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Light emission and absorption is fundamentally a joint property of both an emitter and 

its optical environment. Nevertheless, because of the much smaller momenta of photons 

compared to electrons at similar energies, the optical environment typically modifies only 

the emission/absorption rates, leaving the emitter transition frequencies practically an 

intrinsic property. We show here that surface polaritons, exemplified by graphene 

plasmons, but also valid for other types of polaritons, enable substantial and tunable 

control of the transition frequencies of a nearby quantum well—demonstrating a sharp 

break with the emitter-centric view. Central to this result is the large momenta of surface 

polaritons that can approach the momenta of electrons, and impart a pronounced 

nonlocal behavior to the quantum well. This work facilitates non-vertical optical 

transitions in solids and empowers ongoing efforts to access such transitions in indirect 

bandgap materials, e.g. silicon, as well as enriches the study of nonlocality in photonics. 
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Our understanding of light-matter interactions has been instrumental to a range of 

scientific and technological breakthroughs. At the heart of the theory of light-matter 

interactions lies the quantized nature of electronic transitions in matter (e.g. atoms, molecules, 

solids, and quantum dots and wells). Indeed, this notion of quantization is critical to the 

understanding of both light emission and absorption, enabling key photonic technologies 

ranging from lasers [1] and LEDs [2] to CCD photodetectors [3] and solar cells [4]. 

By modifying the local optical environment of an emitter, the relative amplitude of the 

various transitions can be controlled with great fidelity through the Purcell effect [5-7]. The 

Purcell effect modifies the emission/absorption spectrum by enhancing the rate of certain 

frequencies and inhibiting others (i.e., it alters the local density of photonic states, e.g., [8,9]). 

The transition frequencies themselves, however, are generally perturbed only very weakly by 

the electromagnetic environment through effects like the Lamb shift when staying in weak 

coupling regimes [10-15], becoming, in effect, a fixed property of the emitter. Even in solids, 

where the electronic band structure contains a continuous range of electron energies, the 

absorption and emission frequencies are generally considered fixed by the electronic bandgap 

and the quasi Fermi levels. The fixed transition frequencies are due to the small momentum of 

the photons relative to that of the electrons, which effectively excludes all purely optical non-

vertical/indirect transitions, although indirect processes such as phonon-mediated transitions 

can occur but are relatively inefficient (e.g., [4]). The impact of the small photon momentum 

reappears in diverse guises throughout the study of light-matter interaction [16]. A pertinent 

question, then, is whether this large momentum difference can be bridged efficiently by directly 

increasing the momentum of the optical component without requiring an intermediate process. 

Here we show that polaritons in thin films or two-dimensional (2D) materials carry 

momentum large enough to approach the momenta of electrons in solids. Consequently, they 

enable tunable control over the absorption and emission frequencies in solids without altering 
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their intrinsic electronic properties. In particular, we analyze a graphene monolayer supporting 

plasmon polaritons adjacent to a GaAs/InGaAs/GaAs quantum well (QW) and consider the 

QW intersubband transitions (Figure 1a). We obtain tunable frequency shifts on the order of 

tens to hundreds of meV in the spectrum of the emitted and absorbed polaritons, as well as 

substantial rate enhancements. 

 

Figure 1: Illustration of the coupling of graphene plasmon polaritons to a quantum well 

(QW). (a) Scheme of the structure—a graphene layer situated above the QW. Plasmon 

polariton wavefronts supported by the graphene layer are illustrated by yellow waves. The z 

profiles of the QW eigenmodes 𝜙𝑛(𝑧) (black) and of the plasmon field (yellow) are illustrated 

on the left. (b) The plasmon dispersion for the structure in Figure 1a for graphene Fermi levels 

of 0.4, 0.7 and 1.2 eV. The colormap presents the imaginary part of the reflection coefficient 

using the local RPA model [17], overlaid with the Drude model dispersion curves (dashed). 

The match between the curve and the colormap demonstrates the Drude model validity. In 

black, we plot the QW electronic subbands: the large plasmonic momenta enable non-vertical 

transitions between QW subbands. E.g., an electron initially at rest can undergo transitions 

corresponding to the intersections between the plasmonic and the QW dispersions. 

 

Increasing the momentum of photons through polaritonic materials and approaching 

the range of electron momenta in solids is expected to break one of the most basic notions in 

optics – that the optical material response is local. Optical transitions facilitated by free space 

photons are nearly direct, owing to their small momentum: as a consequence, the associated 

energy change of the transitioning electron is fixed by the photon frequency—while its 

momentum change is negligible. As a result, the transition dynamics of the electron can be 

accurately captured by a local dielectric function that depends only on the transition 
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frequency (𝜔) and is independent of the photon momentum. In contrast to this, several studies 

have revealed the breakdown of the local paradigm, in deeply nanoscopic plasmonic structures 

[18-21], whose behavior necessitates an account of the material nonlocal response (generally 

described by the spatial dispersion of 𝜖(𝒓, 𝒓′, 𝜔) that includes two space coordinates 𝒓, 𝒓′). In 

translationally invariant systems, where 𝜖(𝒓, 𝒓′, 𝜔) = 𝜖(𝒓 − 𝒓′, 𝜔), nonlocal response is 

equivalent to an explicit momentum (𝒒) dependence of the dielectric function, i.e., 𝜖(𝒒, 𝜔) 

[22-26]. Recent experiments probing intrinsic nonlocalities in graphene plasmonics [27] and 

effective nonlocalities in metamaterials [28] further highlight the emerging primacy of 

nonlocality. An intriguing question related to these observations is whether it is possible to 

“induce” a nonlocal response or control the intrinsic nonlocality of a material by coupling it to 

an adjacent polaritonic material. 

We find that the QW exhibits a pronounced nonlocal response when interacting with 

the large-momentum polariton (the optical field)—despite the fact that each system, considered 

separately, can be accurately described by a local optical response. Thereby, the coupled 

system enters a qualitatively new light-matter interaction regime beyond the local optical 

response and therefore also beyond the dipole approximation. We find two particularly 

interesting manifestations of this nonlocality: a Doppler effect for emission and absorption 

frequencies, and an intrinsic cutoff frequency for absorption. The platform proposed in this 

work enables several new opportunities in both fundamental and applied sciences: at a 

fundamental level, the controlled study of basic conceptual questions in nonlocality; at an 

applied level, opportunities range from improved solar cells, enabled by broader absorption 

spectra, to tunable solid-state LEDs and lasers, enabled by an effectively tunable bandgap.  
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Results 

Theory of graphene-QW interactions 

The system of interest, sketched in Figure 1a, is a QW of thickness 𝑑 that may emit or 

absorb a plasmon, confined to an adjacent graphene layer, which, in turn, is separated from the 

QW active area by a spacer of thickness 𝑙s =10 nm. The graphene sheet supports plasmons of 

momenta far greater than that of free space photons (see Figure 1b): consequently, these 

plasmons enable non-vertical transitions between electronic subbands of the QW (indicated as 

solid black lines in Figure 1b). We will now describe the physical properties of each of these 

individual components as well as the required characteristics for their interactions.  

The graphene layer is the propagation medium of the graphene plasmons, whose 

electromagnetic field dominates the optical interaction with the QW. The electromagnetic field 

of a graphene plasmon is a highly confined evanescent wave supported by the sloshing of 

charge density in the graphene sheet. Graphene plasmons are especially attractive for our 

purpose thanks to the versatility of graphene’s conductivity and Fermi level (adjustable via 

chemical or electrical doping in the graphene layer) [17,29,30], as well as its potentially low-

loss extreme light confinement, i.e., wavelength shrinkage to lengths hundreds of times smaller 

than that of a free space photon [27,31-33]. The confinement factor, defined as 𝜂0 =
𝑐

𝑣p
= 

𝜆0

𝜆pl
, 

represents in dimensionless terms the reduced plasmon phase velocity 𝑣p relative to the speed 

of light in vacuum 𝑐—or, equivalently, the reduced plasmon wavelength λpl relative to the free 

space value λ0.  

 In this work, we exploit a hallmark of graphene plasmonics, namely that 𝜂0 can greatly 

exceed unity [27,33,34]. Consequently, an electric field mode 𝑬𝑞 of a plasmon confined to 

the xy plane with wave vector 𝒒 (momentum ℏ𝒒) can be simplified to: 
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𝑬𝑞(𝒓) ∝ 𝑒
−𝑞|𝑧|𝑒−𝑖𝒒⋅𝝆 (�̂� ± 𝑖�̂�) ,                                                           (1) 

where 𝝆 is the position in the xy plane. The graphene plasmon dispersion relation can be 

expressed within the intraband approximation (i.e. by a Drude-like model, see methods) with 

intrinsic decay time of 𝜏 = 0.2 ps [29]: 

      𝜔𝑞 ≃ √
4𝛼

𝜖s + 1

𝐸F
g

ℏ
𝑐𝑞 = 𝑣p(𝑞)𝑞 ≡

𝑐𝑞

𝜂0(𝑞)
,                                               (2) 

where 𝜖s is the spacer permittivity (taken 10.6 for GaAs), 𝛼 is the fine structure constant, and 

ℏ is the reduced Planck constant. 𝐸F
g
 is the graphene Fermi level, which can be tuned by 

electrostatic gating or chemical doping to control the confinement factor and the plasmon 

dispersion.   

Representing the dispersion through the (momentum–dependent) confinement factor 

𝜂0(𝑞) allows a direct extension of the key concepts discussed here to any surface polaritonic 

system (e.g. phonon polaritons [35-37], other families of polaritons [38,39], and their 

heterostructures [33,40]), all of which can be used to realize the results presented in this work. 

An important challenge pertinent to all of these high-confinement polaritons is the need to 

couple the polaritons in or out of the supporting material. Various methods facilitate such 

coupling: for example, plasmons hosted by the graphene sheet can be out-coupled by a SNOM 

tip [31] or by a periodic grating [41,42]—alternatively, they could be emitted or absorbed by 

any nearby quantum emitter, constrained only by the conservation of energy and momentum 

(Figure 1b). 

We demonstrate the emission and absorption of plasmons with a 12 nm 

GaAs/InGaAs/GaAs QW, wide enough to support three electron subbands. The control over 

the energy distribution of the QW electrons can be accomplished by chemical doping, 

electrically, or optically. The distribution of the electrons is described by an effective 
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temperature 𝑇eff  and a QW quasi Fermi level 𝐸F 
QW

 (see e.g., Ref. [43]), which are a function 

of the electronic excitation mechanism (e.g. the frequency and power of the driving laser in the 

case of optical excitation), and depend also on different charge relaxation rates. Under standard 

parameters, a simple single-particle treatment has the energies and the wave functions of the 

charge carriers as  

𝐸𝑛𝒌 = 𝐸𝑛 +
ℏ2𝒌2

2𝑚∗
 ,                                                                    (3a) 

  𝜓𝑛𝒌(𝒓) = e
−𝑖𝒌⋅𝝆𝜙𝑛(𝑧 − 𝑧0)                                                           (3b) 

with 𝑛 = 1, 2, 3 for the three QW electron subbands. 𝐸𝑛 and 𝜙𝑛(𝑧) represent the QW energy 

minima and out-of-plane wave function [44] (Figure 1a), 𝑧0 is the location of the QW center, 

and 𝑚∗ is the effective mass of charge carriers. 𝒌 is the electron wave vector in the xy plane, 

in which the charge carriers behave like a 2D free electron gas, resulting in parabolic subbands. 

 The coupling between plasmons and the QW charge carriers can be described by 

macroscopic quantum electrodynamics (originally discussed in the context of atomic systems, 

e.g., [34, 45-47]). The key steps are presented below, with additional technical details deferred 

to the SM Section 1. The electron–photon interaction is governed by the interaction 

Hamiltonian (in the Weyl gauge, i.e., with zero scalar potential)  

   𝐻int =
𝑒

2𝑚∗
[𝒑 ⋅ 𝑨(𝒓) + 𝑨(𝒓) ⋅ 𝒑],                                                            (4a) 

𝐴𝑖(𝒓) = √
ℏ

𝜋𝜖0
∫ d𝜔
∞

0

𝜔

𝑐2
∫d𝒓′√Im[𝜖(𝒓′, 𝜔)] 𝐺𝑖𝑗(𝒓, 𝒓

′, 𝜔)𝑓𝑗(𝒓
′, 𝜔) + h. c. . ,                (4b) 

where 𝑒 is the QW carrier’s charge, 𝒑 its momentum operators, and 𝑨 the vector potential 

operator of the electromagnetic field. The field quantization of the vector potential follows by 

expansion in annihilation (creation) operators 𝑓𝑖(𝒓′, 𝜔) (𝑓𝑖
†
(𝒓′, 𝜔)) that describe a dipole 
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excitation at position 𝒓′ and with frequency 𝜔. The vector potential operator incorporates the 

details of the optical environment (e.g., knowledge of the supported plasmon modes) through 

the imaginary part of the permittivity 𝜖 and the dyadic Green's function 𝑮(𝒓, 𝒓′, 𝜔). The dyadic 

Green's function components 𝐺𝑖𝑗(𝒓, 𝒓
′, 𝜔) represent the ith component of the electromagnetic 

field at position 𝒓 due to a time-harmonic point dipole at position 𝒓′ oriented along the 𝑗th 

direction. An explicit expression for the Green's function of the system under consideration is 

given in the SM Eq. (S2).  

The use of the dyadic Green’s function allows a full account of the impact of intrinsic 

material losses. The impact of the losses is manifested in the spatial Fourier 

transformed  𝐺(𝒒, 𝜔), whose amplitude is proportional to the imaginary part of the reflectance 

(plotted in Figure 1b), and therefore incorporates the plasmonic dispersion (Eq. (2)) and 

broadening. Furthermore, the Green’s function also comprises the full spatial dependence of 

the mode e−𝑖𝒒⋅𝝆−𝑞|𝑧|, which in our case includes the full momentum dependence e−𝑖𝒒⋅𝝆 along 

the QW extended direction, and consequently goes beyond the dipole approximation that is 

unjustified in our settings. For this reason, we enter a regime that enables non-vertical 

transitions in the QW dispersion diagram, as shown in Figure 2a,b.  We see that the full 

exploitation of the polaritonic momentum in electronic transitions is attainable in non-atomic, 

extended emitters, such as QWs. 
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Figure 2: Control of the emission and absorption frequencies of a quantum well by tuning 

the graphene Fermi energy. (a,b) The concept of the controllable transition frequencies. 

Plasmonic emission (a) and absorption (b) between the QW subbands (black) for different 

graphene Fermi levels (blue 𝐸𝐹
g
= 0.4, red 0.7, yellow 1.2 eV). The transition frequency shift 

is marked by 𝛿𝐸. (c-f) Total rates of emission (solid) and absorption (dashed) per charge carrier 

of the different transitions (blue 𝐸1 ⇄ 𝐸2, purple 𝐸2 ⇄ 𝐸3, red 𝐸1 ⇄ 𝐸3) for several values of 

the graphene Fermi level when the electron is initially at the bottom of the subband. 

Confinement factors of the corresponding transitions are indicated. Dashed black lines 

represent the local-response resonance frequencies (i.e. vertical transitions).  

 

Transition frequency shift due to plasmon momentum 

In this section, we analyze the transition spectra of plasmons emitted or absorbed by 

the QW and show how the large plasmon momentum alters the QW transition frequencies. The 

first step is to look at the transition rate between QW states due to the emission (em) or 

absorption (ab) of a plasmon in the considered structure. In this structure, the transition rates 

fall within the weak coupling paradigm; strong coupling will only become potentially relevant 

for sub-nanometre spacers. Hence, it is justified to obtain the rates directly from Fermi's golden 

rule [48]: 

Γem
ab
=
2𝜋

ℏ
∑  𝑓(𝒌i)

𝐤i,𝒌f

|⟨𝑛f, 𝒌f, 𝑛𝒒 ± 1|𝐻int|𝑛i, 𝒌i, 𝑛𝒒⟩|
2
𝛿(𝐸𝑛i𝒌i − 𝐸𝑛f𝒌f ∓ ℏ𝜔𝑞),             (5) 
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where 𝑓(𝒌i) = (1 + exp [(
ℏ2𝑘i

2

2𝑚∗
− 𝐸F 

QW
) /𝑘B𝑇eff])

−1

 is the Fermi–Dirac distribution as a 

function of an electronic momentum ℏ𝒌i and the final state is assumed to be vacant. Subscripts 

𝑖 and 𝑓 denote the initial and final states of the electron, while 𝑛𝒒 is the number of plasmon 

quanta (increased/decreased for emission/absorption). Although the calculation can be done 

for any 𝑛𝒒, for simplicity we focus on the cases where 𝑛𝒒 = 0 when considering spontaneous 

plasmon emission and 𝑛𝒒 = 1 when considering plasmon absorption. The results presented are 

normalized to yield transition rates per charge carrier, i.e. such that 1 =
𝐴

(2𝜋)2
∫ 𝑑𝒌i𝑓(𝒌i) for 

a slab of area 𝐴. 

The matrix element in Eq. (5) that specifies the interaction amplitude between graphene 

plasmons and the QW is approximately given by (see SM Section 1): 

⟨𝑛f, 𝒌f, 𝑛𝒒 ± 1|𝐻int|𝑛i, 𝒌i, 𝑛𝒒⟩ ∝ ⟨𝑛f|e
−𝑞𝑧𝜕𝑧|𝑛i⟩⏞        

(i)

⟨𝒌f|e
±𝑖𝒒⋅𝝆|𝒌i⟩

⏞        

(ii)

.                       (6) 

The first term (i) gives the z-dependent interaction amplitude due to overlap between the 

evanescent tail of the plasmon and the charge carrier state inside the QW (Figure 1a), where 

the 𝜕𝑧 derivative arises from the momentum operator. The term (ii) ensures momentum 

conservation in the xy plane, forcing 𝒌i ± 𝒒 = 𝒌f, which appears as a delta function in the 

lossless case or a Lorentzian when including plasmonic losses. Meanwhile, the frequency-

dependent delta function, 𝛿(𝐸𝑛𝑖𝒌𝑖 − 𝐸𝑛f𝒌f ∓ ℏ𝜔𝑞) in Eq. (5), enforces energy conservation. 

The allowed transition frequencies associated with the emission or absorption of a plasmon are 

consistent with the combined energy-momentum conservation, and can be determined by 

substituting the dispersion relations of both the plasmon and the QW electron, Eqs. (2) and 

(3a), into these conservation laws. Figure 2a,b illustrates the tunable transition frequencies that 
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follow from these conservation laws (for an electron initially at rest), with the tunability 

courtesy of the gate tunable plasmon dispersion. 

Figure 2c-f displays the tunability in the transition frequencies when increasing the 

momentum of the plasmon, as expected from Figures 2a,b. Specifically, the absorption and 

emission frequencies show blue and red shifts respectively, breaking the symmetry between 

them with a split as wide as 100 meV. Comparing panels c-f illustrates how the frequency 

shifts increase as the Fermi level of graphene decreases, which corresponds to increasing the 

plasmon momentum, i.e., increasing the confinement factor. In addition to a frequency shift, 

the QW transitions also exhibit spectral broadening due to plasmonics losses, with an increase 

in the FWHM of the spectral lines of up to 10 meV, which will be further broadened as 

discussed below by a Doppler broadening effect. The broadening of the FWHM could be 

understood through Figure 1b from the width of the plasmonic dispersion and its intersection 

with the electronic dispersion line. 

In line with previous findings [49, 50], Figure 2 also shows that the total transition rates 

(the integrated spectra) are significantly enhanced for interaction with plasmons that have large 

confinement factors (𝜂0). As a result of the large Purcell factor, we find that the radiative 

plasmon transitions dominate all other radiative processes (see SM Figure S5), such as QW 

emission into free space photons. In contrast with previous findings, Figure 2 shows that there 

is a difference between the absorption rate and the emission rate. This change in spectral 

response between absorption and emission, and the large change compared to the local-

response (i.e. vertical transitions) plotted in Figure 2a,b underscore the impact of the induced 

nonlocality in the QW response. Moreover, we find that the spacer thickness affects the 

enhancement of all transitions, and limits the range of confinement factors that enhance the 

transitions. The reason lies in the fact that large confinements shorten the plasmon tail in the 𝑧 
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direction to a characteristic length of  
𝑐/ω𝑞

𝜂0
, as seen in Eq. (6) term (i) (more details in SM 

Figure S8).  

Figure 3 summarizes the large dependence of the absorption frequencies, emission 

frequencies, and transition rates of distinct intersubband transitions on the plasmon 

confinement factor. In this representation, the gradual change from the free space photon 

transition rates and spectra (𝜂0 = 1) to the high momentum plasmon transition rates and spectra 

(i.e., high values of 𝜂0) is apparent. The first notable feature in Figure 3 is the strong 

enhancement of transition 𝐸1 ⇄ 𝐸3, which due the parity symmetry of the wavefunctions, has 

a vanishing dipole moment but a non-vanishing quadrupole moment in the z direction. In the 

absence of coupling to plasmons, this transition is much slower than the 𝐸1 ⇄ 𝐸2  transition on 

account of the weak variation of the electromagnetic field that practically forbids any beyond-

dipole transition in the quantum well. However, in the presence of plasmons, the 𝐸1 ⇄ 𝐸3 

transition can be enhanced by up to seven orders of magnitude (here achieved for confinement 

factor of 85). This transforms the 𝐸1 ⇄ 𝐸3 transition from effectively forbidden to one with a 

rate exceeding even the conventional, non-forbidden transitions (e.g., 𝐸1 ⇄ 𝐸2) of the QW. 

Interestingly, we find that the rates of both kinds of transitions are not merely influenced by 

the out-of-plane fields and field gradients; they are also strongly influenced by the in-plane 

plasmon momentum, which emphasizes the importance of the complete nonlocal description. 

The solid black lines in Figure 3a presents a comparison with the conventional local calculation 

of the transition rates, where we neglect the finite plasmon momentum by approximating 

e𝑖𝒒⋅𝝆 ≃ 1 in Eq. (6) that yields a conventional dipole 𝒅 ∙ 𝑬 interaction term. The deviation 

between the curves in Figure 3a shows that the local calculation fails for the 𝐸1 ⇄ 𝐸3 transition 

even at relatively low confinements, further underscoring the importance of going beyond the 

dipolar approximation (further details in SM Section 6). 
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Figure 3: Confinement factor effect on plasmonic transitions. Transition rates (a) and 

frequencies (b) as a function of plasmon confinement factor (dashed lines, absorption; solid 

lines, emission) for the three possible transitions (blue 𝐸1 ⇄ 𝐸2, purple 𝐸2 ⇄ 𝐸3, red 𝐸1 ⇄ 𝐸3). 

Furthermore, the corresponding local calculation is shown in black (equal for absorption and 

emission). In (b) the red shaded area marks graphene Fermi level above 1.2 eV, and the gray 

shaded area marks confinements where the Drude model fails. Inset: the QW subbands overlaid 

by the plasmon dispersion for two absorption transitions, with the Fermi levels having the 

cutoff values EF
g
= EF,co

g
 for the second and third subbands. All curves are for the plasmonic 

lossless case, with a single electron initially at rest (𝒌i = 0). For the same plots as a function 

of 𝐸F
g
 see SM Figure S7. 

 

Another interesting effect revealed by rigorously accounting for the large plasmon 

momenta is the appearance of a cutoff confinement factor 𝜂0,co—or, equivalently, a cutoff 

Fermi level—for the QW absorption (Figure 3b). In particular, above this confinement there 

are no absorptive transitions that satisfy the conservation of energy and momentum laws 

previously discussed. The reason is straightforward and immediately appreciable from Fig. 2b: 

at sufficiently low Fermi levels, the plasmon dispersion bends so rapidly, that it “misses” its 

intersection with the next subband (inset in Figure 3b). For an electron initial at rest, we obtain 
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a closed-form expression for the cutoff graphene Fermi level, 𝐸F,co
g

=
𝜖s+1

𝛼

(
2

3
Δ𝐸)

3/2

√𝑚∗𝑐2
 where Δ𝐸 =

𝐸𝑛f,𝟎 − 𝐸𝑛i,𝟎 is the QW energy level difference. Interestingly, the cutoff Fermi level 

corresponds to a maximum confinement factor 𝜂0,co =
3

8

ℏ𝜔𝑞

Δ𝐸
√
3𝑚∗𝑐2

2Δ𝐸
 , which is found within 

experimental range thanks to a combination of the electron’s small effective mass and the 

graphene’s large confinement factor. When 𝐸F
g
< 𝐸F,co

g
, absorption between the two relevant 

subbands is forbidden in any frequency, and when 𝐸F
g
> 𝐸F,co

g
, the absorption channels open 

(where the higher frequency absorption channel is significantly slower – see SM Figure S5). 

In the same spirit, additional absorption channels are likely to exist at higher frequencies due 

to other intersubband transitions beyond the parabolic band approximation. 

To further investigate the frequency shift due to the plasmon’s momentum, we examine 

the transitions of a charge carrier not initially at rest (𝒌i ≠ 0) and reveal a Doppler effect. We 

denote the angle 𝜃 between a plasmon at direction �̂� and the direction of the initial momentum 

of the charge carrier �̂�i, so that 𝜃 = arccos (�̂�i ⋅ �̂�). Figure 4a shows that for the case of 

plasmon emission, when 𝜃 varies from 0 to 𝜋, the plasmon frequency can vary by tens of meV. 

Consequently, the distribution of charge carriers in the QW (i.e., distribution in 𝒌i) alters the 

frequency bandwidth of each QW transition. We now explain this behavior analytically as a 

manifestation of a Doppler shift. 

According to the Doppler shift, a moving charge observes waves with a shifted 

frequency that depends on the relative angle 𝜃 (as defined above). Importantly, the 

conventional Doppler effect carries the hidden assumption that the charge momentum is 

unchanged by the interaction with the wave. The Doppler shift in our case is different from the 

conventional one since the momentum of the charge can change significantly during the 

interaction with the plasmon (inset of Figure 4a), i.e., the recoil of the charge carrier alters the 
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conventional Doppler formula. As expected, the recoil is negligible for low confinement factors 

(and low plasmon momentum), so that the transition rates are angle-independent, and the 

transition frequencies follow the conventional Doppler formula: 

  𝜔𝑞(θ) = 𝜔𝑞(π/2) (1 −
𝑣i cos(𝜃)

𝑣p(𝑞)
)

−1

,                                                      (8) 

where 𝜔𝑞(θ) represents the frequency of the plasmon emission\absorption for a specific angle 

of emission or absorption. The charge carrier velocity is 𝑣i(𝑘i) and the plasmon phase velocity 

is 𝑣p(𝑞). Equation (8) reveals not only the angle-dependence of frequency but also the 

graphene Fermi energy dependence since it controls the plasmon phase velocity. While Eq. (8) 

takes the form of a conventional Doppler shift, we find that for high confinement factors, the 

recoil of the charge carrier can cause substantial deviations from the conventional Doppler 

shift, leading to a recoil dependent generalized Doppler shift alongside with highly angle-

dependent transition rates (see SM Figure S9). 

 

Figure 4: Doppler effect in plasmonic transitions.  (a) Angular spectral emission rate for an 

electron with initial momentum of 𝑘i = 0.1 nm
−1 and three graphene Fermi level energies 

EF
g
= 0.4,0.7 and 1.2 eV, illustrating the sharp break with the local description (dashed white). 

The dashed black lines present the emission frequencies according to our lossless formula that 
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generalizes the conventional Doppler shift, showing a good match with full Green's function 

simulations. Inset: QW band-diagram and possible transitions to opposite directions for a 

nonzero initial electron momentum 𝒌i, showing the direction-dependence Doppler frequency 

shift marked by 𝛿𝐸. (b,c) Spectral emission (solid) and absorption (dashed) rate in several 

graphene Fermi level values for the 𝐸1 ⇄ 𝐸2 transition when the effective temperature of the 

electrons in the QW is (b) 𝑇eff = 15 K and (c) 𝑇eff = 300 K where the quasi Fermi level is 1.5 

meV above the bottom of the initial subband. Inset: Spectral emission rates forward in angles 

0 ± 20° and backward in angles 180 ± 20°. 

 

Figures 4b,c presents a Doppler broadening of the emission and absorption spectra for 

transitions between the first and second electronic subbands, for three different graphene Fermi 

levels EF
g
 and two effective temperatures, calculated by integrating over 𝑘i, 𝜃 (Eq. 5).Although 

the known Doppler broadening expression agrees with the results for low confinement factors 

(see SM Section 3), in high confinement factors the inhomogeneous transition rates in the 

Doppler effect cause the overall peak to be redshifted, as demonstrated in Figure 4c and its 

inset. Despite the broadening, at low temperatures (Figure 4b) the separation between the peaks 

of emission and absorption is observable, with a split exceeding 10 meV for EF
g
< 0.7 eV.  

We conclude our discussion of the Doppler shift by noting that the Doppler effect in 

the system is itself a manifestation of nonlocality, as previously noted by e.g., Landau and 

Lifschitz [51]: the frequency and rate of plasmon absorption is explicitly dependent on the 

plasmon wavevector through the angle of absorption 𝜃. Since the absorption rate is directly 

proportional to the imaginary part of the dielectric function, Γ ∝ Im 𝜖(𝒒, 𝜔), it follows that the 

QW permittivity is wave vector dependent and therefore spatially nonlocal.  

 

Section IV - Discussion  

To summarize, we have demonstrated that the large momenta of surface polaritons can 

be used to control the frequencies of polaritons emitted or absorbed by electrons in a solid-state 
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emitter.  Specifically, the combination of a QW and a plasmon supporting monolayer of 

graphene enables substantial control over the spectral properties of the system, through 

graphene’s tunable Fermi level. The full transition dynamics manifests new effects such as an 

absorption cutoff and pronounced Doppler shifts that suggest intriguing possibilities, e.g., 

bound electron acceleration (see SM Section 7). This control of the transition spectrum also 

enables tuning the intrinsic optical response and effective permittivity of the system (since Γ ∝

Im 𝜖(𝒒, 𝜔)), spanning over twentyfold when the wave vector and the frequency fulfill the 

plasmonic dispersion relations (see SM Section 5 and Figure S2). As a result, our work suggests 

a framework for designing new, tunable, nonlocal metamaterials from local constituents.  

The scheme introduced in this paper can be generalized to a host of surface polariton 

systems interfaced with various solid-state emitters simply by substituting material properties 

of the polaritons and the electrons, i.e., their dispersions. Other 2D materials and polar 

dielectric structures supporting phonon polaritons, such as hBN, offer several interesting 

opportunities in this regard. E.g., the highly frequency-selective nature of phonon polaritons 

[35-37] may enable additional spectral control over the QW intersubband transitions in addition 

to the strong enhancements of light-matter interactions offered by such materials [49]. The 

formalism can also be generalized to intersubband transitions in other QW structures such as 

in few-layer transition metal dichalcogenides [52] and narrow bandgap materials [53], as well 

to interband transitions in these materials and in others. Further still, the formalism could be 

extended to cascade processes in multi-level systems as in [54], thus capturing the complete 

dynamics of the QW electrons when experiencing multiple consecutive transitions. The limit 

of our formalism is the strong coupling regime that might occur when a spacer of few atomic 

layers separates the electronic states and the plasmons, leading to the formation of a new type 

of polariton composed by the QW intersubband polariton and the graphene plasmon 

(potentially accompanied by a Lamb-shift-type frequency shift [55]). 
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The ability to access very large electromagnetic field’s momenta could also affect the optical 

response of indirect bandgap bulk semiconductors [56,57], which are typically constrained in 

their inability to interact with light near its indirect bandgap due to the large electronic 

momentum mismatch between valence maximum and conduction minimum. Coupling such 

materials to a polariton–supporting 2D layer could conceivably provide the momentum 

necessary to overcome this mismatch—even without altering its electronic band structure (e.g., 

by introducing defects). A proof-of-concept can be implemented using multilayer MoSe2 as an 

emitter, which was found to change from direct to indirect depending on the number of layers 

[58, 59], making this material an ideal candidate for such an experimental proof-of-concept 

(potentially in a heterostructure with adjacent polariton supporting 2D materials). A 

particularly exciting realization of this idea would be inducing indirect bandgap transitions in 

silicon, a material of extreme technological importance. To cross the Brillouin zone with a high 

momentum polariton, one would typically still want to modify the electronic structure (e.g., 

with porous silicon [60]). With a combination of band-structure engineering and large momenta 

polaritons, one could envision designing more efficient silicon solar cells, silicon 

photodetectors and silicon-based light sources. Such devices, which could be easily integrated 

on a chip, would greatly contribute to creating simple, robust hybrid electronic-photonic 

systems. 
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Methods 

 The considerations of plasmonic losses 

The plasmon dispersion is presented in Figure 1b via the imaginary part of the 

reflectance (colormap), computed from the full local conductivity of graphene (i.e. including 

both intraband and interband dispersion) calculated from the random phase approximation 

(RPA) [17,49]. The dashed lines give the associated intraband approximation, Eq. (2), 

neglecting losses. The excellent agreement between the two conductivity models illustrates that 

for the range of parameters considered in this work, the intraband (or Drude) treatment is 

completely sufficient. This result can be used whenever the Fermi level is larger than the 

plasmon energy and the influence of both intrinsic graphene nonlocality and interband 

corrections are negligible [17,29,30]. The intrinsic graphene losses considered in Figure 1b and 

in our results below reflect an intrinsic decay time of 𝜏 = 0.2 ps. This is a reasonable estimate 

of the decay time attainable in current experimental setups [61], with even higher decay times 

attainable in under cryogenic conditions or via hexagonal boron nitride encapsulation [33]. For 

corrections due to a change in graphene losses (different Drude decay times 𝜏), see SM figure 

S6. In practice, it translates to plasmon propagation lengths on the order of a micron for the 

Fermi levels and frequencies considered here. More about the plasmonic losses in the 

Supplementary Material (SM) Section 8.  
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