) in the
main text. By similar variational derivatives, with a
Lagrangian-multiplier approach to the constraint Pabs <
Pext, the bounds on Pabs and Pext follow:

Pabs,ext ≤
1

2

〈
ψinc, (ReL)

−1
ψinc

〉
, (S.21)

with the only difference from the scattered-power bound
being the extra factor of four (the β term in the main

text), which arises because maximization of absorption or
extinction can fully “saturate” the constraint, i.e. Pabs =
Pext. Similar saturation would yield no scattered power,
and thus the scattered-power optimum occurs for Pabs =
Pscat = 1

2Pext, at half the current level and thus one-
fourth of the power level.

The next equation from the main text that we want to
show the key steps for is Eq. (7), the bound for the LDOS.
In this case, we can consider a spatially local conductivity
for the L operator, i.e., L = σ−1. We henceforth do not
consider magnetic currents, though the generalization is
straightfoward. The bound for the LDOS takes exactly
the same form as Eqs. (S.20,S.21), for absorption, scat-
tering, and extinction, but with a different prefactor to
account for the free-space LDOS, ρ0:

ρα
ρ0
≤ βα

1

ε0ω

2π

k3

∑
j

〈
Einc,j ,

(
Reσ−1

)−1
Einc,j

〉
= βα

1

ε0ω

2π

k3

∥∥∥σ† (Reσ)
−1
σ
∥∥∥

2

∑
j

∫
A

|Einc,j |2 dA

(S.22)

where j denotes the (random) orientation of the dipolar
emitter, α denotes either the total, radiative, or nonradi-
atve LDOS, and βα is 1 for the total or nonradiative
LDOS and 1/4 for the radiative LDOS (and we have
dropped an additive +1 factor for the radiative LDOS
that is negligible in the near field). The surface A of the
2D material can take any shape; because the integrand in
Eq. (S.22) is positive, we can find the planar surface pass-
ing through the point on A that is closest to the emitter.
Denoting this half space Γ, we know that∫

A

|Einc|2 dA ≤
∫

Γ

|Einc|2 dA (S.23)

where the latter expression can be analytically evaluated
due to its symmetry. [As discussed in the main text,
other bounding surfaces (such as the closest spherical
shell) can be used, instead of a half space, with the result-
ing difference only being different numerical prefactors.
To determine the integral, we can use the fact that the
sum of the squared electric field over all source-dipole ori-
entations is given by the Frobenius norm of the dyadic
electric-field Green’s function:∑
j

|Einc,j |2 = ‖G0‖2F =
k6

8π2

[
3

(kr)
6 +

1

(kr)
4 +

1

(kr)
2

]
(S.24)

which has contributions from 1/r6, 1/r4, and 1/r2 terms.
The 1/r2 term represents a far field radiative contribu-
tion, which is dominated in the near field by higher-order
terms. The integrals of 1/r6 and 1/r4 over the plane Γ
are ∫

Γ

1

r6
dA =

π

2d4
(S.25a)∫

Γ

1

r4
dA =

π

d2
(S.25b)
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where d is the separation of the emitter from the plane Γ.
Thus the integral over the Frobenius norm of the Green’s
function, excluding the far-field term, is∫

Γ

‖G0‖2F dA =
k4

8π

[
3

2(kd)4
+

1

(kd)2

]
(S.26)

Inserting this value into the bound of Eq. (S.22) yields:

ρα
ρ0
≤ βα

∥∥∥σ† (Reσ)
−1
σ
∥∥∥

2

[
3

8(kd)4
+

1

4(kd)2

]
, (S.27)

which is the LDOS bound of Eq.(7) in the main text,
including the second-order term.

The final expression whose mathematical form we want
to derive is the RHT bound of Eq. (8) in the main text.
As explained in the main text, and derived in Ref. [6],
a bound on RHT can be developed by consideration of
two scattering problems connected through (generalized)
reciprocity. For two surfaces with conductivities σ1 and
σ2, the bound is of the form

Φ(ω) ≤ 2

πε2
0ω

2

∥∥∥(Reσ−1
1

)−1
∥∥∥

2

∥∥∥(Reσ−1
2

)−1
∥∥∥

2

×
∫
A1

∫
A2

‖G0(x1,x2)‖2F d2x1d2x2.

(S.28)

To complete the integral over the two 2D surfaces, we use
the same “bounding plane” approach as for the LDOS.
Now we need a double integral over Γ1 and Γ2, where Γ1

and Γ2 are the bounding planes for A1 and A2:∫
Γ1

∫
Γ2

1

r6
= A

∫
Γ2

1

r6
=
πA

2d4
(S.29)∫

Γ1

∫
Γ2

1

r4
= A

∫
Γ2

1

r4
=
πA

d2
(S.30)

where A is the (infinite) area of the Γ1 and Γ2 surfaces,
which could be pulled out of the integrals by symmetry.
Inserting the integrals into the RHT bound expression in
Eq. (S.28) yields:

Φ(ω) ≤k
2A

4π2
Z2

0

∥∥∥(Reσ−1
1

)−1
∥∥∥

2

∥∥∥(Reσ−1
2

)−1
∥∥∥

2

×
[

3

2(kd)4
+

1

4(kd)2

]
.

(S.31)

Recognizing that k2A/4π2 is precisely the blackbody flux
rate [7], ΦBB, we can write

Φ(ω)

ΦBB(ω)
≤Z2

0

∥∥∥(Reσ−1
1

)−1
∥∥∥

2

∥∥∥(Reσ−1
2

)−1
∥∥∥

2

×
[

3

2(kd)4
+

1

4(kd)2

]
,

(S.32)

which is precisely the RHT bound of Eq. (8) in the main
text, except that here we allow for two different mate-
rials in the interaction, and we include the second-order
distance term, proportional to 1/d2.

V. BOUNDS IN THE PRESENCE OF
HYDRODYNAMIC NONLOCALITY

In the main text, we showed that in a general Maxwell-
equation framework, hydrodynamic nonlocality cannot
increase maximum optical response, as any such nonlocal
response is subject to the local-response bound. Here we
show that under the additional assumption of quasistatic
response, which will almost always apply at the length
scales for which nonlocal effects are non-negligible, the
nonlocality necessarily reduces the maximum achievable
optical response in a given 2D material. In accord with
typical hydrodynamic models [8], we will work only with
electric surface currents K, driven by electric fields E,
related by Eq. (10) of the main text, repeated here in
compact notation:

−A∇∇ ·K +BK = E, (S.33)

where

A =
i

ε0ωω2
p

(
β2 +D (γ − iω)

)
, (S.34a)

B = σ−1
loc , (S.34b)

σloc is the local surface conductivity, and β2 = (3/5)v2
F

(for Fermi velocity vF ) for both parabolic 2D materials
as well as graphene. Note that one can define the plasma
frequency ωp using ~kF/vF as the effective mass, yielding
ω2
p = e2EF/(πε0~2). In the presence of a hydrodynamic

nonlocality, it is straightforward to write the absorbed
power in terms of the currents K:

Pabs =
1

2
Re

∫
A

K∗ ·E

=
1

2
Re

∫
A

−AK∗ · ∇∇ ·K +BK∗ ·K

=
1

2

∫
A

a (∇ ·K∗) (∇ ·K) + bK∗ ·K, (S.35)

where the second line follows from integration by parts
and the no-spillout condition (n̂ ·K = 0), and a and b
are the real parts of A and B, respectively,

a = Re(A) =
D

ε0ω2
p

, (S.36a)

b = Re(B) = Re
(
σ−1

loc

)
, (S.36b)

which are positive by the sign convention chosen in
Eq. (S.33). The key insight to take away from Eq. (S.35)
is that it is quadratic in K and ∇ ·K. Thus for nonlo-
cal models, restrictions on the divergence of the currents
represent an additional constraint on maximal optical re-
sponse. To have a non-trivial restriction on ∇ ·K, there
should also be a term in the extinction that is linear in
∇ · K. This is where the quasistatic approximation is
useful. Quasisatic electromagnetism dictates that the in-
cident field is the (negative) gradient of some potential
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φinc: Einc = −∇φinc. Then, using integration by parts
and the no-spillout condition once more, we can write the
extinction in either of two equivalent ways:

P
(1)
ext =

1

2
Re

∫
A

E∗inc ·K, (S.37)

P
(2)
ext =

1

2
Re

∫
A

φ∗inc∇ ·K. (S.38)

The first equation, Eq. (S.37), offers a constraint on the
magnitude of K, while the second equation, Eq. (S.38),
offers a constraint on the magnitude of ∇·K. Thus if we
wish to maximize extinction, for example, it is subject

to two constraints, Pabs < P
(1)
ext and Pabs < P

(2)
ext , and we

should maximize the minimum of P
(1)
ext and P

(2)
ext (which

are not necessarily equivalent since we do not impose the
additional nonconvex constraint of satisfying quasistatic
electromagnetism). Thus the maximal-extinction prob-
lem can be written as a “maximin” (negative of a mini-
max) convex problem

max
K,∇·K

min
i∈{1,2}

P
(i)
ext

such that Pabs ≤ P (i)
ext.

(S.39)

Although Eq. (S.39) is nonsmooth (because of the abso-
lute value), a standard transformation [9] yields an equiv-
alent smooth optimization problem

max
K,∇·K,x

x

such that x ≤ P (i)
ext

Pabs ≤ P (i)
ext,

(S.40)

where i ∈ {1, 2} and the constraints are all convex. At

the extremum P
(1)
ext = P

(2)
ext , and standard optimization

techniques (e.g., Lagrange multipliers) yield this optimal
value:

Pext ≤
1

2

[
Re(σ−1

loc)∫
A
|Einc|2

+
D/(ε0ω

2
p)∫

A
|φinc|2

]−1

. (S.41)

The bound on the right-hand side of Eq. (S.41) is a rate
competition between the local-conductivity bound in the
first term and a diffusion-constant-based bound in the
second term that only arises from the hydrodynamic non-
locality. We can simplify the bound in the case of a plane
wave.

Within the quasistatic approximation, an incident
plane wave is represented by a constant vector field
across/over the surface of the 2D material; for a polariza-
tion along ẑ, i.e. for Einc = E0ẑ, the associated potential
is φinc = −E0z. If the “radius” of the scatterer (more
precisely, its smallest bound sphere in the polarization
direction) is given by r, we can simplify the integral of
|φinc|2 via the inequality∫

A

|φinc|2 = |E0|2
∫
A

z2 = |E0|2
〈
z2
〉
A ≤ |E0|2r2A,

(S.42)

where 〈·〉 denotes an average over the area of the
scatterer. In terms of the cross-section, σext =
Pext/(|E0|2/2Z0), the expression of Eq. (S.41) is bounded
above by

σext

A
≤

(Z0
|σloc|2

Reσloc

)−1

+

(
r2

`2D

)−1
−1

, (S.43)

where `D =
√

cD
ω2

p
is a normalized diffusivity that we

can interpret as a plasmonic “diffusion” length. Equa-
tion (S.43) has an appealing, intuitive interpretation: the
cross-section of a scatterer is bounded above by a com-
bination of the local-conductivity bound and a nonlocal
contribution proportional to the square of the ratio of
the size of the scatterer to the “diffusion” length. Thus
as the size of the particle approaches `D, and goes below
it, there is a significant reduction in the maximal optical
response.

Because the local density of states (LDOS) is propor-
tional to Eq. (S.37), but with the replacement E∗inc →
Einc (Ref. [10]), the equivalent LDOS bound is exactly
Eq. (S.41), with additional numerical prefactors and the
caveat that Einc is now rapidly decaying in space. The
1/r3 decay of the incident field is responsible for the
1/d4 distance dependence of the local-conductivity LDOS
bound, Eq.(7), in the main text. But the incident-field
potential, φinc, decays less rapidly, with scaling ∼ 1/r2.
Thus

∫
A
|φinc|2 ∼ 1/d2, a dramatic reduction from the

1/d4 scaling for a local conductivity. The crossover from
the 1/d4 term being dominant in the bound to the 1/d2

term being dominant occurs when the separation dis-
tance d is of the same order of magnitude as the diffusion
length `D. Exploration of the 1/d2 scaling in various rele-
vant materials and geometries would be interesting future
work.

VI. LDOS ABOVE A PLANAR CONDUCTING
SHEET

In this section we analytically derive the LDOS above
a planar conducting sheet. We show that the envelope of
the peak LDOS has 1/d3 scaling when dominated by a
single resonance, whereas it has a 1/d4 scaling, and comes
within a factor of two of the LDOS bounds of Eq. (7) in
the main text, when it arises from a “lossy-background”
contribution. The LDOS above any structure with trans-
lational and rotational symmetry is given by

ρ(ω) =

∫
ρ(ω, kp) dkp (S.44)

where kp is the magnitude of the surface-parallel com-
ponent of the wavevector. In the near field (kp � k0),
for p-polarized waves (e.g., surface plasmons), ρ(ω, kp) is
given by

ρ(ω, kp) =
k0

2π2c

k2
p

k2
0

e−2kpz Im rp (S.45)
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where rp is the p-polarized (TM) reflection coefficient.
For a 2D material with surface conductivity σ, rp is given
by

rp ≈
iσkp

2ε0ω + iσkp
(S.46)

=
kp

kp − ξ
(S.47)

where ξ = i2ε0ω/σ. Thus the imaginary part of the
reflection coefficient is

Im rp =
kpξ
′′

(kp − ξ)′ + (ξ′′)2
, (S.48)

where the single and double apostrophes indicate real
and imaginary parts, respectively. The variable ξ(ω) en-
codes the material conductivity. For single-resonance-
dominant response, the wavevector integral of Eq. (S.45)
will be dominated by a narrow peak in the imaginary
part of the reflection coefficient, i.e. Eq. (S.48), where
kp ≈ ξ′. Conversely, for a highly lossy background, for
which Reσ � | Imσ| and thus Im ξ � |Re ξ|, the con-
tribution of Im rp to the integrand in Eq. (S.28) will be
roughly constant. We treat the two cases separately.

A. Pole contribution to the LDOS

As discussed above, the imaginary part of the reflection
coefficient will be sharply peaked around kp ≈ Re ξ(ω) in
the case of a single resonance dominating the response.
Then the peak value of Im rp, as a function of wavevector,
will be

max Im rp ≈
kp
ξ′′

(S.49)

and the width of the peak will be ∆kp ≈ 2ξ′′. If we
denote kp0 as the peak wavevector at which Im rp takes its
maximum value, and assume a Lorentzian lineshape for
Im rp, then we can approximate the kp-dependent terms
in the integral of Eq. (S.45) by∫

k2
pe
−2kpz Im(rp) dkp ≈ k2

p0e
−2kp0z

∫
Im(rp) dkp

≈ k2
p0e
−2kp0z

π

2
Im [rp(kp0)] ∆kp

= πk3
p0e
−2kp0z (S.50)

Thus we can write the full LDOS, ρ(ω), as

ρ(ω) = ρ0(ω)
k3
p0

k3
0

e−2kp0z, (S.51)

where ρ0(ω) is the electric-only free-space LDOS, ρ0 =
k2

0/2π
2c. We note that the optimal frequency, and thus

the optimal kp0, changes as a function of z, with the
optimal kp0 given by kp0 = 3/2z. Replacing the height z
with the separation distance d, we can write

max
ω

ρ(ω)

ρ0(ω)
≈ π

(
3

2e

)3
1

(k0d)3

≈ 1

2(k0d)3
. (S.52)

The expression given by Eq. (S.52) quantitatively pre-
dicts the short-distance and low-frequency behavior of
the LDOS in Fig. 3 of the main text.

B. Lossy-background contribution to the LDOS

The lossy-background contribution to the LDOS ex-
hibits a different mathematical structure. Instead of
Im rp being sharply peak around a single resonance,
Im ξ � |Re ξ|, and the imaginary part of the reflectivity
is nearly constant over wavevector:

Im rp ≈
kp
ξ′′

(S.53)

for all kp (that are not so large as to be inaccessible at a
finite separation distance). Thus Im rp can be taken out
of the integral for ρ, Eq. (S.45), which is then given by∫

k2
pe
−2kpz Im rp dkp ≈

1

ξ′′

∫
k3
pe
−2kpz dkp

≈ 1

ξ′′
3

8z4
, (S.54)

where we have kept ony the lowest-order term in 1/z.
Writing out ξ′′ = 2ε0ω/Reσ, straightforward algebra
yields:

ρ(ω)

ρ0(ω)
≈ 3

16
(Z0 Reσ)

1

(k0d)4
(S.55)

for emitter–material separation distance d. We see that
in the limit Reσ � | Imσ|, which is a prerequisite for the
lossy-background contribution to dominate, Eq. (S.55)
is exactly a factor of 2 smaller than the general LDOS
bound that appears in Eq. (7) of the main text. The fac-
tor of 2 stems from the factor of 2 in the denominator of
Eq. (S.46), which itself arises from the equal interactions
of a 2D material with the exterior regions on either side
of its surface. Equation (S.55) quantitatively predicts
the LDOS in the moderate-separation and large-energy
regimes of Fig. 3 of the main text.
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